A Generalization of Fibonacci Far-Difference Representations and Gaussian Behavior

Philippe Demontigny - Williams (ppd1@williams.edu)
Thao Do - Stony Brook (thao.do@stonybrook.edu)
Umang Varma - Kalamazoo College
Archit Kulkarni - Carnegie Mellon

2013 Young Mathematician’s Conference at Ohio State U.
Columbus, Ohio. Aug 9, 2013
Integer Decompositions and Why We Care

- Integer decompositions have applications in modern Computer Science, where storage space is a primary concern.
Integer Decompositions and Why We Care

- Integer decompositions have applications in modern Computer Science, where storage space is a primary concern.

- One recognizable decomposition is the **Binary System**, which represents integers as sums of powers of two.
Integer decompositions have applications in modern Computer Science, where storage space is a primary concern.

One recognizable decomposition is the **Binary System**, which represents integers as sums of powers of two.

Motivating Question

Are there other space-efficient ways of decomposing the integers into unique collections of summands?
Zeckendorf’s Theorem (1972)

Every integer can be written uniquely as a sum of non-consecutive Fibonacci numbers of the form $F_{n+1} = F_n + F_{n-1}$ (called the Zeckendorf decomposition).
Zeckendorf’s Theorem

Zeckendorf’s Theorem (1972)

Every integer can be written uniquely as a sum of non-consecutive Fibonacci numbers of the form $F_{n+1} = F_n + F_{n-1}$ (called the Zeckendorf decomposition).

Example 1: $65 = 55 + 8 + 2 = F_9 + F_5 + F_2$
Zeckendorf’s Theorem (1972)

Every integer can be written uniquely as a sum of non-consecutive Fibonacci numbers of the form \(F_{n+1} = F_n + F_{n-1} \) (called the Zeckendorf decomposition).

Example 1: \(65 = 55 + 8 + 2 = F_9 + F_5 + F_2 \)

Example 2: \(65 = 34 + 21 + 8 + 2 = F_8 + F_7 + F_5 + F_2 \)
Far-Difference Representations

Definition

A far-difference representation is a sum of numbers and their additive inverses.
Far-Difference Representations

Definition

A **far-difference** representation is a sum of numbers and their additive inverses.

Example: \(65 = 89 - 21 - 3 = F_{10} - F_{7} - F_{3} \)

- Alpert [Al] proved that a Fibonacci far-difference representation exists for all integers and is unique.
Far-Difference Representations

Definition

A far-difference representation is a sum of numbers and their additive inverses.

Example: $65 = 89 - 21 - 3 = F_{10} - F_7 - F_3$

- Alpert [Al] proved that a Fibonacci far-difference representation exists for all integers and is unique.

- Miller-Wang [MW] extended the results for PLRS to Alpert’s far-difference representations.
What’s New in Our Results?

- We apply the techniques of Alpert and Miller-Wang to a much broader collection of recurrence relations.
What’s New in Our Results?

- We apply the techniques of Alpert and Miller-Wang to a much broader collection of recurrence relations.

- We generalize the Fibonacci recurrence to a collection of sequences called the k-Skipponaccis.
What’s New in Our Results?

- We apply the techniques of Alpert and Miller-Wang to a much broader collection of recurrence relations.

- We generalize the Fibonacci recurrence to a collection of sequences called the k-Skipponaccis.

- We find unique far-difference representations using our Skipponacci sequences.
What’s New in Our Results?

- We apply the techniques of Alpert and Miller-Wang to a much broader collection of recurrence relations.

- We generalize the Fibonacci recurrence to a collection of sequences called the k-Skipponaccis.

- We find unique far-difference representations using our Skipponacci sequences.

- We prove Gaussianity for every far-difference representation.
The k-Skipponaccis are recurrence relations of the form

$$S_{n+1} = S_n + S_{n-k}$$

for some $k \geq 0$ and initial terms $1, 2, 3, \ldots, k-1, k$.
The \textit{k-Skipponaccis} are recurrence relations of the form
\[
S_{n+1} = S_n + S_{n-k}
\]
for some $k \geq 0$ and initial terms $1, 2, 3, \ldots, k-1, k$.

Alpert [Al] proved the following result for the Fibonaccis (also called the 1-Skipponaccis).

\textbf{Alpert’s Theorem}

Every $x \in \mathbb{Z}$ has a unique far-difference representation for the Fibonaccis such that all terms of the same sign are at least 4 apart in index, and all terms of opposite sign are at least 3 apart in index.
Our First Result

Example: $119 = 144 - 34 + 8 + 1 = \underbrace{F_{11} - F_8}_{3 \text{ apart}} + \underbrace{F_5 + F_1}_{4 \text{ apart}}$
Our First Result

Example: $119 = 144 - 34 + 8 + 1 = F_{11} - F_8 + F_5 + F_1$

\[F_{11} \quad \text{3 apart} \quad F_8 \quad \text{4 apart} \]

Theorem 1

Every $x \in \mathbb{Z}$ has a unique far-difference representation for the k-Skipponnacis such that all terms of the same sign are at least $2k + 2$ apart in index and all terms of opposite sign are at least $k + 2$ apart in index.
Outline of Proof

