Sets Characterized by Missing Sums and Differences in \mathbb{Z}^d

Archit Kulkarni (Presenter), Carnegie Mellon University David Moon (Presenter), Williams College

Thao Do, Stony Brook University Jake Wellens, California Institute of Technology James Wilcox, Williams College

> Advisor: Steven J. Miller SMALL REU, Williams College

Young Mathematicians Conference, 2013 Ohio State University

2

Given $A \subset \mathbb{Z}$, let

$$A + A = \{a_1 + a_2 : a_1, a_2 \in A\},\$$
$$A - A = \{a_1 - a_2 : a_1, a_2 \in A\}.$$

Given $A \subset \mathbb{Z}$, let

$$A + A = \{a_1 + a_2 : a_1, a_2 \in A\},\ A - A = \{a_1 - a_2 : a_1, a_2 \in A\}.$$

Question: If A is finite, how does |A + A| compare to |A - A|?

Given $A \subset \mathbb{Z}$, let

$$A + A = \{a_1 + a_2 : a_1, a_2 \in A\},\$$
$$A - A = \{a_1 - a_2 : a_1, a_2 \in A\}.$$

Question: If A is finite, how does |A + A| compare to |A - A|?

Typical pair of elements in $a_1, a_2 \in A$ has two differences, but only one sum. Expect sets A with |A + A| > |A - A| to be rare.

Set A is MSTD (More-Sums-Than-Differences) if |A + A| > |A - A|.

Set A is MSTD (More-Sums-Than-Differences) if |A + A| > |A - A|.

Let ρ_n be the proportion of sets $A \subset [0, n]$ (= {0, ..., n}) that are MSTD.

Set A is MSTD (More-Sums-Than-Differences) if |A + A| > |A - A|.

Let ρ_n be the proportion of sets $A \subset [0, n]$ (= {0, ..., n}) that are MSTD.

Theorem [Martin and O'Bryant, 2006]

For $n \ge 14$, $\rho_n > 2 \cdot 10^{-7}$.

Set A is MSTD (More-Sums-Than-Differences) if |A + A| > |A - A|.

Let ρ_n be the proportion of sets $A \subset [0, n]$ (= {0, ..., n}) that are MSTD.

Theorem [Martin and O'Bryant, 2006]

For $n \ge 14$, $\rho_n > 2 \cdot 10^{-7}$.

Theorem [Zhao, 2010]

As $n \to \infty$, ρ_n converges to a limit $\rho > 4.28 \cdot 10^{-4}$.

Set A is MSTD (More-Sums-Than-Differences) if |A + A| > |A - A|.

Let ρ_n be the proportion of sets $A \subset [0, n]$ (= {0, ..., n}) that are MSTD.

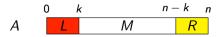
Theorem [Martin and O'Bryant, 2006]

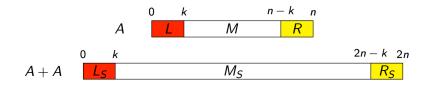
For $n \ge 14$, $\rho_n > 2 \cdot 10^{-7}$.

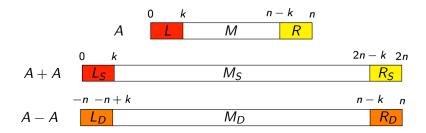
Theorem [Zhao, 2010]

As $n \to \infty$, ρ_n converges to a limit $\rho > 4.28 \cdot 10^{-4}$.

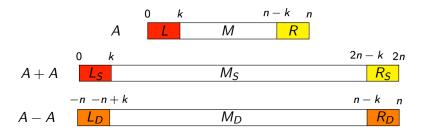
Monte Carlo simulations suggest $\rho \approx 4.5 \cdot 10^{-4}$.







Key idea: fringe elements are important.



To show that ρ_n is positive, carefully fix elements in L and R so that

$$|(A+A)\cap (L_S\cup R_S)|>|(A-A)\cap (L_D\cap R_D)|.$$

With positive probability independent of n, $M_S \subset A + A$ (and therefore A is MSTD).

