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Introduction

Given A ⊂ Z, let

A + A = {a1 + a2 : a1,a2 ∈ A},
A− A = {a1 − a2 : a1,a2 ∈ A}.

Theorem
There exists a positive constant c such that for any n large, the
proportion of sets A ⊂ {0, . . . ,n} with |A + A| > |A−A| is greater than
c. (Martin and O’Bryant 2006)

Such sets are called More Sums Than Differences (MSTD) sets, or
sum-dominant sets.
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Correlated Random Pairs

All of the literature to date has looked at sums and differences of a
set with itself.

We investigate sums and differences of pairs of subsets
(A,B) ⊂ {0, . . . ,n}. We select such pairs according to the dependent
random process:

P(k ∈ A) = p; P(k ∈ B|k ∈ A) = ρ1; P(k ∈ B|k /∈ A) = ρ2

Let ~ρ = (p, ρ1, ρ2). We call (A,B) a ~ρ-correlated pair.
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Correlated Random Pairs

(ρ1, ρ2) = (1,0) =⇒ (A,A).

(ρ1, ρ2) = (0,1) =⇒ (A,Ac).

ρ1 = ρ2, =⇒ (A,B) independent.
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Probability function

Let P(~ρ,n) be the probability that a ~ρ-correlated pair
(A,B) ⊂ {0, . . . ,n} is MSTD, that is

|A + B| > | ± (A− B)| = |(A− B) ∪ (B − A)|

Note: P(1/2,1,0,n),P(1/2,0,1,n), and P(1/2,1/2,1/2,n) can be
thought of as proportions of pairs (A,A), (A,Ac), resp. (A,B) which
are MSTD, while other values of P(~ρ,n) must be thought of as
probabilities.
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Main Results on Correlated Pairs

Theorem

For any ~ρ ∈ [0,1]3, the limit

lim
n→∞

P(~ρ,n) =: P(~ρ)

exists. Moreover, as long as p /∈ {0,1} and (ρ1, ρ2) 6= (0,0), (1,1),
then P(~ρ) is strictly positive.
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The function P(~ρ)

Proof idea:
To show that P(~ρ) exists, we build on the idea of Zhao (2010) and
count MSTD pairs by their minimal fringe profiles.

We call a pair a rich MSTD pair if the sumset wins over the difference
set near the edges, while both the sumset and the difference set
contain all the middle elements.

We show that as n→∞, a ~ρ-pair (A,B) ⊂ {0, . . . ,n} which is an
MSTD pair is rich with probability 1.

Thus, by summing the probabilities that the edges of (A,B) have a
given MSTD fringe profile and that (A,B) is rich over all such minimal
fringe profiles, we can get the limit P(~ρ).
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The function P(~ρ)

Proof idea: To show that P(~ρ) is positive, we only need to exhibit a
single MSTD fringe profile F such that, (for sufficiently large n) with
positive probability, (A,B) is rich with fringe profile F .

As long as ρ1p 6= 0, we can use the standard example given by
Martin and O’Bryant (2006).

If ρ1 = 0, but ρ2p > 0, we can use the fringe profile
L = R = {1,2,3,5,7,8}, L′ = R′ = Lc . (This means that the left and
the right edges of A look like

{1,2,3,5,7,8}

and
{n − 1,n − 2,n − 3,n − 5,n − 7,n − 8}

respectively, while B has complementary fringes).
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The function P(~ρ)

Theorem

The function P(~ρ) is continuous on [0,1]3.

Theorem
For any ρ1, ρ2, the function P(p, ρ1, ρ2) is a differentiable function of
p ∈ [0,1].
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Maximizing P(~ρ)

As P(~ρ) is continuous on the compact space [0,1]3, it must attain a
maximum.

[MO] and others have estimated with Monte Carlo experiments that
P(1/2,1,0) ≈ 0.00045. Zhao has shown P(1/2,1,0) > 4.286 · 10−4.
From our exhaustive searches, we estimate that P(1/2,0,1) ≈ 0.03.
So we conjecture that (A,Ac) beats (A,A) in the limit.

For each n, Pn(~ρ) denotes the proportion of MSTD pair of subsets of
[1, . . . ,n]. Pn is a polynomial of p, ρ1, ρ2 based on the sizes of all
MSTD pairs and their intersection.

We fix n = 9, do an exhaustive search to find all MSTD pairs and
calculate P9.
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Fix (p, ρ1)

Conjecture 1: For any fixed (p, ρ1) with ρ1 not too big (ρ1 ≤ 0.4) then
P as a function of ρ2 is strictly increasing in [0,1] and reaches its
maximum at ρ2 = 1.
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Fix (p, ρ2)

Conjecture 2: For any fixed (p, ρ2) with ρ2 not too small (ρ2 ≥ .5)
then P as a function of ρ1 is strictly decreasing in [0,1] and reaches
its maximum at ρ1 = 0.
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Fix (ρ1, ρ2)

Conjecture 3: For any fixed (ρ1, ρ2), P as a function of p in (0,1) has
a maximum at 1/2.
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A and A complement

From Conjectures 1 and 2, it makes sense that the maximum of P is
at ρ1 = 0, ρ2 = 1 or when it is the case of A and Ac .

