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Introduction

Introduction

Given A ⊂ Z, let

A + A = {a1 + a2 : a1, a2 ∈ A},

A − A = {a1 − a2 : a1, a2 ∈ A}.
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Introduction

Introduction

Given A ⊂ Z, let

A + A = {a1 + a2 : a1, a2 ∈ A},

A − A = {a1 − a2 : a1, a2 ∈ A}.

Theorem

For n large, the proportion of sets A ⊂ {0, . . . , n} with
|A + A| > |A − A| is greater than 2 × 10−7. (Martin and O’Bryant
2006)
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Introduction

Introduction

Given A ⊂ Z, let

A + A = {a1 + a2 : a1, a2 ∈ A},

A − A = {a1 − a2 : a1, a2 ∈ A}.

Theorem

For n large, the proportion of sets A ⊂ {0, . . . , n} with
|A + A| > |A − A| is greater than 2 × 10−7. (Martin and O’Bryant
2006)

Such sets are called More Sums Than Differences (MSTD) sets, or
sum-dominant sets.

5



Introduction

Fringe Elements
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Fringe Elements

Fringe elements are important.
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Introduction

Fringe Elements

Fringe elements are important.

Example

Given A ⊂ [0, n] and k ≤ n,

(A + A) ∩ [0, k] ⊂ (A ∩ [0, k]) + (A ∩ [0, k]).
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Introduction

Fringe Elements

Fringe elements are important.

Example

Given A ⊂ [0, n] and k ≤ n,

(A + A) ∩ [0, k] ⊂ (A ∩ [0, k]) + (A ∩ [0, k]).

Martin and O’Bryant: for some fixed k , carefully choose fringe of A
so that

| (A + A) ∩ ([0, k] ∪ [2n − k , 2n]) |

> | (A − A) ∩ ([−n, −n + k] ∪ [n − k , n]) |

With positive probability, [k + 1, 2n − k − 1] ⊂ A+A and A is MSTD.
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Fringe in Higher Dimensions
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Results in Higher Dimensions

Positive Percentage in d Dimensions

Theorem

For any integer d > 0, there exists some constant cd > 0 such that,
for n large, the proportion of MSTD subsets A of {0, . . . , n}d is
greater than cd .

Proof of positive proportion of MSTD sets is probabilistic.
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Results in Higher Dimensions

Construction of Infinite Families of MSTD Sets
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Construction of Infinite Families of MSTD Sets
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Correlated Random Pairs

Correlated Random Pairs

All of the literature to date has looked at sums and differences of a
set with itself. We investigate sums and differences of pairs of subsets
(A, B) ⊂ {0, . . . , n}. We select such pairs according to the dependent
random process:

P(a ∈ A) = p; P(a ∈ B|a ∈ A) = ρ1; P(a ∈ B|a /∈ A) = ρ2
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Correlated Random Pairs

Correlated Random Pairs

All of the literature to date has looked at sums and differences of a
set with itself. We investigate sums and differences of pairs of subsets
(A, B) ⊂ {0, . . . , n}. We select such pairs according to the dependent
random process:

P(a ∈ A) = p; P(a ∈ B|a ∈ A) = ρ1; P(a ∈ B|a /∈ A) = ρ2

Let ~ρ = (p, ρ1, ρ2). We call a pair of subsets selected by this process
a ~ρ-correlated pair. Note that when (ρ1, ρ2) = (1, 0), this is the old
case of (A, A). When (ρ1, ρ2) = (0, 1), this is (A, Ac). When ρ1 = ρ2,
A and B are independent.
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Correlated Random Pairs Results on Correlated Pairs

Correlated Random Pairs

Let P(~ρ, n) be the probability that a ~ρ-correlated pair (A, B) with
A, B ⊂ {0, . . . , n} is MSTD, that is

|A + B| > | ± (A − B)| = |(A − B) ∪ (B − A)|
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Correlated Random Pairs Results on Correlated Pairs

Correlated Random Pairs

Let P(~ρ, n) be the probability that a ~ρ-correlated pair (A, B) with
A, B ⊂ {0, . . . , n} is MSTD, that is

|A + B| > | ± (A − B)| = |(A − B) ∪ (B − A)|

Theorem

For any ~ρ ∈ [0, 1]3, the limit

lim
n→∞

P(~ρ, n) =: P(~ρ)

exists. Moreover, as long as p /∈ {0, 1} and (ρ1, ρ2) 6= (0, 0), (1, 1),
then P(~ρ) is strictly positive.
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Correlated Random Pairs Results on Correlated Pairs