Sets Characterized by Missing Sums and Differences

Sets Characterized by Missing Sums and Differences

Theorem [Hegarty, 2007]

For any $s, d \in \mathbb{N}_0$, there exists a constant $c \in (0, 1)$ that, for *n* sufficiently large depending on (s, d), at least $c \cdot 2^{n+1}$ subsets *A* of [0, n] satisfy |A + A| = (2n + 1) - s and |A - A| = (2n + 1) - 2d.

Sets Characterized by Missing Sums and Differences

Theorem [Hegarty, 2007]

For any $s, d \in \mathbb{N}_0$, there exists a constant $c \in (0, 1)$ that, for *n* sufficiently large depending on (s, d), at least $c \cdot 2^{n+1}$ subsets *A* of [0, n] satisfy |A + A| = (2n + 1) - s and |A - A| = (2n + 1) - 2d.

In particular, Hegarty explicitly constructs fringe sets L and R such that $(A + A) \cap (L_S \cup R_S)$ is missing s sums and $(A - A) \cap (L_D \cup R_D)$ is missing 2d differences.

Sets Characterized by Missing Sums and Differences

Theorem [Hegarty, 2007]

For any $s, d \in \mathbb{N}_0$, there exists a constant $c \in (0, 1)$ that, for *n* sufficiently large depending on (s, d), at least $c \cdot 2^{n+1}$ subsets *A* of [0, n] satisfy |A + A| = (2n + 1) - s and |A - A| = (2n + 1) - 2d.

In particular, Hegarty explicitly constructs fringe sets L and R such that $(A + A) \cap (L_S \cup R_S)$ is missing s sums and $(A - A) \cap (L_D \cup R_D)$ is missing 2d differences.

With positive probability, $M_S \subset A + A$ and $M_D \subset A - A$ (and therefore A + A and A - A are missing no other sums and differences).

Higher Dimensions

Exploring Higher Dimensions

Exploring Higher Dimensions

This summer, we considered finite subsets A of \mathbb{Z}^D (elements of A are vectors that add and subtract component-wise).

Exploring Higher Dimensions

This summer, we considered finite subsets A of \mathbb{Z}^D (elements of A are vectors that add and subtract component-wise).

A simple extension is to consider sets $A \subset [0, n]^D$.

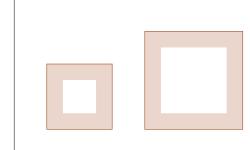
Exploring Higher Dimensions

This summer, we considered finite subsets A of \mathbb{Z}^D (elements of A are vectors that add and subtract component-wise).

A simple extension is to consider sets $A \subset [0, n]^D$.

Question

What is the fringe structure?



Corner Fringe

Corner Fringe

Theorem

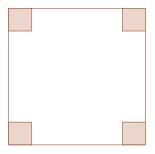
Let $D \in \mathbb{N}$. For any $(s, d) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}$, there exists a constant $c_{s,d} \in (0,1)$ such that, for n sufficiently large depending on (s, d), at least $c_{s,d} \cdot 2^{(n+1)^D}$ subsets of $[0, n]^d$ satisfy $|A + A| = (2n+1)^D - s$ and $|A - A| = (2n+1)^D - 2d$.

Corner Fringe

Theorem

Let $D \in \mathbb{N}$. For any $(s, d) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}$, there exists a constant $c_{s,d} \in (0, 1)$ such that, for *n* sufficiently large depending on (s, d), at least $c_{s,d} \cdot 2^{(n+1)^D}$ subsets of $[0, n]^d$ satisfy $|A + A| = (2n + 1)^D - s$ and $|A - A| = (2n + 1)^D - 2d$.

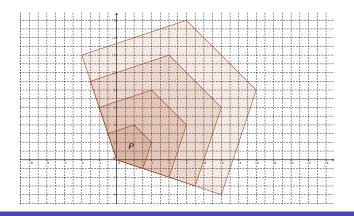
In particular, it suffices to fix a fringe about the corners:



Different Shapes

We can generalize further. Higher dimensions allow for different geometries of our set.

Let *P* be a convex polytope in \mathbb{R}^d with vertices in \mathbb{Z}^d . We consider sets $A \subset L(nP) = nP \cap \mathbb{Z}^d$.



Main Result

Theorem

Let P be a convex polytope in \mathbb{R}^D with vertices in \mathbb{Z}^D , and let $s, d \in \mathbb{N}_0$ be given. Then there exists a constant c > 0 such that for n large, a uniformly randomly chosen subset of L(nP) has s missing sums and at least 2d missing differences with probability at least c.

