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Integer Decompositions and Why We Care

Integer decompositions have applications in modern
Computer Science, where storage space is a primary
concern.

One recognizable decomposition is the Binary System,
which represents integers as sums of powers of two.

Motivating Question
Are there other space-efficient ways of decomposing the
integers into unique collections of summands?
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Zeckendorf’s Theorem

Zeckendorf’s Theorem (1972)
Every integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers of the form
Fn+1 = Fn + Fn−1 (called the Zeckendorf decomposition).

Example 1: 65 = 55 + 8 + 2 = F9 + F5 + F2

Example 2: 65 = 34 + 21 + 8 + 2 = F8 + F7 + F5 + F2
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Far-Difference Representations

Definition
A far-difference representation is a sum of numbers and their
additive inverses.

Example: 65 = 89− 21− 3 = F10 − F7 − F3

Alpert [Al] proved that a Fibonacci far-difference
representation exists for all integers and is unique.

Miller-Wang [MW] extended the results for PLRS to
Alpert’s far-difference representations.
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What’s New in Our Results?

We apply the techniques of Alpert and Miller-Wang to a
much broader collection of recurrence relations.

We generalize the Fibonacci recurrence to a collection of
sequences called the k -Skipponaccis.

We find unique far-difference representations using our
Skipponacci sequences.

We prove Gaussianity for every far-difference
representation.

11



Introduction The Skipponaccis Generating Function Gaussianity Reference

What’s New in Our Results?

We apply the techniques of Alpert and Miller-Wang to a
much broader collection of recurrence relations.

We generalize the Fibonacci recurrence to a collection of
sequences called the k -Skipponaccis.

We find unique far-difference representations using our
Skipponacci sequences.

We prove Gaussianity for every far-difference
representation.

12



Introduction The Skipponaccis Generating Function Gaussianity Reference

What’s New in Our Results?

We apply the techniques of Alpert and Miller-Wang to a
much broader collection of recurrence relations.

We generalize the Fibonacci recurrence to a collection of
sequences called the k -Skipponaccis.

We find unique far-difference representations using our
Skipponacci sequences.

We prove Gaussianity for every far-difference
representation.

13



Introduction The Skipponaccis Generating Function Gaussianity Reference

What’s New in Our Results?

We apply the techniques of Alpert and Miller-Wang to a
much broader collection of recurrence relations.

We generalize the Fibonacci recurrence to a collection of
sequences called the k -Skipponaccis.

We find unique far-difference representations using our
Skipponacci sequences.

We prove Gaussianity for every far-difference
representation.

14



Introduction The Skipponaccis Generating Function Gaussianity Reference

Preliminary Definitions and Results

The k -Skipponaccis are recurrence relations of the form

Sn+1 = Sn + Sn−k

for some k ≥ 0 and initial terms 1,2,3, . . . , k − 1, k .

Alpert [Al] proved the following result for the Fibonaccis (also
called the 1-Skipponaccis).

Alpert’s Theorem
Every x ∈ Z has a unique far-difference representation for the
Fibonaccis such that all terms of the same sign are at least 4
apart in index, and all terms of opposite sign are at least 3
apart in index.
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Our First Result

Example: 119 = 144− 34 + 8 + 1 = F11 − F8︸ ︷︷ ︸
3 apart

+ F5 + F1︸ ︷︷ ︸
4 apart

Theorem 1
Every x ∈ Z has a unique far-difference representation for the
k -Skipponnacis such that all terms of the same sign are at least
2k + 2 apart in index and all terms of opposite sign are at least
k + 2 apart in index.
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Outline of Proof

Let R(n) =
∑

0<n−b(2k+2)≤n

Sn−b(2k+2) = Sn+Sn−2k−2+Sn−4k−4+...

We first partition the integers into intervals of the form:
[Sn − R(n − k − 2),Sn + R(n − 2k − 2)].

For the inductive step, assume that all integers on [0,R(n − 1)]
have a unique far-difference representation.

Next, for an integer x on the above interval, we have:

If x < Sn, then 0 ≤ Sn − x ≤ Sn − R(n − k − 2).

If x > Sn, then 0 ≤ x − Sn ≤ Sn − R(n − 2k − 2).
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Outline of Proof

By induction, we show that:
x − Sn has a unique decomposition with main term at most
Sn−2k−2

Sn − x has a unique decomposition with main term at most
Sn−k−2

Adding Sn to the representations above gives us:
Sn + Sn−2k−2 + . . .

Sn − Sn−k−2 + . . .

which are both legal decompositions.
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Distribution of number of summands

We have shown that, on the interval (Rn,Rn+1], each
integer x has an unique representation
x =

∑m
i=1 Sni −

∑`
i=1 Ski , where x has m positive

summands and ` negative summands in its far-difference
representation.