Let \(R(n) = \sum_{0 < n - b(2k+2) \leq n} S_{n-b(2k+2)} = S_n + S_{n-2k-2} + S_{n-4k-4} + \ldots \)
Outline of Proof

Let \(R(n) = \sum_{0 < n - b(2k+2) \leq n} S_{n-b(2k+2)} = S_n + S_{n-2k-2} + S_{n-4k-4} + \ldots \)

We first partition the integers into intervals of the form:
\([S_n - R(n - k - 2), S_n + R(n - 2k - 2)]\).
Outline of Proof

Let \(R(n) = \sum_{0 < n - b(2k+2) \leq n} S_{n-b(2k+2)} = S_n + S_{n-2k-2} + S_{n-4k-4} + \ldots \)

We first partition the integers into intervals of the form:
\([S_n - R(n - k - 2), S_n + R(n - 2k - 2)]\).

For the inductive step, assume that all integers on \([0, R(n - 1)]\)
have a unique far-difference representation.
Outline of Proof

Let \(R(n) = \sum_{0 < n - b(2k+2) \leq n} S_{n - b(2k+2)} = S_n + S_{n-2k-2} + S_{n-4k-4} + \ldots \)

We first partition the integers into intervals of the form: \([S_n - R(n - k - 2), S_n + R(n - 2k - 2)]\).

For the inductive step, assume that all integers on \([0, R(n - 1)]\) have a unique far-difference representation.

Next, for an integer \(x \) on the above interval, we have:

- If \(x < S_n \), then \(0 \leq S_n - x \leq S_n - R(n - k - 2) \).
- If \(x > S_n \), then \(0 \leq x - S_n \leq S_n - R(n - 2k - 2) \).
By induction, we show that:

- \(x - S_n \) has a unique decomposition with main term at most \(S_{n-2k-2} \)
- \(S_n - x \) has a unique decomposition with main term at most \(S_{n-k-2} \)
Outline of Proof

By induction, we show that:

- $x - S_n$ has a unique decomposition with main term at most S_{n-2k-2}
- $S_n - x$ has a unique decomposition with main term at most S_{n-k-2}

Adding S_n to the representations above gives us:

- $S_n + S_{n-2k-2} + \ldots$
- $S_n - S_{n-k-2} + \ldots$

which are both legal decompositions.
We have shown that, on the interval \((R_n, R_{n+1}]\), each integer \(x\) has an unique representation \(x = \sum_{i=1}^{m} S_{n_i} - \sum_{i=1}^{\ell} S_{k_i}\), where \(x\) has \(m\) positive summands and \(\ell\) negative summands in its far-difference representation.
Distribution of number of summands

We have shown that, on the interval \((R_n, R_{n+1}]\), each integer \(x\) has an unique representation
\[x = \sum_{i=1}^{m} S_{n_i} - \sum_{i=1}^{\ell} S_{k_i},\]
where \(x\) has \(m\) positive summands and \(\ell\) negative summands in its far-difference representation.

We are interested in the distribution of the number of positive and negative summands when considering all integers in a single interval.
We have shown that, on the interval \((R_n, R_{n+1}]\), each integer \(x\) has an unique representation
\[x = \sum_{i=1}^{m} S_{n_i} - \sum_{i=1}^{\ell} S_{k_i}, \]
where \(x\) has \(m\) positive summands and \(\ell\) negative summands in its far-difference representation.

We are interested in the distribution of the number of positive and negative summands when considering all integers in a single interval.

We prove this distribution converges to a Gaussian (normal) distribution when \(n \to \infty\).
Recurrence Relation

Let $p_{n,m,\ell}$ denote the number of numbers in the interval $(R_n, R_{n+1}]$ whose decomposition consists of m positive summands and ℓ negative summands.
Recurrence Relation

Let \(p_{n,m,\ell} \) denote the number of numbers in the interval \((R_n, R_{n+1}]\) whose decomposition consists of \(m \) positive summands and \(\ell \) negative summands.

We derive the following recurrence relation for the number of positive and negative summands:

\[
p_{n,m,\ell} = 2p_{n-1,m,\ell} - p_{n-2,m,\ell} + p_{n-(2k+2),m-1,\ell} + p_{n-(2k+2),m,\ell-1} + p_{n-(2k+3),m-1,\ell} - p_{n-(2k+3),m,\ell-1} + p_{n-(2k+4),m-1,\ell-1} - p_{n-(4k+4),m-1,\ell-1}
\]
Generalized Generating function

Let $G(x, y, z) = \sum p_{n,m,\ell} x^m y^\ell z^n$ be the generating function of $p_{n,m,\ell}$.

Generalized Generating function

Let \(G(x, y, z) = \sum p_{n,m,\ell} x^m y^\ell z^n \) be the generating function of \(p_{n,m,\ell} \).

Consider the product \(P(x, y, z)G(x, y, z) \), where \(P(x, y, z) \) is the characteristic polynomial of the recurrence relation given by:

\[
P(x, y, z) = 1 - 2z + z^2 - (x + y) \left(z^{2k+2} + z^{2k+3} \right) - xy \left(z^{2k+4} + z^{4k+4} \right)
\]
Generalized Generating function

Let \(G(x, y, z) = \sum p_{n,m,\ell} x^m y^\ell z^n \) be the generating function of \(p_{n,m,\ell} \).