Main Result

Theorem

Let P be a convex polytope in \mathbb{R}^D with vertices in \mathbb{Z}^D , and let $s, d \in \mathbb{N}_0$ be given. Then there exists a constant c > 0 such that for n large, a uniformly randomly chosen subset of L(nP) has s missing sums and at least 2d missing differences with probability at least c.

Remark

In particular, this theorem implies the existence of a positive percentage of "more missing differences than missing sums" sets, which are in some sense an analogue of MSTD sets.

Let P be a convex polytope in \mathbb{R}^D with vertices in \mathbb{Z}^D , and let $s, d \in \mathbb{N}_0$ be given. Then there exists a constant c > 0 such that for n large, a uniformly randomly chosen subset of L(nP) has s missing sums and at least 2d missing differences with probability at least c.

Let P be a convex polytope in \mathbb{R}^D with vertices in \mathbb{Z}^D , and let $s, d \in \mathbb{N}_0$ be given. Then there exists a constant c > 0 such that for n large, a uniformly randomly chosen subset of L(nP) has s missing sums and at least 2d missing differences with probability at least c.

The proof idea is similar to the ideas found in previous work.

Let P be a convex polytope in \mathbb{R}^D with vertices in \mathbb{Z}^D , and let $s, d \in \mathbb{N}_0$ be given. Then there exists a constant c > 0 such that for n large, a uniformly randomly chosen subset of L(nP) has s missing sums and at least 2d missing differences with probability at least c.

The proof idea is similar to the ideas found in previous work.

• Construct a constant fixed fringe for each *nP*, which guarantees that exactly *s* sums and 2*d* differences are missing from the fringes of the sumset and difference set.

Let P be a convex polytope in \mathbb{R}^D with vertices in \mathbb{Z}^D , and let $s, d \in \mathbb{N}_0$ be given. Then there exists a constant c > 0 such that for n large, a uniformly randomly chosen subset of L(nP) has s missing sums and at least 2d missing differences with probability at least c.

The proof idea is similar to the ideas found in previous work.

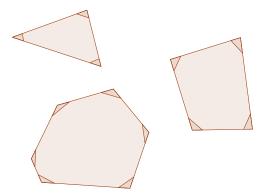
- Construct a constant fixed fringe for each *nP*, which guarantees that exactly *s* sums and 2*d* differences are missing from the fringes of the sumset and difference set.
- Show that there is a positive probability that every sum is present in the region outside the controlled fringes of the sumset.

Let P be a convex polytope in \mathbb{R}^D with vertices in \mathbb{Z}^D , and let $s, d \in \mathbb{N}_0$ be given. Then there exists a constant c > 0 such that for n large, a uniformly randomly chosen subset of L(nP) has s missing sums and at least 2d missing differences with probability at least c.

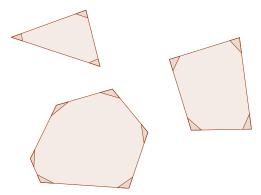
The proof idea is similar to the ideas found in previous work.

- Construct a constant fixed fringe for each *nP*, which guarantees that exactly *s* sums and 2*d* differences are missing from the fringes of the sumset and difference set.
- Show that there is a positive probability that every sum is present in the region outside the controlled fringes of the sumset.
- Conclude that we have exactly *s* sums missing and at least 2*d* differences missing for a positive percentage of sets.

Like in the cube, we fix a fringe of constant size about the corners.

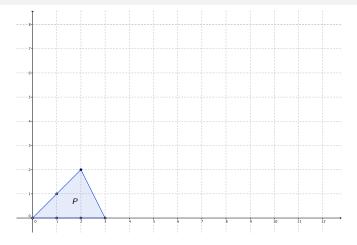


Like in the cube, we fix a fringe of constant size about the corners.

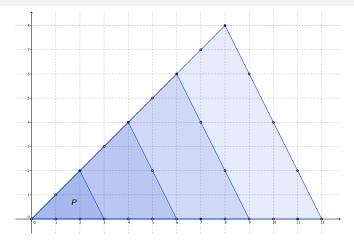


Missing sums and missing differences are controlled on the edges within the corner fringe.