The function P(~ρ)

Theorem

The function P(~ρ) is continuous on [0, 1]3.
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Correlated Random Pairs Results on Correlated Pairs

Maximizing the probability of sum dominance

As P(~ρ) is a continuous function on a compact set [0, 1]3, it must
attain a maximum.
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Correlated Random Pairs Results on Correlated Pairs

Maximizing the probability of sum dominance

As P(~ρ) is a continuous function on a compact set [0, 1]3, it must
attain a maximum.

Here we fix n = 9 and investigate how the percentage P changes
when we vary p, ρ1, ρ2 and see where it is maximized.

We find the maximum percentage at point (0.5, 0, 1).
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Correlated Random Pairs

Fix (p, ρ1)

Conjecture 1: For any fixed (p, ρ1) with ρ1 not too big (ρ1 ≤ .4)
then P as a function of ρ2 is strictly increasing in [0, 1] and reaches
its maximum at ρ2 = 1.
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Correlated Random Pairs

Fix (p, ρ2)

Conjecture 2: For any fixed (p, ρ2) with ρ2 not too small (ρ2 ≥ .5)
then P as a function of ρ1 is strictly decreasing in [0, 1] and reaches
its maximum at ρ1 = 0.
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Correlated Random Pairs

Fix (ρ1, ρ2)

n = 9 : If we fix (ρ1, ρ2), P as a function of p has a shape similar to
parabola with a maximum at a point around 1/2.

Conjecture 3: The maximum of function P(p, ρ1, ρ2) is at
P(1/2, 0, 1) ≈ 0.03.
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Correlated Random Pairs

The minimal MSTD pair

Hegarty (2007) proved the smallest MSTD set has size 8.
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Correlated Random Pairs

The minimal MSTD pair

Hegarty (2007) proved the smallest MSTD set has size 8. We prove

Theorem

The smallest MSTD pair has size (3, 5) or (4, 4).

Examples:
A = {1, 2, 5, 7}, B = {1, 3, 6, 7}

A = {3, 4, 6}, B = {1, 2, 5, 7, 8}

A = {3, 5, 6}, B = {1, 2, 4, 7, 8}.
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Summary

Zeckendorf’s Theorem

Our research is inspired by an elegant theorem of
Zeckendorf.

Theorem

Write the Fibonacci numbers as F1 = 1, F2 = 2,

Fn = Fn−1 + Fn−2 for n > 2. All natural numbers can be

uniquely written as a sum of non-consecutive Fibonacci

numbers.

Example

2013 = 1597 + 377 + 34 + 5 = F16 + F13 + F8 + F4
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Summary

Going the other way

Previous work:

linear recurrence sequence → notion of legal decomposition.

Our work:

notion of legal decompostition → linear recurrence sequence.

3
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f -Decompositions

f -Decompositions

We focused on constructing sequences from notions of
legal decomposition.
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f -Decompositions

f -Decompositions

We focused on constructing sequences from notions of
legal decomposition.

Many notions of “legal” decompositions can be encoded
as f -decompositions.

Definition

Let f : N → N. A sum
∑k

i=0 ani
of terms of {an} is a legal

f -decomposition using {an} if for every ani
, the previous f (ni)

terms are not in the f -decomposition.
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f -Decompositions

Result

Theorem

If f (n + 1) ≤ 1 + f (n) for all n ∈ N, there exists a sequence

{an} such that every positive integer has a unique legal

f -decomposition using {an}.

Example

The Zeckendorf condition is that consecutive terms may not
be chosen.
This is equivalent to saying f (n) = 1 for all n ∈ N.
This condition yields the Fibonacci numbers.

{Fn} = 1, 2, 3, 5, 8, 13, 21, 34, . . .
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Bins

Base b representation can be interpretted as
f -decompositions. For example, consider base 5:

{an} = 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, 100, . . .

Here, an = 5an−4.

We build upon this notion of legal decomposition by
adding the Zeckendorf condition. A legal decomposition is
one that contains no consecutive terms and at most one
term from each bin.