Consider the product \(P(x, y, z)G(x, y, z) \), where \(P(x, y, z) \) is the characteristic polynomial of the recurrence relation given by:

\[
P(x, y, z) = 1 - 2z + z^2 - (x+y) \left(z^{2k+2} + z^{2k+3} \right) - xy \left(z^{2k+4} + z^{4k+4} \right)
\]

Key Insight: For any \(p_{n,m,\ell} \) that satisfies the recurrence relation, the coefficient in the above product will be zero.
Generalized Generating function

Let $G(x, y, z) = \sum p_{n,m,\ell} x^m y^\ell z^n$ be the generating function of $p_{n,m,\ell}$.

Consider the product $P(x, y, z)G(x, y, z)$, where $P(x, y, z)$ is the characteristic polynomial of the recurrence relation given by:

$$P(x, y, z) = 1 - 2z + z^2 - (x+y) \left(z^{2k+2} + z^{2k+3} \right) - xy \left(z^{2k+4} + z^{4k+4} \right)$$

Key Insight: For any $p_{n,m,\ell}$ that satisfies the recurrence relation, the coefficient in the above product will be zero.

The only terms that remain are:

$$P(x, y, z)G(x, y, z) = xz - xz^2 + xyz^{k+3} - xyz^{2k+3}$$
Generalized Generating Function

Now solving for $G(x, y, z)$ gives us:

Generating function of $\rho_{n,m,l}$

\[
G(x, y, z) = \frac{xz - xz^2 + xyz^{k+3} - xyz^{2k+3}}{1 - 2z + z^2 - (x + y) (z^{2k+2} + z^{2k+3}) - xy (z^{2k+4} + z^{4k+4})}
\]
Now solving for $G(x, y, z)$ gives us:

\[
G(x, y, z) = \frac{xz - xz^2 + xyz^{k+3} - xyz^{2k+3}}{1 - 2z + z^2 - (x + y)(z^{2k+2} + z^{2k+3}) - xy(z^{2k+4} + z^{4k+4})}
\]

It will be useful to factor out $(z - 1)$ from $G(x, y, z)$, which gives us the following modified generating function:

\[
G(x, y, z) = \frac{xz + xy \sum_{j=k+3}^{2k+2} z^j}{1 - z - (x + y)z^{2k+2} - xy \sum_{j=2k+4}^{4k+3} z^j}
\]
Using $G(x, y, z)$ to Prove Gaussian Behavior

Let \mathcal{K}_n and \mathcal{L}_n be the corresponding random variables denoting the number of positive summands and the number of negative summands in the far-difference representation for integers in $(R_{n-1}, R_n]$.

Let X_n be the random variable defined as $a\mathcal{K}_n + b\mathcal{L}_n$, where a and b are non-negative constants. We prove that for any $a, b \geq 0$, the random variable X_n converges to the Gaussian distribution as $n \to \infty$. This can be achieved by proving that every moment of $(X_n - E[X_n])/\sigma_n$ approaches the corresponding moment of the standard normal $\mathcal{N}(0, 1)$.

Using $G(x, y, z)$ to Prove Gaussian Behavior

Let K_n and L_n be the corresponding random variables denoting the number of positive summands and the number of negative summands in the far-difference representation for integers in $(R_{n-1}, R_n]$.

We prove that for any $a, b \geq 0$, the random variable $X_n = aK_n + bL_n$ converges to the Gaussian distribution as $n \to \infty$.
Using $G(x, y, z)$ to Prove Gaussian Behavior

- Let \mathcal{K}_n and \mathcal{L}_n be the corresponding random variables denoting the number of positive summands and the number of negative summands in the far-difference representation for integers in $(R_{n-1}, R_n]$.

- We prove that for any $a, b \geq 0$, the random variable $X_n = a\mathcal{K}_n + b\mathcal{L}_n$ converges to the Gaussian distribution as $n \to \infty$.

- This can be achieved by proving that every moment of $(X_n - \mathbb{E}[X_n]) / \sigma_n$ approaches the corresponding moment of the standard normal $N(0, 1)$.
Calculating Moments

For a fixed n consider $\hat{g}(x, y) = \sum p_{n,m,l}x^my^l$. Letting $x = w^a$, $y = w^b$, we get $g(w) = \sum p_{n,m,l}w^{am+bl}$.
Calculating Moments

For a fixed n consider $\hat{g}(x, y) = \sum p_{n,m,l} x^m y^l$. Letting $x = w^a, y = w^b$, we get $g(w) = \sum p_{n,m,l} w^{am+bl}$.

The range of X_n is $g(1) = \sum_{m,l \geq 0} p_{n,m,l} = R_{n+1} - R_n$ and since $g'(w) = \sum (am + bl) p_{n,m,l} w^{am+bl-1}$, we get:

$$\mathbb{E}[X_n] = g'(1)/g(1) = \mu_n.$$
Calculating Moments

- For a fixed n consider $\hat{g}(x, y) = \sum p_{n,m,l}x^my^l$. Letting $x = w^a, y = w^b$, we get $g(w) = \sum p_{n,m,l}w^{am+bl}$.