In this case we know that p = 1/2 is a critical point of P(p,0,1) as
P(p,0,1) = P(1− p,0,1).

Conjecture 4: The maximum of the function P(p, ρ1, ρ2) in [0,1]3

occurs at P(1/2,0,1) ≈ 0.03.
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Some notation

Big O: f (n) = O(g(n)) if ∃c,n0 > 0 s.t f (n) > cg(n) for all n > n0.

Big Θ: f (n) = Θ(g(n)) if f (n) = O(g(n)) and g(n) = O(f (n)).

Little o: f (n) = o(g(n)) if limn→∞
g(n)

f (n)
=∞.

X ∼ f (N) if for any ε1, ε2 > 0 there exists Nε1,ε2 > 0 such that for
all N > Nε1,ε2

P
(

X /∈ [(1− ε1)f (N), (1 + ε1)f (N)]
)
< ε2
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Taking p → 0

In previous section, we know that for any fixed (p, ρ1, ρ2) there is a
positive percentage of MSTD pairs.

Here we let some of p, ρ1, ρ2 vary and depend on n.

Hegarty-Miller investigated this for (ρ1, ρ2) = (1,0) and
p = p(n) = o(1),n−1 = o(p(n)). The first condition indicates p
decays with n while the second one guarantees the expected size of
A grow with n.
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Theorem (Hegarty-Miller)

Given a function p : N→ (0,1) such that p(N) = o(1) and
N−1 = o(p(N)). As N →∞, the probability A as a subset of [1, . . . ,N]
is MSTD tends to 0. Let S = |A + A|,D = |A− A| and SC ,DC denote
their complements.

(i) p = o(N−1/2) : Then D ∼ 2S ∼ (N.p)2

(ii) p = c.N−1/2 for c ∈ (0,∞). Let g(x) = 2(e−x − (1− x))/x :

S ∼ g
(

c2

2

)
N and D ∼ g(c2)N

(iii) N−1/2 = o(p): SC ∼ 2.DC ∼ 4
p2
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Our result

We prove a similar result:

Let p̂ = p2(2ρ1 − ρ2
1) + 2p(1− p)ρ2 be depend on N. Then

(i) p̂ = o(N−1): Then D ∼ 2S ∼ N2.p̂
(ii) p̂ = c.N−1 for c ∈ (0,∞). Let g(x) = 2(e−x − (1− x))/x :

S ∼ g
(

c2

2

)
N and D ∼ g(c2)N

(iii) N−1 = o(p̂): E(SC) = E(2.DC) = 4/p̂
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Notes in Our result

In our result, if we let ρ1 = 1, ρ2 = 0 then p̂ = p2, consistent with the
result in Hegarty-Miller.

If ρ1 = ρ2 = p then the critical phase happens when p2 = Θ(1/N) or
p = Θ(N−1/2).

The interesting case is A and AC : p̂ = 2p(1− p) = Θ(1/N). If we let
p = o(1), p = Θ(1/N) which implies the expected number of
elements of A is pN = constant.
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The minimal MSTD pair

Hegarty (2007) proved the smallest MSTD set has size 8.

We prove

Theorem
The smallest MSTD pair has size (3,5) or (4,4).

Examples of minimal size MSTD pair:

A = {1,2,5,7}, B = {1,3,6,7}

A = {3,4,6}, B = {1,2,5,7,8}

A = {3,5,6}, B = {1,2,4,7,8}.
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Proof of Minimal MSTD pair

It is enough to prove that there is no MSTD-pair of size
(1, k), (2, k), (3,3) or (3,4) for any positive integer k .

Lemma
If A,B is a MSTD pair then there exist a1 < a2 < a3 ∈ A and
b1 > b2 > b3 ∈ B such that a1 + b1 = a2 + b2 = a3 + b3.

Idea of the proof: Consider all sums and differences a± b where
a ∈ A,b ∈ B. Each collapsed sum implies one collapsed difference.

Corollary: There is no MSTD pair of size (1, k) and (2, k) for k > 0.

We use some tedious checking to eliminate the case (3,3) and (3,4).
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Summary of Results

We prove for each ~ρ = (p, ρ1, ρ2) the limiting probability P(~ρ) of
picking an MSTD ~ρ-correlated pair exists and positive (except in
some extreme cases).

The function P(~ρ) is continuous and differentiable.

We show that P(~ρ) approaches zero and characterize the phase
transition when we let ~ρ decay with n.

We find the minimal size of an MSTD pair (A,B).
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Future Research

Prove Conjecture 4: sup P(~ρ) = P(1/2,0,1).

Find an efficient way to calculate values of P and investigate
more analytic properties of P.

Prove the strong concentration of SC and DC in the case of slow
decay (i.e. when N−1/2 = o(p̂)).

Prove the uniqueness of the MSTD pairs of size (4,4) and (3,5),
up to translation/dilation.
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