{an} = 1, 2, 3, 4, 7, 11, 15, 26, 41, 56, 97, 153, 209, 362, 571, . . .

Here, an = 4an−3 − an−6. We analyze this case in detail.
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Gaussian Behavior

Number of summands

Our goal is to show that the number of summands for integers
in [0, abn) converges to the Gaussian distribution as n → ∞.

Let pn,k be the number of integers that can be legally
written as the sum of exactly k summands from n bins.
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Gaussian Behavior

Number of summands

Our goal is to show that the number of summands for integers
in [0, abn) converges to the Gaussian distribution as n → ∞.

Let pn,k be the number of integers that can be legally
written as the sum of exactly k summands from n bins.

We prove that

pn,k = pn−1,k + bpn−1,k−1 − pn−2,k−2
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Gaussian Behavior

Number of summands

Our goal is to show that the number of summands for integers
in [0, abn) converges to the Gaussian distribution as n → ∞.

Let pn,k be the number of integers that can be legally
written as the sum of exactly k summands from n bins.

We prove that

pn,k = pn−1,k + bpn−1,k−1 − pn−2,k−2

Define gn(y) =
∑

k≥0 pn,ky k . We were able to show that

gn(y)=

(

by+1+

√
(b2

−4)y2+2by+1

)n+1

−

(

by+1−

√
(b2

−4)y2+2by+1

)n+1

2n+1
√

(b2
−4)y2+2by+1
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Gaussian Behavior

Mean and Variance

We can use gn(y) =
∑

k≥0 pn,ky k to compute mean and
variance of the random variable Xn, the number of
summands for integers in [a0, abn).
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Gaussian Behavior

Mean and Variance

We can use gn(y) =
∑

k≥0 pn,ky k to compute mean and
variance of the random variable Xn, the number of
summands for integers in [a0, abn).

The mean, µn, is simply

µn =
g ′

n(1)

gn(1)
=

(b2+b−4+b
√

b2+2b−3)
√

b2+2b−3(1+b+
√

b2+2b−3)
n + O(1)
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Gaussian Behavior

Mean and Variance

We can use gn(y) =
∑

k≥0 pn,ky k to compute mean and
variance of the random variable Xn, the number of
summands for integers in [a0, abn).

The mean, µn, is simply

µn =
g ′

n(1)

gn(1)
=

(b2+b−4+b
√

b2+2b−3)
√

b2+2b−3(1+b+
√

b2+2b−3)
n + O(1)

The variance is

σ2
n =

d
dy

[yg ′
n(y)]

∣
∣
∣
y=1

g(1)
− µ2 =

(b2 + b − 4)n

(b2 + 2b − 3)3/2
+ O(1)
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Gaussian Behavior

Moment Generating Function

If we normalize Xn to Yn = (Xn − µn)/σn, the moment
generating function of Yn is

MYn
(t) = E(etYn) =

∑

k≥0

pn,ke
t(k−µn)

σn

∑

k≥0 pn,k

=
gn(e

t/σn)e−tµn/σn

gn(1)
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Gaussian Behavior

Moment Generating Function

If we normalize Xn to Yn = (Xn − µn)/σn, the moment
generating function of Yn is

MYn
(t) = E(etYn) =

∑

k≥0

pn,ke
t(k−µn)

σn

∑

k≥0 pn,k

=
gn(e

t/σn)e−tµn/σn

gn(1)

After multiple Taylor Series expansions, we get

log(MYn
(t)) =

t2

2
+ O

(

t3

√
n

)

as n → ∞.
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Gaussian Behavior

Moment Generating Function

If we normalize Xn to Yn = (Xn − µn)/σn, the moment
generating function of Yn is

MYn
(t) = E(etYn) =

∑

k≥0

pn,ke
t(k−µn)

σn

∑

k≥0 pn,k

=
gn(e

t/σn)e−tµn/σn

gn(1)

After multiple Taylor Series expansions, we get

log(MYn
(t)) =

t2

2
+ O

(

t3

√
n

)

as n → ∞.

Hence, the distribution of Yn converges to the standard
normal distribution.
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Far-Difference Representations

Definition

A far-difference representation is a sum of numbers and their
additive inverses.
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Far-Difference Representations

Definition

A far-difference representation is a sum of numbers and their
additive inverses.