- The range of X_n is $g(1) = \sum_{m,l \geq 0} p_{n,m,l} = R_{n+1} - R_n$ and since $g'(w) = \sum (am + bl)p_{n,m,l}w^{am+bl-1}$, we get:
 $$\mathbb{E}[X_n] = g'(1)/g(1) = \mu_n.$$

- To find the other moments, we construct a sequence of functions $g_j(w)$ such that $g_{j+1} = (xg_j(x))'$. By induction the m^{th} moment of $X_n - \mu_n$, denoted $\mu_n(m)$, is calculated as $g_m(1)/g(1)$.
Useful Result from Miller-Wang [MW]

We have Gaussianity if we can prove that each moment tends to that of the normal, or equivalently:

Theorem 2 (Miller-Wang)

For any integer $u \geq 1$:

$$\frac{\mu_n(2u - 1)}{\sigma_n^{2u-1}} \to 0 \quad \text{and} \quad \frac{\mu_n(2u)}{\sigma_n^{2u}} \to (2u - 1)!! \quad \text{as} \quad u \to \infty$$
Useful Result from Miller-Wang [MW]

We have Gaussianity if we can prove that each moment tends to that of the normal, or equivalently:

Theorem 2 (Miller-Wang)

For any integer $u \geq 1$:

$$\frac{\mu_n(2u - 1)}{\sigma_n^{2u-1}} \to 0 \quad \text{and} \quad \frac{\mu_n(2u)}{\sigma_n^{2u}} \to (2u - 1)!! \quad \text{as} \quad u \to \infty$$

Fortunately for us, Miller-Wang proved this theorem for a large subset of recurrence relations.
Useful Result from Miller-Wang [MW]

We have Gaussianity if we can prove that each moment tends to that of the normal, or equivalently:

Theorem 2 (Miller-Wang)

For any integer $u \geq 1$:

\[
\frac{\mu_n(2u - 1)}{\sigma_n^{2u-1}} \to 0 \quad \text{and} \quad \frac{\mu_n(2u)}{\sigma_n^{2u}} \to (2u - 1)!! \quad \text{as} \quad u \to \infty
\]

- Fortunately for us, Miller-Wang proved this theorem for a large subset of recurrence relations.
- Thus, if we can prove the conditions specified by Miller-Wang, we can extend these results to handle a greater range of recurrences.
We factor out the denominator P our generating function and use partial fractions to get an explicit formula for $g(w)$, namely $\sum_{i=1}^{4k+3} wq_i(w)/e_i^n(w)$ where $e_i(w)$ are roots of P.
Conditions for Gaussianity

- We factor out the denominator P our generating function and use partial fractions to get an explicit formula for $g(w)$, namely $\sum_{i=1}^{4k+3} wq_i(w)/e_i^n(w)$ where $e_i(w)$ are roots of P.

- We want to reduce $g(w)$ to $wq_1(w)/e_1^n(w)$ so that it behaves similarly to an n-power function. It is enough to prove that P has no multiple roots and a single root whose norm is strictly less than that of all others.
We factor out the denominator P our generating function and use partial fractions to get an explicit formula for $g(w)$, namely \[\sum_{i=1}^{4k+3} \frac{wq_i(w)}{e_i^n(w)} \] where $e_i(w)$ are roots of P.

We want to reduce $g(w)$ to $wq_1(w)/e_1^n(w)$ so that it behaves similarly to an n-power function. It is enough to prove that P has no multiple roots and a single root whose norm is strictly less than that of all others.

We also want a formula for $e'_i(w)$ to prove that the mean and variance grow linearly with n.
Proposition 1

The following captures *most* of the necessary conditions.

Proposition 1: There exists $\epsilon \in (0, 1)$ such that for any $w \in I_\epsilon = (1 - \epsilon, 1 + \epsilon)$:

(a) The denominator of our generating function has no multiple roots.
Proposition 1

The following captures *most* of the necessary conditions.

Proposition 1: There exists $\epsilon \in (0, 1)$ such that for any $w \in I_\epsilon = (1 - \epsilon, 1 + \epsilon)$:

(a) The denominator of our generating function has no multiple roots.

(b) There exists exactly one positive real root $e_1(w)$ such that $e_1(w) < 1$ and $e_1(w) < |e_i(w)|$ for all $i \geq 2$.
Proposition 1

The following captures *most* of the necessary conditions.

Proposition 1: There exists $\epsilon \in (0, 1)$ such that for any $w \in l_\epsilon = (1 - \epsilon, 1 + \epsilon)$:

(a) The denominator of our generating function has no multiple roots.

(b) There exists exactly one positive real root $e_1(w)$ such that $e_1(w) < 1$ and $e_1(w) < |e_i(w)|$ for all $i \geq 2$.