We are interested in the distribution of the number of
positive and negative summands when considering all
integers in a single interval.

We prove this distribution converges to a Gaussian
(normal) distribution when n→∞.
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Recurrence Relation

Let pn,m,` denote the number of numbers in the interval
(Rn,Rn+1] whose decomposition consists of m positive
summands and ` negative summands.

We derive the following recurrence relation for the number
of positive and negative summands:

Recurrence relation of pn,m,`

pn,m,` = 2pn−1,m,` − pn−2,m,` + pn−(2k+2),m−1,` + pn−(2k+2),m,`−1

+ pn−(2k+3),m−1,` − pn−(2k+3),m,`−1 + pn−(2k+4),m−1,`−1

− pn−(4k+4),m−1,`−1
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Generalized Generating function

Let G(x , y , z) =
∑

pn,m,`xmy `zn be the generating function of
pn,m,`.

Consider the product P(x , y , z)G(x , y , z), where P(x , y , z) is
the characteristic polynomial of the recurrence relation given by:

P(x , y , z) = 1−2z+z2−(x+y)
(

z2k+2 + z2k+3
)
−xy

(
z2k+4 + z4k+4

)
Key Insight: For any pn,m,` that satisfies the recurrence relation,
the coefficient in the above product will be zero.

The only terms that remain are:

P(x , y , z)G(x , y , z) = xz − xz2 + xyzk+3 − xyz2k+3
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Generalized Generating Function

Now solving for G(x , y , z) gives us:

Generating function of pn,m,l

G(x , y , z)

=
xz − xz2 + xyzk+3 − xyz2k+3

1− 2z + z2 − (x + y)
(
z2k+2 + z2k+3

)
− xy

(
z2k+4 + z4k+4

)

It will be useful to factor out (z − 1) from G(x , y , z), which gives
us the following modified generating function:

G(x , y , z) =
xz + xy

∑2k+2
j=k+3 z j

1− z − (x + y)z2k+2 − xy
∑4k+3

j=2k+4 z j
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Using G(x , y , z) to Prove Gaussian Behavior

Let Kn and Ln be the corresponding random variables
denoting the number of positive summands and the
number of negative summands in the far-difference
representation for integers in (Rn−1,Rn].

We prove that for any a,b ≥ 0, the random variable
Xn = aKn + bLn converges to the Gaussian distribution as
n→∞

This can be achieved by proving that every moment of
(Xn − E[Xn])/σn approaches the corresponding moment of
the standard normal N(0,1).
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Calculating Moments

For a fixed n consider ĝ(x , y) =
∑

pn,m,lxmy l . Letting
x = wa, y = wb, we get g(w) =

∑
pn,m,lwam+bl .

The range of Xn is g(1) =
∑

m,l≥0 pn,m,l = Rn+1 − Rn and
since g′(w) =

∑
(am + bl)pn,m,lwam+bl−1, we get:

E[Xn] = g′(1)/g(1) = µn.

To find the other moments, we construct a sequence of
functions gj(w) such that gj+1 = (xgj(x))′. By induction the
mth moment of Xn − µn, denoted µn(m), is calculated as
gm(1)/g(1).
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Useful Result from Miller-Wang [MW]

We have Gaussianity if we can prove that each moment tends
to that of the normal, or equivalently:

Theorem 2 (Miller-Wang)
For any integer u ≥ 1 :

µn(2u − 1)

σ2u−1
n

→ 0 and
µn(2u)

σ2u
n

→ (2u − 1)!! as u →∞

Fortunately for us, Miller-Wang proved this theorem for a
large subset of recurrence relations.
Thus, if we can prove the conditions specified by
Miller-Wang, we can extend these results to handle a
greater range of recurrences.

42



Introduction The Skipponaccis Generating Function Gaussianity Reference

Useful Result from Miller-Wang [MW]

We have Gaussianity if we can prove that each moment tends
to that of the normal, or equivalently:

Theorem 2 (Miller-Wang)
For any integer u ≥ 1 :

µn(2u − 1)

σ2u−1
n

→ 0 and
µn(2u)

σ2u
n

→ (2u − 1)!! as u →∞

Fortunately for us, Miller-Wang proved this theorem for a
large subset of recurrence relations.

Thus, if we can prove the conditions specified by
Miller-Wang, we can extend these results to handle a
greater range of recurrences.

43



Introduction The Skipponaccis Generating Function Gaussianity Reference

Useful Result from Miller-Wang [MW]

We have Gaussianity if we can prove that each moment tends
to that of the normal, or equivalently:

Theorem 2 (Miller-Wang)
For any integer u ≥ 1 :

µn(2u − 1)

σ2u−1
n

→ 0 and
µn(2u)

σ2u
n

→ (2u − 1)!! as u →∞

Fortunately for us, Miller-Wang proved this theorem for a
large subset of recurrence relations.
Thus, if we can prove the conditions specified by
Miller-Wang, we can extend these results to handle a
greater range of recurrences.