Example: 65 = 89 − 21 − 3 = F10 − F7 − F3

Alpert [Al] proved that a Fibonacci far-difference
representation exists for all integers and is unique.
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Far-Difference Representations

Definition

A far-difference representation is a sum of numbers and their
additive inverses.

Example: 65 = 89 − 21 − 3 = F10 − F7 − F3

Alpert [Al] proved that a Fibonacci far-difference
representation exists for all integers and is unique.

Miller-Wang [MW], a paper from a previous SMALL
summer with countably infinite pages, proved Gaussianity
for Alpert’s far-difference representations.
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Preliminary Definitions

The k-Skipponaccis are recurrence relations of the form

Sn+1 = Sn + Sn−k

for some k ≥ 0.
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Preliminary Definitions

The k-Skipponaccis are recurrence relations of the form

Sn+1 = Sn + Sn−k

for some k ≥ 0.

Alpert [Al] proved the following result for the Fibonaccis (also
called the 1-Skipponaccis).

Alpert’s Theorem

Every x ∈ Z has a unique far-difference representation for the
Fibonaccis such that all terms of the same sign are at least 4
apart in index, and all terms of opposite sign are at least 3
apart in index.
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Our First Result

Example: 119 = 144 − 34 + 8 + 1 = F11 − F8
︸ ︷︷ ︸

3 apart

+ F5 + F1
︸ ︷︷ ︸

4 apart
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Our First Result

Example: 119 = 144 − 34 + 8 + 1 = F11 − F8
︸ ︷︷ ︸

3 apart

+ F5 + F1
︸ ︷︷ ︸

4 apart

Theorem 1

Every x ∈ Z has a unique far-difference representation for the
k-Skipponaccis such that all terms of the same sign are at
least 2k + 2 apart in index and all terms of opposite sign are
at least k + 2 apart in index.
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Our Second Result

Let R(n) =
∑

0<n−b(2k+2)≤n

Sn−b(2k+2) = Sn+Sn−2k−2+Sn−4k−4+...
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Our Second Result

Let R(n) =
∑

0<n−b(2k+2)≤n

Sn−b(2k+2) = Sn+Sn−2k−2+Sn−4k−4+...

Theorem 2

Let Kn and Ln be random variables denoting the number of
positive and negative summands in the far-difference
representation of integers on the interval (Rn−1, Rn]. As
n → ∞ , the joint density of Kn and Ln converges to a
bivariate Gaussian.
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Our Second Result

Let R(n) =
∑

0<n−b(2k+2)≤n

Sn−b(2k+2) = Sn+Sn−2k−2+Sn−4k−4+...

Theorem 2

Let Kn and Ln be random variables denoting the number of
positive and negative summands in the far-difference
representation of integers on the interval (Rn−1, Rn]. As
n → ∞ , the joint density of Kn and Ln converges to a
bivariate Gaussian.

This theorem expands upon the range of recurrences
handled by Miller-Wang [MW].
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Further Research and Open Questions

We have further generalized the k-Skipponaccis to
recurrence relations of the form Sn = Sn−1 + Sn−x + Sn−y ,
where x is the distance between same-sign summands and
y is the distance between opposite-sign summands.
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Further Research and Open Questions

We have further generalized the k-Skipponaccis to
recurrence relations of the form Sn = Sn−1 + Sn−x + Sn−y ,
where x is the distance between same-sign summands and
y is the distance between opposite-sign summands.

Example: The Fibonacci recurrence can be written as:
Fn = Fn−1 + Fn−2 = Fn−1 + (Fn−3 + Fn−4)
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Further Research and Open Questions

We have further generalized the k-Skipponaccis to
recurrence relations of the form Sn = Sn−1 + Sn−x + Sn−y ,
where x is the distance between same-sign summands and
y is the distance between opposite-sign summands.

Example: The Fibonacci recurrence can be written as:
Fn = Fn−1 + Fn−2 = Fn−1 + (Fn−3 + Fn−4)

We believe it can be shown that every far-difference
restriction (x , y) uniquely defines a sequence of numbers.
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Further Research and Open Questions

We have further generalized the k-Skipponaccis to
recurrence relations of the form Sn = Sn−1 + Sn−x + Sn−y ,
where x is the distance between same-sign summands and
y is the distance between opposite-sign summands.