(c) Each root $e_i(w)$ is continuous and ℓ-times differentiable for any $\ell \geq 1$ and

$$e'_i(w) = -\frac{(aw^{a-1} + bw^{b-1})e_i(w)^{2k+2} + (a+b)w^{a+b-1} \sum_{j=2k+4}^{4k+3} e_1(w)^j}{1 + (w^{a} + w^{b})(2k+2)e_i(w)^{2k+1} + wa + b \sum_{j=2k+4}^{4k+3} je_i(w)^{j-1}}$$
Let $A_w(z)$ be the denominator of our generating function. We will consider only the case where $w = 1$. This gives us:

$$A(z) = 1 - 2z + z^2 - 2z^{2k+2} + 2z^{2k+3} - z^{2k+4} + z^{4k+4},$$

which factors nicely to:
Proof of (a)

Let $A_w(z)$ be the denominator of our generating function. We will consider only the case where $w = 1$. This gives us:

$$A(z) = 1 - 2z + z^2 - 2z^{2k+2} + 2z^{2k+3} - z^{2k+4} + z^{4k+4},$$

which factors nicely to:

$$A(z) = (z^{2k+2} - 1)(z^{k+1} + z - 1)(z^{k+1} - z + 1).$$
Proof of (a)

Let $A_w(z)$ be the denominator of our generating function. We will consider only the case where $w = 1$. This gives us:

$$A(z) = 1 - 2z + z^2 - 2z^{2k+2} + 2z^{2k+3} - z^{2k+4} + z^{4k+4},$$

which factors nicely to:

$$A(z) = (z^{2k+2} - 1)(z^{k+1} + z - 1)(z^{k+1} - z + 1).$$

We prove that no roots are repeated by:

- Showing that the factors are pairwise co-prime.
- Showing that the gcd of each factor and its derivative is 1.
Proof of (b)

Let \(\hat{A}_w(z) \) be the denominator of our revised generating function. We once again consider the case where \(w = 1 \), which gives us:

\[
\hat{A}(z) = 1 - z - 2z^{2k+2} - \sum_{j=2k+4}^{4k+3} z^j
\]

\[
\hat{A}'(z) = -1 - 2(2k + 2)z^{2k+1} - \sum_{j=2k+4}^{4k+3} jz^{j-1}
\]
Proof of (b)

Let \(\hat{A}_w(z) \) be the denominator of our revised generating function. We once again consider the case where \(w = 1 \), which gives us:

\[
\hat{A}(z) = 1 - z - 2z^{2k+2} - \sum_{j=2k+4}^{4k+3} z^j
\]

\[
\hat{A}'(z) = -1 - 2(2k + 2)z^{2k+1} - \sum_{j=2k+4}^{4k+3} jz^{j-1}
\]

- Note that \(\hat{A}(0) > 0 \), while \(\hat{A}(1) < 0 \), so there must be a root \(e_1 \) on \((0,1)\).
- Moreover, since \(\hat{A}'(z) \) is negative for all \(z \geq 0 \), the function is strictly decreasing on \((0, \infty)\). Thus \(e_1 \) is unique.
Proof of (b)

Let e_i be another root of $\hat{A}(z)$ and assume that $|e_i| \leq e_1 < 1$. Then $|e_i| \leq |e_1| = e_1'$.

Thus equality must hold everywhere, but this contradicts (a). It follows that $e_1 < |e_i|$.

Proof of (b)

Let e_i be another root of $\hat{A}(z)$ and assume that $|e_i| \leq e_1 < 1$. Then $|e_i|^j \leq |e_1|^j = e_1^j$.

\[
1 = \left| e_i + 2e_i^{2k+2} + \sum_{j=2k+4}^{4k+3} e_i^j \right| \leq |e_i| + 2|e_i|^{2k+2} + \sum_{j=2k+4}^{4k+3} |e_i|^j \\
\leq |e_1| + 2|e_1|^{2k+2} + \sum_{j=2k+4}^{4k+3} |e_1|^j = e_1 + 2e_1^{2k+2} + \sum_{j=2k+4}^{4k+3} e_1^j = 1
\]
Proof of (b)

Let \(e_i \) be another root of \(\hat{A}(z) \) and assume that \(|e_i| \leq e_1 < 1 \). Then \(|e_i|^j \leq |e_1|^j = e_1^j \).

\[
1 = \left| e_i + 2e_i^{2k+2} + \sum_{j=2k+4}^{4k+3} e_i^j \right| \leq |e_i| + 2|e_i|^{2k+2} + \sum_{j=2k+4}^{4k+3} |e_i|^j \\
\leq |e_1| + 2|e_1|^{2k+2} + \sum_{j=2k+4}^{4k+3} |e_1|^j = e_1 + 2e_1^{2k+2} + \sum_{j=2k+4}^{4k+3} e_1^j = 1
\]

Thus equality must hold everywhere, but this contradicts (a). It follows that \(e_1 \leq |e_i| \).
Proof of (c)

Since $\hat{A}[e_1(w)] = 0$, for some small neighborhood Δw we have $\hat{A}[e_1(w + \Delta w)] = 0$. This gives us:
Since $\hat{A}[e_1(w)] = 0$, for some small neighborhood Δw we have $\hat{A}[e_1(w + \Delta w)] = 0$. This gives us:

$$0 = \hat{A}[e_1(w)] - \hat{A}[e_1(w + \Delta w)]$$
Proof of (c)