44



Introduction The Skipponaccis Generating Function Gaussianity Reference

Conditions for Gaussianity

We factor out the denominator P our generating function
and use partial fractions to get an explicit formula for g(w),
namely

∑4k+3
i=1 wqi(w)/en

i (w) where ei(w) are roots of P.

We want to reduce g(w) to wq1(w)/en
1(w) so that it

behaves similarly to an n-power function. It is enough to
prove that P has no multiple roots and a single root whose
norm is strictly less than that of all others.

We also want a formula for e′i (w) to prove that the mean
and variance grow linearly with n.
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Proposition 1

The following captures most of the necessary conditions.

Proposition 1: There exists ε ∈ (0,1) such that for any
w ∈ Iε = (1− ε,1 + ε):

(a) The denominator of our generating function has no
multiple roots.

(b) There exists exactly one positive real root e1(w) such that
e1(w) < 1 and e1(w) < |ei(w)| for all i ≥ 2.

(c) Each root ei(w) is continuous and `-times differentiable for
any ` ≥ 1 and

e′i (w)=−
(awa−1+bwb−1)ei (w)2k+2+(a+b)wa+b−1 ∑4k+3

j=2k+4 e1(w)j

1+(wa+wb)(2k+2)ei (w)2k+1+wa+b ∑4k+3
j=2k+4 jei (w)j−1
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Proof of (a)

Let Aw (z) be the denominator of our generating function. We
will consider only the case where w = 1. This gives us:

A(z) = 1− 2z + z2 − 2z2k+2 + 2z2k+3 − z2k+4 + z4k+4,

which factors nicely to:

A(z) = (z2k+2 − 1)(zk+1 + z − 1)(zk+1 − z + 1).

We prove that no roots are repeated by:
Showing that the factors are pairwise co-prime.
Showing that the gcd of each factor and its derivative is 1.
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Proof of (b)

Let Âw (z) be the denominator of our revised generating
function. We once again consider the case where w = 1, which
gives us:

Â(z) = 1− z − 2z2k+2 −
4k+3∑

j=2k+4

z j

Â′(z) = −1− 2(2k + 2)z2k+1 −
4k+3∑

j=2k+4

jz j−1

Note that Â(0) > 0, while Â(1) < 0, so there must be a root
e1 on (0,1)
Moreover, since Â′(z) is negative for all z ≥ 0, the function
is strictly decreasing on (0,∞). Thus e1 is unique.
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Proof of (b)

Let ei be another root of Â(z) and assume that |ei | ≤ e1 < 1.
Then |ei |j ≤ |e1|j = ej

1.

1 =

∣∣∣∣∣∣ei + 2e2k+2
i +

4k+3∑
j=2k+4

ej
i

∣∣∣∣∣∣ ≤ |ei |+ 2|ei |2k+2 +
4k+3∑

j=2k+4

|ei |j

≤ |e1|+ 2|e1|2k+2 +
4k+3∑

j=2k+4

|e1|j = e1 + 2e2k+2
1 +

4k+3∑
j=2k+4

ej
1 = 1

Thus equality must hold everywhere, but this contradicts (a). It
follows that e1 < |ei |.
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Proof of (c)

Since Â[e1(w)] = 0, for some small neighborhood ∆w we have
Â[e1(w + ∆w)] = 0. This gives us:

0 = Â[e1(w)]−Â[e1(w+∆w)]

= [1−e1(w)−(wa+wb)e1(w)2k+2−wa+b ∑4k+3
j=2k+4 e1(w)j ]−

[1−e1(w+∆w)−((w+∆w)a+(w+∆w)b)e1(w+∆w)2k+2

−(w+∆w)a+b ∑4k+3
j=2k+4 e1(w+∆w)j ]

= e1(w+∆w)−e1(w)+(wa+wb)[e1(w+∆w)2k+2−e1(w)2k+2

+wa+b ∑4k+3
j=2k+4[e1(w+∆w)j−e1(w)j ]

+e1(w+∆w)2k+2[(w+∆w)a−wa+(w+∆w)b−wb]

+[
∑4k+3

j=2k+4 e1(w+∆w)j ][(w+∆w)a+b−wa+b]
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Proof of (c)

0 =

[
e1(w+∆w)−e1(w)

](
1+(wa+wb)

∑2k+1
i=0 e1(w+∆w)i e1(w)2k+1−i

+wa+b ∑4k+3
j=2k+4

∑j−1
i=0 e1(w+∆w)i e1(w)j−1−i

)
+∆w

(
e1(w+∆w)2k+2[

∑a−1
i=0 (w+∆w)i wa−1−i +

∑b−1
i=0 (w+∆w)i wb−1−i ]