Example: The Fibonacci recurrence can be written as:
Fn = Fn−1 + Fn−2 = Fn−1 + (Fn−3 + Fn−4)

We believe it can be shown that every far-difference
restriction (x , y) uniquely defines a sequence of numbers.

We want to prove that the number of summands in every

(x , y) far-difference representations approaches a
Gaussian.
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Hypothesis S

Motivation: Random Matrix Theory

L-functions are functions on the complex plane that

generalize the Riemann zeta function:

L(s) =

∞
∑

n=1

ann−s
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Hypothesis S

Motivation: Random Matrix Theory

L-functions are functions on the complex plane that

generalize the Riemann zeta function:

L(s) =

∞
∑

n=1

ann−s

L(s) satsifies a Riemann Hypothesis iff all its zeros in the

region ℜs ∈ [0, 1] live on the line ℜs = 1/2.
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Hypothesis S

Motivation: Random Matrix Theory

L-functions are functions on the complex plane that

generalize the Riemann zeta function:

L(s) =

∞
∑

n=1

ann−s

L(s) satsifies a Riemann Hypothesis iff all its zeros in the

region ℜs ∈ [0, 1] live on the line ℜs = 1/2.

Montgomery-Dyson, Katz-Sarnak: Spacing statistics of

zeros match spacing statistics of angles of eigenvalues of

a random matrix.
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Hypothesis S

Zero Statistics

Possible statistics: Correlated density of zeros (n-level

density), distribution of spacings between zeros (pair

correlation), moments along the critical line.

5



Hypothesis S

Zero Statistics

Possible statistics: Correlated density of zeros (n-level

density), distribution of spacings between zeros (pair

correlation), moments along the critical line.

Katz-Sarnak: L-functions form “families” F =
⊔

N FN , and

the average zero statistics over FN approach the

eigenangle statistics in some matrix group GF as N → ∞.
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Hypothesis S

Zero Statistics

Possible statistics: Correlated density of zeros (n-level

density), distribution of spacings between zeros (pair

correlation), moments along the critical line.

Katz-Sarnak: L-functions form “families” F =
⊔

N FN , and

the average zero statistics over FN approach the

eigenangle statistics in some matrix group GF as N → ∞.

G = O(N),U(N),USp(2N), SO(even)(2N), SO(odd)(2N + 1)
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Testing Katz-Sarnak Density Conjectures

To study zero statistics, “bombard” the zeros with a test

function φ whose Fourier transform has compact support.
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Hypothesis S

Testing Katz-Sarnak Density Conjectures

To study zero statistics, “bombard” the zeros with a test

function φ whose Fourier transform has compact support.

Often, too hard unless we assume supp φ̂ ⊆ [−σ,+σ] for

some fixed σ.
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Hypothesis S

Testing Katz-Sarnak Density Conjectures

To study zero statistics, “bombard” the zeros with a test

function φ whose Fourier transform has compact support.

Often, too hard unless we assume supp φ̂ ⊆ [−σ,+σ] for

some fixed σ.

Need to estimate very hard sums over primes to increase

the support.
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Iwaniec, Luo, and Sarnak (ILS)

Studied family of cuspidal weight-k , level-N holomorphic

newforms as N → ∞.
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Hypothesis S

Iwaniec, Luo, and Sarnak (ILS)

Studied family of cuspidal weight-k , level-N holomorphic

newforms as N → ∞.

By getting support in the range (−2,+2), able to

distinguish L-functions according to sign.
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Hypothesis S

Iwaniec, Luo, and Sarnak (ILS)

Studied family of cuspidal weight-k , level-N holomorphic

newforms as N → ∞.

By getting support in the range (−2,+2), able to

distinguish L-functions according to sign.

To extend support of test function beyond (−2,+2), need

to assume a conjecture called Hypothesis S.
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Hypothesis S

Hypothesis S

Hypothesis S

Let c be a positive integer, and let a be coprime to c. Then for

A ≥ 0 and some α ∈ [1/2, 3/4), we have

∑

p ≤ X
p ≡ a mod c

e2πi(
2
√

p

c
) ≪ cAXα.