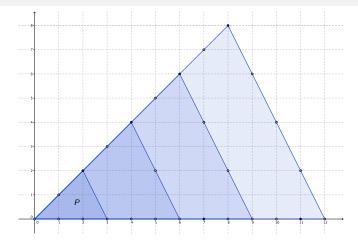
Lattice Points on the Edges



Lattice Points on the Edges



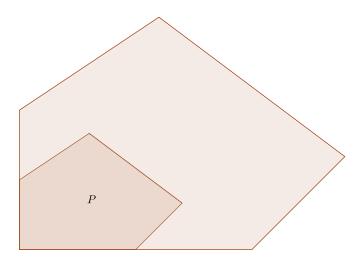
Lattice Points on the Edges



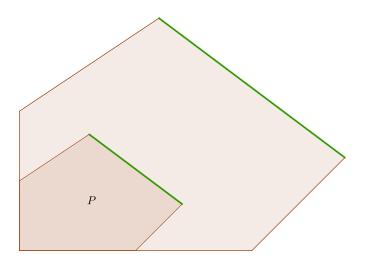
Since vertices are integer lattice points, note that:

- nP has at least n+1 lattice points on each edge
- Each edge forms its own 1D lattice structure

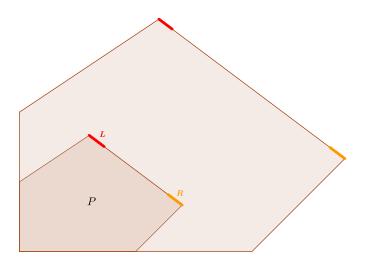
Controlling Missing Sums

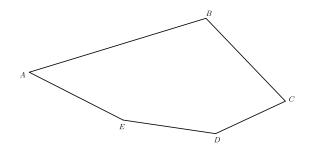


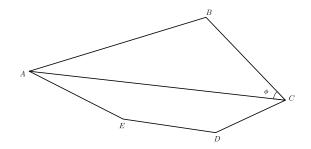
Controlling Missing Sums

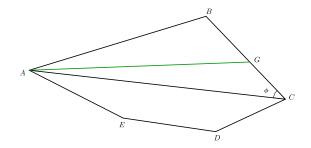


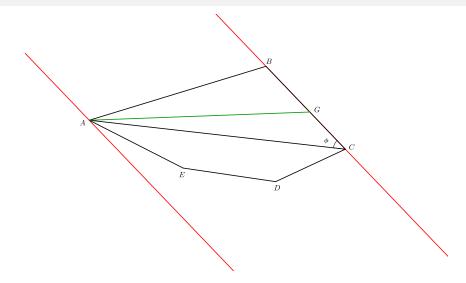
Controlling Missing Sums

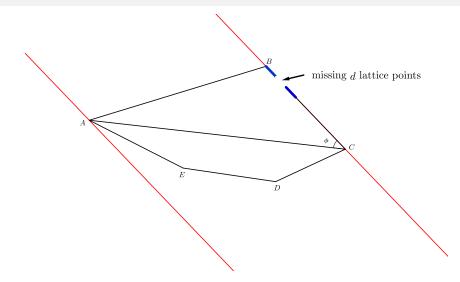




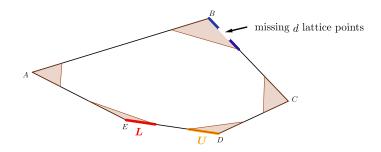




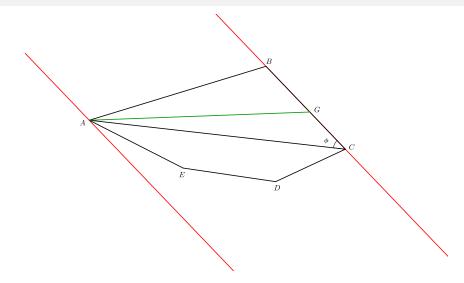




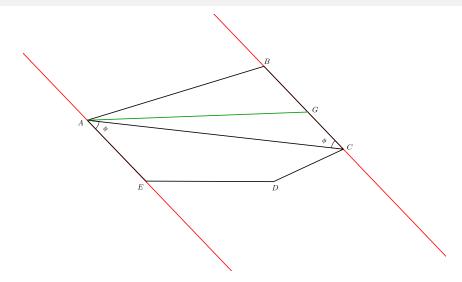
Putting It All Together



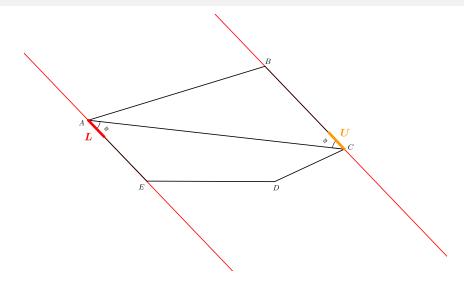
Special Case



Special Case



Special Case



Lemma

Let A be a uniformly randomly chosen subset of L(P) with our fixed fringe. Let **k** be given in $L((P + P) \setminus F_s)$. Then

$$\mathbb{P}[\mathbf{k} \not\in P + P] \le \left(\frac{3}{4}\right)^{|L(P \cap (\mathbf{k} - P))|/2}$$

Lemma

Let A be a uniformly randomly chosen subset of L(P) with our fixed fringe. Let **k** be given in $L((P + P) \setminus F_s)$. Then

$$\mathbb{P}[\mathbf{k}
ot \in P + P] \leq \left(rac{3}{4}
ight)^{|L(P \cap (\mathbf{k} - P))|/2}$$

Proof.

If
$$\mathbf{x}, \mathbf{y} \in L(P)$$
 with $\mathbf{x} + \mathbf{y} = \mathbf{k}$, then $\mathbf{x}, \mathbf{y} \in L(\mathbf{k} - P)$ too.

Lemma

Let A be a uniformly randomly chosen subset of L(P) with our fixed fringe. Let **k** be given in $L((P + P) \setminus F_s)$. Then

$$\mathbb{P}[\mathbf{k}