+[
∑4k+3

j=2k+4 e1(w+∆w)j ]
∑a+b−1

i=0 (w+∆w)i wa+b−1−i
)

Now, since ei(w) is continuous, and wa, wb, and wa+b are
differentiable at w = 1, we can rearrange terms and take the
limit of the above equation, which gives us:

e′1(w) = lim∆w→0
e1(w+∆w)−e1(w)

∆w

= −
(awa−1+bwb−1)e1(w)2k+2+(a+b)wa+b−1 ∑4k+3

j=2k+4 e1(w)j

1+(wa+wb)(2k+2)e1(w)2k+1+wa+b ∑4k+3
j=2k+4 je1(w)j−1
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Home Stretch

We now seek an expression for the coefficients of zn in our
generating function. As before, will denote this function as:

g(w) =
∑

m>0,l≥0

pn,m,lwam+b`

For our calculations, it will be convenient to express the
denominator of our generating function in terms of it’s partial
fraction expansion.

1
Aw (z)

=
1

wa+b

4k+3∑
i=1

1
(z − ei(w))

∏
j 6=i(ej(w)− ei(w))
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Home Stretch

We rearrange this formula to get:

1
Aw (z)

=
1

wa+b

4k+3∑
i=1

1
(1− z

ei (w) )
· 1

ei(w)
∏

j 6=i(ej(w)− ei(w))

Key Insight: 1
1− z

ei (w)
represents a geometric series.

We now sum over all coefficients of zn in the numerator of our
generating function, which gives us:

g(w) =
4k+3∑
i=1

w−b (1− ei(w)) + ek+2(w)− e2k+2(w)

en
i (w)

∏
j 6=i(ej(w)− ei(w))
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Home Stretch

If we let qi(w) denote all terms of g(w) that do not depend on
n, then g(w) reduces to

∑4k+3
i=1 wqi(w)/en

i (w).

Notes (from our Proposition):

Since ei(w) is `-times differentiable, so is qi(w).

For all ei(w) where i ≥ 2, we have en
1(w)� en

i (w) as
n→∞.

g(w) = wq1(w)/en
1(w) + o(γn

a,b), where γn
a,b is dependent

only on a,b and is negligible for n large.
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Almost There!

We now have everything we need to solve for the mean! Recall
that this is equivalent to finding g’(1)/g(1).

g′(1)

g(1)
=

q′1(1)en(1)− nq1(1)en−1
1 (1)e′1(1)

e2n
1 (1)

·
en

1(1)

q1(1)

=
q′1(1)e2n(1)

e2n
1 (1)q1(1)

−
nq1(1)e2n−1

1 (1)e′1(1)

e2n
1 (1)q1(1)

=
q′1(1)

q1(1)
−

e′1(1)

e1(1)
n

Letting Ca,b = −e′1(1)/e1(1) and da,b = p′(1)/p1(1) gives us a
computable expression for the mean in the form:

Ca,bn + da,b + o(γn
a,b)
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1 (1)q1(1)

=
q′1(1)

q1(1)
−

e′1(1)

e1(1)
n

Letting Ca,b = −e′1(1)/e1(1) and da,b = p′(1)/p1(1) gives us a
computable expression for the mean in the form:

Ca,bn + da,b + o(γn
a,b)
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Grand Finale!

Since our mean grows linearly with n, Miller-Wang [MW] gives
us a way to find the variance in the form:

h′a,b(1)n + q′′1(1) + o(τn
a,b)

Where ha,b(w) =
we′1(w)

e1(w) − Ca,b, and the constants τn
a,b ∈ (0,1)

and p′′1(1) depend only on a and b.

Using our proposition, it is easy to verify that Ca,b and
h′a,b 6= 0, and thus the mean and variance are not
independent of n.
Now that we have a mean µn and a variance σn that grow
in linear time, we are done!
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Recap: What Just Happened?

1. We generalized the Fibonacci recurrence to a broader set
of recurrences called the k -Skipponaccis.

2. We proved that every k -Skipponacci sequence creates a
valid far-difference representation.

3. We proved that the distribution of summands in any
k -Skipponacci far-difference representation approaches a
Gaussian distribution.
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Further Research and Open Questions

We have further generalized the k -Skipponacis to
recurrence relations of the form Sn = Sn−1 + Sn−x + Sn−y ,
where x is the distance between same-sign summands
and y is the distance between opposite-sign summands.

Example: The Fibonacci recurrence can be written as:
Fn = Fn−1 + Fn−2 = Fn−1 + (Fn−3 + Fn−4)

We believe it can be shown that every far-difference
restriction (x , y) uniquely defines a sequence of numbers.

We want to prove that the number of summands in every
(x , y) far-difference representations approaches a
Gaussian.
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