Remark: f (x) ≪ g(x) means that |f (x)| ≤ k |g(x)| for some

k and for all x ≥ x0.
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Hypothesis S

Hypothesis S

Hypothesis S

Let c be a positive integer, and let a be coprime to c. Then for

A ≥ 0 and some α ∈ [1/2, 3/4), we have

∑

p ≤ X
p ≡ a mod c

e2πi(
2
√

p

c
) ≪ cAXα.

Remark: f (x) ≪ g(x) means that |f (x)| ≤ k |g(x)| for some

k and for all x ≥ x0.

Question: Why should we expect this sum to be smaller

than X?
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Hypothesis S

Philosophy of “Square-Root Cancellation”

Take sequence of real numbers a1, . . . , aN .
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Take sequence of real numbers a1, . . . , aN .

If numbers are “random” we expect fractional parts are

evenly distributed mod 1.
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Hypothesis S

Philosophy of “Square-Root Cancellation”

Take sequence of real numbers a1, . . . , aN .

If numbers are “random” we expect fractional parts are

evenly distributed mod 1.

If we have
∑N

i=1 e2πiai , expect terms to point randomly in

different directions, so that
∑N

i=1 e2πiai ≪ N1/2 (essentially

Central Limit Theorem).
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Hypothesis S

Philosophy of “Square-Root Cancellation”

Take sequence of real numbers a1, . . . , aN .

If numbers are “random” we expect fractional parts are

evenly distributed mod 1.

If we have
∑N

i=1 e2πiai , expect terms to point randomly in

different directions, so that
∑N

i=1 e2πiai ≪ N1/2 (essentially

Central Limit Theorem).

Expect similar thing to happen for Hypothesis S.

19



Hypothesis S

Pretty Picture

Sum over Primes, Sum over Random Real Numbers

20



Hypothesis S

Cracking Hypothesis S

Plan: relate information about primes to information about

zeros of L-functions.
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Cracking Hypothesis S

Plan: relate information about primes to information about

zeros of L-functions.

When c = 1 the L-function is Riemann zeta function; same

ideas work for all c.
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Hypothesis S

Cracking Hypothesis S

Plan: relate information about primes to information about

zeros of L-functions.

When c = 1 the L-function is Riemann zeta function; same

ideas work for all c.

Assume Riemann Hypothesis to get control over zeros.
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Hypothesis S

First Steps

Do fancy tricks to make sum nicer to work with.
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Hypothesis S

First Steps

Do fancy tricks to make sum nicer to work with.

Riemann-von Mangoldt Explicit Formula

Let Λ be the von Mangoldt function (like indicator for prime

powers). Then

∑

n≤x

Λ(n) = x −
∑

|γ|<T

xρ

ρ
+ O

(

x log2(xT )

T
+ log x

)

,

where sum is over zeros of Riemann zeta function.
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Hypothesis S

It’s (Probably) True

Theorem (A-C-M-P-T)

Assume RH and that 2
πeγn log( γn

2πe ) is well distributed mod 1 (γn

is ordinate of nth zeta zero). Then Hypothesis S is true for

c = 1 with α = 3/4 − ǫ with ǫ very small. That is,

∑

p ≤ X

e2πi(2
√

p) ≪ X 3/4−ǫ.
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Hypothesis T

Need 2-dimensional analogue of Hypothesis S for

extending support in 2-level density (just a zero statistic).
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Hypothesis T

Need 2-dimensional analogue of Hypothesis S for

extending support in 2-level density (just a zero statistic).

Expect sum to have a main term (not just being bounded)

to give agreement with random matrix theory
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Hypothesis S

Hypothesis T

Need 2-dimensional analogue of Hypothesis S for

extending support in 2-level density (just a zero statistic).

Expect sum to have a main term (not just being bounded)

to give agreement with random matrix theory

Difficult to even find conjecture about what to prove;

working on this
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Hypothesis S

More Pretty Pictures

2e5 4e5 6e5 8e5 1e6

5e7

1e8

1.5e8

2e8

2.5e8

3e8

3.5e8 2e5 4e5 6e5 8e5 1e6

-3.5e8

-3e8

-2.5e8

-2e8

-1.5e8

-1e8

-5e7

Real and imaginary parts of

∑

p1,p2≤X

e2πi·2√p1p2 (here, X1 = X2 = X )
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More Pretty Pictures

2e5 4e5 6e5 8e5 1e6

5e7

1e8

1.5e8

2e8

2.5e8

3e8

3.5e8 2e5 4e5 6e5 8e5 1e6

-3.5e8

-3e8

-2.5e8

-2e8

-1.5e8

-1e8

-5e7

Real and imaginary parts of

∑

p1,p2≤X

e2πi·2√p1p2 (here, X1 = X2 = X )

Not as random as the one-dimensional sum!
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Thank You!