ot\in P + P] \leq \left(rac{3}{4}
ight)^{|L(P \cap (\mathbf{k} - P))|/2}$$

Proof.

If $\mathbf{x}, \mathbf{y} \in L(P)$ with $\mathbf{x} + \mathbf{y} = \mathbf{k}$, then $\mathbf{x}, \mathbf{y} \in L(\mathbf{k} - P)$ too. Partition $L(P \cap \mathbf{k} - P)$ into independent pairs of points adding to \mathbf{k} .

Lemma

Let A be a uniformly randomly chosen subset of L(P) with our fixed fringe. Let **k** be given in $L((P + P) \setminus F_s)$. Then

$$\mathbb{P}[\mathbf{k}
ot\in P + P] \leq \left(rac{3}{4}
ight)^{|L(P \cap (\mathbf{k} - P))|/2}$$

Proof.

If $\mathbf{x}, \mathbf{y} \in L(P)$ with $\mathbf{x} + \mathbf{y} = \mathbf{k}$, then $\mathbf{x}, \mathbf{y} \in L(\mathbf{k} - P)$ too. Partition $L(P \cap \mathbf{k} - P)$ into independent pairs of points adding to \mathbf{k} . If the sum \mathbf{k} is missing, each pair is missing at least one point.

Lemma

Let A be a uniformly randomly chosen subset of L(P) with our fixed fringe. Let **k** be given in $L((P + P) \setminus F_s)$. Then

$$\mathbb{P}[\mathbf{k}
ot\in P + P] \leq \left(rac{3}{4}
ight)^{|L(P \cap (\mathbf{k} - P))|/2}$$

Proof.

If $\mathbf{x}, \mathbf{y} \in L(P)$ with $\mathbf{x} + \mathbf{y} = \mathbf{k}$, then $\mathbf{x}, \mathbf{y} \in L(\mathbf{k} - P)$ too. Partition $L(P \cap \mathbf{k} - P)$ into independent pairs of points adding to \mathbf{k} . If the sum \mathbf{k} is missing, each pair is missing at least one point. Probability for each pair is at most 3/4. Exponentiate by # of pairs.

Lemma

Let A be a uniformly randomly chosen subset of L(P) with our fixed fringe. Let **k** be given in $L((P + P) \setminus F_s)$. Then

$$\mathbb{P}[\mathbf{k}
ot\in P + P] \leq \left(rac{3}{4}
ight)^{|L(P \cap (\mathbf{k} - P))|/2}$$

Proof.