Since $\hat{A}[e_1(w)] = 0$, for some small neighborhood Δw we have $\hat{A}[e_1(w + \Delta w)] = 0$. This gives us:

$$0 = \hat{A}[e_1(w)] - \hat{A}[e_1(w + \Delta w)]$$

$$= [1 - e_1(w) - (w^a + w^b)e_1(w)^{2k+2} - w^{a+b}\sum_{j=2k+4}^{4k+3} e_1(w)^{j}] -$$

$$[1 - e_1(w + \Delta w) - ((w + \Delta w)^a + (w + \Delta w)^b)e_1(w + \Delta w)^{2k+2}$$

$$- (w + \Delta w)^{a+b}\sum_{j=2k+4}^{4k+3} e_1(w + \Delta w)^{j}]$$
Since \(\hat{A}[e_1(w)] = 0 \), for some small neighborhood \(\Delta w \) we have \(\hat{A}[e_1(w + \Delta w)] = 0 \). This gives us:

\[
0 = \hat{A}[e_1(w)] - \hat{A}[e_1(w + \Delta w)]
\]

\[
= [1 - e_1(w) - (w^a + w^b)e_1(w)^{2k+2} - w^{a+b} \sum_{j=2k+1}^{4k+3} e_1(w)^j] - [1 - e_1(w + \Delta w) - ((w + \Delta w)^a + (w + \Delta w)^b)e_1(w + \Delta w)^{2k+2} - (w + \Delta w)^{a+b} \sum_{j=2k+4}^{4k+3} e_1(w + \Delta w)^j]
\]

\[
= e_1(w + \Delta w) - e_1(w) + (w^a + w^b)[e_1(w + \Delta w)^{2k+2} - e_1(w)^{2k+2} + w^{a+b} \sum_{j=2k+4}^{4k+3} [e_1(w + \Delta w)^j - e_1(w)^j]
\]

\[
+ e_1(w + \Delta w)^{2k+2}[(w + \Delta w)^a - w^a + (w + \Delta w)^b - w^b]
\]

\[
+ [\sum_{j=2k+4}^{4k+3} e_1(w + \Delta w)^j][(w + \Delta w)^{a+b} - w^{a+b}]
\]
Proof of (c)

$$0 = \ldots$$
Proof of (c)

\[
0 = \left[e_1(w + \Delta w) - e_1(w) \right] \left(1 + (w^a + w^b) \sum_{i=0}^{2k+1} e_1(w + \Delta w)^i e_1(w)^{2k+1-i} \right) \\
+ w^{a+b} \sum_{j=2k+4}^{4k+3} \sum_{i=0}^{j-1} e_1(w + \Delta w)^i e_1(w)^{j-1-i} \\
+ \Delta w \left(e_1(w + \Delta w)^{2k+2} \left[\sum_{i=0}^{a-1} (w + \Delta w)^i w^{a-1-i} + \sum_{i=0}^{b-1} (w + \Delta w)^i w^{b-1-i} \right] \\
+ \left[\sum_{j=2k+4}^{4k+3} e_1(w + \Delta w)^j \right] \sum_{i=0}^{a+b-1} (w + \Delta w)^i w^{a+b-1-i} \right)
\]
Proof of (c)

\[
0 = \left[e_1(w+\Delta w) - e_1(w) \right] \left(1 + (w^a + w^b) \sum_{i=0}^{2k+1} e_1(w+\Delta w)^i e_1(w)^{2k+1-i} \right.
\]
\[
+ w^{a+b} \sum_{j=2k+4}^{4k+3} \sum_{i=0}^{j-1} e_1(w+\Delta w)^i e_1(w)^{j-1-i} \]
\[
+ \Delta w \left(e_1(w+\Delta w)^{2k+2} \left[\sum_{i=0}^{a-1} (w+\Delta w)^i w^{a-1-i} + \sum_{i=0}^{b-1} (w+\Delta w)^i w^{b-1-i} \right] \right.
\]
\[
+ \left[\sum_{j=2k+4}^{4k+3} e_1(w+\Delta w)^j \right] \sum_{i=0}^{a+b-1} (w+\Delta w)^i w^{a+b-1-i} \]
\]

Now, since \(e_i(w) \) is continuous, and \(w^a, w^b, \) and \(w^{a+b} \) are differentiable at \(w = 1 \), we can rearrange terms and take the limit of the above equation, which gives us:

\[
e'_1(w) = \lim_{\Delta w \to 0} \frac{e_1(w+\Delta w) - e_1(w)}{\Delta w}
\]
\[
= \frac{(aw^{a-1} + bw^{b-1})e_1(w)^{2k+2} + (a+b)w^{a+b-1} \sum_{j=2k+4}^{4k+3} e_1(w)^j}{1 + (w^a + w^b)(2k+2)e_1(w)^{2k+1} + wa^b \sum_{j=2k+4}^{4k+3} je_1(w)^{j-1}}
\]

□
We now seek an expression for the coefficients of z^n in our generating function. As before, we will denote this function as:

$$g(w) = \sum_{m>0, l \geq 0} p_{n,m,l} w^{am+bl}$$
We now seek an expression for the coefficients of z^n in our generating function. As before, will denote this function as:

$$g(w) = \sum_{m>0, l \geq 0} p_{n,m,l} w^{am+b\ell}$$

For our calculations, it will be convenient to express the denominator of our generating function in terms of it's partial fraction expansion.