Next up, we have . . .
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Benford Behavior of Dependent Random

Variables

Taylor Corcoran - University of Arizona

Jaclyn Porfilio - Williams College

Jirapat Samranvedhya - Williams College
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Benford’s Law

Definition

A dataset is said to follow Benford’s Law (base b) if the

probability of observing a first digit of d is logb
1+d

d .
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Logarithms and Benford’s Law

P(leading digit d) =
log(d + 1)− log(d)

Benford’s law ↔ mantissa of

logarithms of data are uniformly

distributed
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Stick Decomposition

4
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Fixed Proportion Decomposition Process

Decomposition Process

1 Consider a stick of length L.
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Fixed Proportion Decomposition Process

Decomposition Process

1 Consider a stick of length L.

2 Uniformly choose a proportion p ∈ (0, 1).
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Fixed Proportion Decomposition Process

Decomposition Process

1 Consider a stick of length L.

2 Uniformly choose a proportion p ∈ (0, 1).

3 Break the stick into two pieces: lengths pL and (1 − p)L.
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Fixed Proportion Decomposition Process

Decomposition Process

1 Consider a stick of length L.

2 Uniformly choose a proportion p ∈ (0, 1).

3 Break the stick into two pieces: lengths pL and (1 − p)L.

4 Repeat N times (using the same proportion).

8
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Fixed Proportion Decomposition Process

pL

L

(1− p)L

p2L p(1− p)L p(1− p)L (1− p)2L

9



Introduction Stick Decomposition Reference

Fixed Proportion Conjecture

Joy Jing’s Conjecture

The above decomposition process results in stick lengths that

obey Benford’s Law as N → ∞ for any p ∈ (0, 1), p 6= 1
2 .

10



Introduction Stick Decomposition Reference

Counterexample: p = 1
11 , 1 − p = 10

11 .
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Benford Analysis

After Nth interation,

2N sticks

N + 1 distinct lengths.

Distinct lengths are given by

xj+1 =

(

1 − p

p

)

xj , x0 = pN .
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Benford Analysis

After Nth interation,

2N sticks

N + 1 distinct lengths.

Distinct lengths are given by

xj+1 =

(

1 − p

p

)

xj , x0 = pN .

Let 1−p
p = 10y .

13
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1−p
p = 10y , y ∈ Q

Theorem

Let 1−p
p = 10y . If y ∈ Q, the described decomposition process

results in stick lengths that do not obey Benford’s Law.

Let y = r
q .

Leading digit of xj repeats every q indices. Thus,

∑

k

P(xj+kq) =
∑

k

(

N

j + kq

)

.

14
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Series Multisection

Multisection Formula

If f =
∞
∑

n=−∞
anxn,

∞
∑

k=−∞
akq+jx

kq+j =
1

q

q−1
∑

p=0

ω−jpf (ωpx)

where ω is the primitive qth root of unity e2πi/q.

15
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1−p
p = 10y , y ∈ Q

∑

k

P(xj+kq) =
1

q

(

1 + E

[

(q − 1)

(

cos
π

q

)N
])
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1−p
p = 10y , y ∈ Q

∑

k

P(xj+kq) =
1

q

(

1 + E

[

(q − 1)

(

cos
π

q

)N
])

Digit frequencies are multiples of 1
q .

Benford frequencies are irrational, so not perfect Benford.
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1−p
p = 10y , y /∈ Q: Outline

Theorem

Let 1−p
p = 10y . If y /∈ Q, the described decomposition process

results in stick lengths that obey Benford’s Law.
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1−p
p = 10y , y /∈ Q: Outline

Theorem

Let 1−p
p = 10y . If y /∈ Q, the described decomposition process

results in stick lengths that obey Benford’s Law.