$$\frac{1}{A_w(z)} = \frac{1}{w^{a+b}} \sum_{i=1}^{4k+3} \frac{1}{(z - e_i(w)) \prod_{j \neq i} (e_j(w) - e_i(w))}$$
We rearrange this formula to get:

$$\frac{1}{A_w(z)} = \frac{1}{w^{a+b}} \sum_{i=1}^{4k+3} \frac{1}{(1 - \frac{z}{e_i(w)})} \cdot \frac{1}{e_i(w) \prod_{j \neq i} (e_j(w) - e_i(w))}$$
We rearrange this formula to get:

$$\frac{1}{A_w(z)} = \frac{1}{w^{a+b}} \sum_{i=1}^{4k+3} \frac{1}{1 - \frac{z}{e_i(w)}} \cdot e_i(w) \prod_{j \neq i} (e_j(w) - e_i(w))$$

Key Insight: $\frac{1}{1 - \frac{z}{e_i(w)}}$ represents a geometric series.
Home Stretch

We rearrange this formula to get:

\[
\frac{1}{A_w(z)} = \frac{1}{w^{a+b}} \sum_{i=1}^{4k+3} \frac{1}{(1 - \frac{z}{e_i(w)})} \cdot \frac{1}{e_i(w) \prod_{j \neq i}(e_j(w) - e_i(w))}
\]

Key Insight: \(\frac{1}{1 - \frac{z}{e_i(w)}}\) represents a geometric series.

We now sum over all coefficients of \(z^n\) in the numerator of our generating function, which gives us:

\[
g(w) = \sum_{i=1}^{4k+3} \frac{w^{-b}(1 - e_i(w)) + e^{k+2}(w) - e^{2k+2}(w)}{e^n_i(w) \prod_{j \neq i}(e_j(w) - e_i(w))}
\]
If we let $q_i(w)$ denote all terms of $g(w)$ that do not depend on n, then $g(w)$ reduces to $\sum_{i=1}^{4k+3} wq_i(w)/e_i^n(w)$.

Notes (from our Proposition):

Since $e_i^n(w)$ is ℓ-times differentiable, so is $q_i(w)$. For all $e_i^n(w)$ where $i \geq 2$, we have $e_{n1}(w) \ll e_i^n(w)$ as $n \to \infty$. $g(w) = wq_1(w)/e_{n1}(w) + o(\gamma_n(a,b))$, where $\gamma_n(a,b)$ is dependent only on a, b and is negligible for n large.
Home Stretch

If we let \(q_i(w) \) denote all terms of \(g(w) \) that do not depend on \(n \), then \(g(w) \) reduces to \(\sum_{i=1}^{4k+3} wq_i(w)/e_i^n(w) \).

Notes (from our Proposition):

- Since \(e_i(w) \) is \(\ell \)-times differentiable, so is \(q_i(w) \).
If we let $q_i(w)$ denote all terms of $g(w)$ that do not depend on n, then $g(w)$ reduces to $\sum_{i=1}^{4k+3} wq_i(w)/e_i^n(w)$.

Notes (from our Proposition):

- Since $e_i(w)$ is ℓ-times differentiable, so is $q_i(w)$.

- For all $e_i(w)$ where $i \geq 2$, we have $e_1^n(w) \ll e_i^n(w)$ as $n \to \infty$.
If we let \(q_i(w) \) denote all terms of \(g(w) \) that do not depend on \(n \), then \(g(w) \) reduces to \(\sum_{i=1}^{4k+3} wq_i(w)/e_i^n(w) \).

Notes (from our Proposition):

- Since \(e_i(w) \) is \(\ell \)-times differentiable, so is \(q_i(w) \).

- For all \(e_i(w) \) where \(i \geq 2 \), we have \(e_1^n(w) \ll e_i^n(w) \) as \(n \to \infty \).

- \(g(w) = wq_1(w)/e_1^n(w) + o(\gamma_a^n, \gamma_b^n) \), where \(\gamma_a^n \) and \(\gamma_b^n \) are dependent only on \(a, b \) and is negligible for \(n \) large.
Almost There!

We now have everything we need to solve for the mean! Recall that this is equivalent to finding $g'(1)/g(1)$.
Almost There!

We now have everything we need to solve for the mean! Recall that this is equivalent to finding $g'(1)/g(1)$.

\[
\frac{g'(1)}{g(1)} = \frac{q_1'(1)e^n(1) - nq_1(1)e_1^{n-1}(1)e_1'(1)}{e_1^{2n}(1)} \cdot \frac{e_1^n(1)}{q_1(1)}
\]
\[
= \frac{q_1'(1)e^{2n}(1)}{e_1^{2n}(1)q_1(1)} - \frac{nq_1(1)e_1^{2n-1}(1)e_1'(1)}{e_1^{2n}(1)q_1(1)}
\]
\[
= \frac{q_1'(1)}{q_1(1)} - \frac{e_1'(1)}{e_1(1)} n
\]
Almost There!

We now have everything we need to solve for the mean! Recall that this is equivalent to finding \(g'(1)/g(1) \).

\[
\frac{g'(1)}{g(1)} = \frac{q'_1(1)e^n(1) - nq_1(1)e^{n-1}(1)e'_1(1)}{e^{2n}(1)} \cdot \frac{e^n(1)}{q_1(1)}
\]

\[
= \frac{q'_1(1)e^{2n}(1)}{e^{2n}(1)q_1(1)} - \frac{nq_1(1)e^{2n-1}(1)e'_1(1)}{e^{2n}(1)q_1(1)}
\]

\[
= \frac{q'_1(1)}{q_1(1)} - \frac{e'_1(1)}{e_1(1)}n
\]

Letting \(C_{a,b} = -e'_1(1)/e_1(1) \) and \(d_{a,b} = p'(1)/p_1(1) \) gives us a computable expression for the mean in the form:

\[
C_{a,b}n + d_{a,b} + o(\gamma^n_{a,b})
\]
Since our mean grows linearly with n, Miller-Wang [MW] gives us a way to find the variance in the form:

$$h'_{a,b}(1)n + q''_1(1) + o(\tau^n_{a,b})$$

Where $h_{a,b}(w) = \frac{we'_1(w)}{e_1(w)} - C_{a,b}$, and the constants $\tau^n_{a,b} \in (0, 1)$ and $p''_1(1)$ depend only on a and b.

Grand Finale!
Since our mean grows linearly with n, Miller-Wang [MW] gives us a way to find the variance in the form:

$$h'_{a,b}(1)n + q''_1(1) + o(\tau^n_{a,b})$$

Where $h_{a,b}(w) = \frac{we'_1(w)}{e_1(w)} - C_{a,b}$, and the constants $\tau^n_{a,b} \in (0, 1)$ and $q''_1(1)$ depend only on a and b.

- Using our proposition, it is easy to verify that $C_{a,b}$ and $h'_{a,b} \neq 0$, and thus the mean and variance are not independent of n.

Since our mean grows linearly with n, Miller-Wang [MW] gives us a way to find the variance in the form:

$$h'_{a,b}(1)n + q''_1(1) + o(\tau^n_{a,b})$$

Where $h_{a,b}(w) = \frac{we'_1(w)}{e_1(w)} - C_{a,b}$, and the constants $\tau^n_{a,b} \in (0,1)$ and $p''_1(1)$ depend only on a and b.

- Using our proposition, it is easy to verify that $C_{a,b}$ and $h'_{a,b} \neq 0$, and thus the mean and variance are not independent of n.
- Now that we have a mean μ_n and a variance σ_n that grow in linear time, we are done!
1. We generalized the Fibonacci recurrence to a broader set of recurrences called the k-Skipponaccis.
Recap: What Just Happened?

1. We generalized the Fibonacci recurrence to a broader set of recurrences called the k-Skipponaccis.

2. We proved that every k-Skipponacci sequence creates a valid far-difference representation.
Recap: What Just Happened?

1. We generalized the Fibonacci recurrence to a broader set of recurrences called the k-Skipponaccis.

2. We proved that every k-Skipponacci sequence creates a valid far-difference representation.

3. We proved that the distribution of summands in any k-Skipponacci far-difference representation approaches a Gaussian distribution.
We have further generalized the k-Skipponacis to recurrence relations of the form $S_n = S_{n-1} + S_{n-x} + S_{n-y}$, where x is the distance between same-sign summands and y is the distance between opposite-sign summands.
Further Research and Open Questions

We have further generalized the k-Skipponacis to recurrence relations of the form $S_n = S_{n-1} + S_{n-x} + S_{n-y}$, where x is the distance between same-sign summands and y is the distance between opposite-sign summands.

Example: The Fibonacci recurrence can be written as:

$$F_n = F_{n-1} + F_{n-2} = F_{n-1} + (F_{n-3} + F_{n-4})$$
Further Research and Open Questions

- We have further generalized the k-Skipponacis to recurrence relations of the form $S_n = S_{n-1} + S_{n-x} + S_{n-y}$, where x is the distance between same-sign summands and y is the distance between opposite-sign summands.

Example: The Fibonacci recurrence can be written as:

$$F_n = F_{n-1} + F_{n-2} = F_{n-1} + (F_{n-3} + F_{n-4})$$

- We believe it can be shown that every far-difference restriction (x, y) uniquely defines a sequence of numbers.
Further Research and Open Questions

- We have further generalized the k-Skipponacis to recurrence relations of the form $S_n = S_{n-1} + S_{n-x} + S_{n-y}$, where x is the distance between same-sign summands and y is the distance between opposite-sign summands.

Example: The Fibonacci recurrence can be written as:

$$F_n = F_{n-1} + F_{n-2} = F_{n-1} + (F_{n-3} + F_{n-4})$$

- We believe it can be shown that every far-difference restriction (x, y) uniquely defines a sequence of numbers.

- We want to prove that the number of summands in every (x, y) far-difference representations approaches a Gaussian.
Acknowledgements

We would like to thank our adviser, Steven J. Miller, our co-authors Umang Varma and Archit Kulkarni, and the rest of the team at the Williams College SMALL summer research program.

A big thank you to Yinghui Wang, whose hard work and powerful results paved the way for this project.

Lastly, we would like to thank Cam Miller for his unique perspective and insights.

This research was funded by NSF grant DMS0850577.
References