{xj} ∼ Bin(N, 1
2)

mean: N
2

standard deviation:
√

N
2

Outline of proof strategy:

1 Truncation

2 Break into intervals

- Roughly equal probability

- Equidistribution

19
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1−p
p = 10y , y /∈ Q: Truncation

For ǫ > 0, Chebyshev’s Inequality gives

P

(∣

∣

∣

∣

x −
N

2

∣

∣

∣

∣

≥ N
1
2
+ǫ

)

= P

(∣

∣

∣

∣

x −
N

2

∣

∣

∣

∣

≥ NǫN
1
2

)

≤
1

N2ǫ
.
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1−p
p = 10y , y /∈ Q: Truncation

For ǫ > 0, Chebyshev’s Inequality gives

P

(∣

∣

∣

∣

x −
N

2

∣

∣

∣

∣

≥ N
1
2
+ǫ

)

= P

(∣

∣

∣

∣

x −
N

2

∣

∣

∣

∣

≥ NǫN
1
2

)

≤
1

N2ǫ
.

So we can limit our analysis to

One standard deviation

Right half of binomial
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1−p
p = 10y , y /∈ Q: Intervals and Roughly Equal Probability

Iℓ = {xℓ, xℓ + 1, . . . , xℓ + Nδ − 1}.

Let x0 = N/2. It follows that xℓ = N/2 + ℓNδ.

∣

∣

∣

∣

(

N

xℓ

)

−

(

N

xℓ+1

)∣

∣

∣

∣

≤

(

N

xℓ

)

N− 1
2
+δ+ǫ,

when δ < 1/2 − ǫ and ℓ ≤ N1/2−δ+ǫ.
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1−p
p = 10y , y /∈ Q: Equidistribution

Definition

{xn}
∞
n=1 is equidistributed modulo 1 if for any [a, b] ⊂ [0, 1],

P (xn mod 1 ∈ [a, b]) → b − a:

lim
N→∞

#{n ≤ N : xn mod 1 ∈ [a, b]}

N
= b − a.

Recall: Leading digits of stick lengths are Benford if their

logarithms are equidistributed modulo 1.
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1−p
p = 10y , y /∈ Q: Equidistribution

Consider an interval Iℓ where

Iℓ = {xℓ + i : i ∈ {0, 1, . . . ,Nδ − 1}}

Jℓ ⊂ {0, 1, . . . ,Nδ − 1} = {i : log(xℓ + i) mod 1 ∈ [a, b]}.
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1−p
p = 10y , y /∈ Q: Equidistribution

Consider an interval Iℓ where

Iℓ = {xℓ + i : i ∈ {0, 1, . . . ,Nδ − 1}}

Jℓ ⊂ {0, 1, . . . ,Nδ − 1} = {i : log(xℓ + i) mod 1 ∈ [a, b]}.

If the irrationality exponent κ of y is finite,

|Jℓ| = (b − a)Nδ + O(Nδ(1− 1
κ
+ǫ′))

25
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1−p
p = 10y , y /∈ Q: Equidistribution

Using

equidistribution within intervals

roughly equal probability

we have

∑

ℓ

∑

i∈Jℓ

f (xℓ + i) = (b − a) + O(Nδ(− 1
κ
+ǫ′) + N− 1

2
+δ+ǫ).

where κ is the irrationality exponent of y .
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1−p
p = 10y , y /∈ Q: Equidistribution

Remark

Rate of convergence depends on κ < ∞

Still Benford for κ = ∞, but no quantified rate.
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Additive Stick Decomposition Processes: Conjectures

Benford

Stop at evens (proved)

Stop at primes

Cutting into m pieces

Non-Benford

Stop at squares

Stop at powers of two

Stop at powers of three

Stop at Fibonnaci numbers

28
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Any Questions?

29
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Additive Decomposition Process (Evens Model)

30
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Irrationality Exponent

Let x ∈ R. Denote by A the set of positive numbers n for which

0 ≤

∣

∣

∣

∣

x −
p

q

∣

∣

∣

∣

≤
1

qn

has at most finitely many solutions for p, q ∈ Z.

The irrationality measure of x , denoted n(x), is inf
n∈A

n.

If A is empty, n(x) = ∞
For nonempty A,

n(x) =











1 if x is rational

2 if x is algebraic of degree > 1

≥ 2 if x is transcendental
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