If $\mathbf{x}, \mathbf{y} \in L(P)$ with $\mathbf{x} + \mathbf{y} = \mathbf{k}$, then $\mathbf{x}, \mathbf{y} \in L(\mathbf{k} - P)$ too. Partition $L(P \cap \mathbf{k} - P)$ into independent pairs of points adding to \mathbf{k} . If the sum \mathbf{k} is missing, each pair is missing at least one point. Probability for each pair is at most 3/4. Exponentiate by # of pairs.

Probability that All Middle Sums are Present

We wish to find a constant c > 0 so that

$$\sum_{\mathbf{k}\in(L(P)+L(P))\setminus F_s}\mathbb{P}[\mathbf{k}\not\in P+P]<1-c.$$

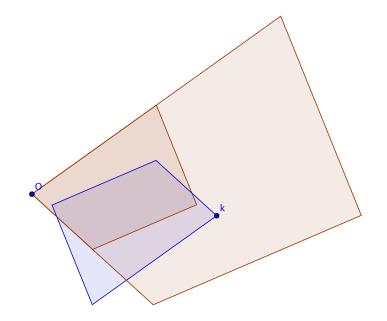
This will imply that all middle sums are present with probability at least c.

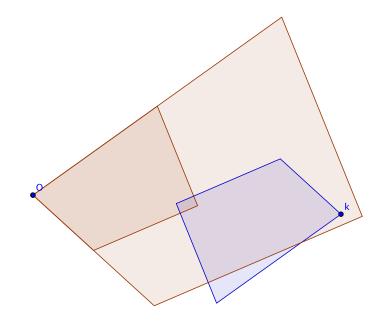
Probability that All Middle Sums are Present

We wish to find a constant c > 0 so that

$$\sum_{\mathbf{k}\in (L(P)+L(P))\setminus F_{s}}\mathbb{P}[\mathbf{k}\not\in P+P]<1-c.$$

This will imply that all middle sums are present with probability at least *c*. First, we must get a handle on the area of $P \cap (\mathbf{k} - P)$.





$$\sum_{\mathbf{k}\in(L(P)+L(P))\setminus F_s} \mathbb{P}[\mathbf{k}\not\in P+P],$$

$$\sum_{\mathbf{k}\in(L(P)+L(P))\setminus F_s}\mathbb{P}[\mathbf{k}\not\in P+P],$$

we partition the region L(P) + L(P) into three regions:

• Our fixed fringe.

$$\sum_{\mathbf{k}\in(L(P)+L(P))\setminus F_s} \mathbb{P}[\mathbf{k}\not\in P+P],$$

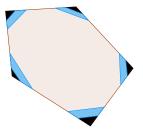
- Our fixed fringe.
- A middle region where P ∩ (k − P) is so large that the probability of any given sum to be missing is less than ^ϵ/_{|L(P+P)|}.

$$\sum_{\mathbf{k}\in(L(P)+L(P))\setminus F_s} \mathbb{P}[\mathbf{k}\not\in P+P],$$

- Our fixed fringe.
- A middle region where P ∩ (k − P) is so large that the probability of any given sum to be missing is less than ^ϵ/_{|L(P+P)|}.
- An intermediate region, close enough to the vertices that P ∩ (k − P) is simple enough that its area can be estimated.

$$\sum_{\mathbf{k}\in(L(P)+L(P))\setminus F_s} \mathbb{P}[\mathbf{k}\not\in P+P],$$

- Our fixed fringe.
- A middle region where P ∩ (k − P) is so large that the probability of any given sum to be missing is less than ^ϵ/_{|L(P+P)|}.
- An intermediate region, close enough to the vertices that P ∩ (k − P) is simple enough that its area can be estimated.



Thus, we can fix a large enough fringe so that

$$\sum_{\mathbf{k}\in(L(P)+L(P))\setminus F_s} \mathbb{P}[\mathbf{k}\not\in P+P] < 1-c,$$

so for n large, all middle sums are present with probability at least c.

Thus, we can fix a large enough fringe so that

$$\sum_{\mathbf{k}\in(L(P)+L(P))\setminus F_s} \mathbb{P}[\mathbf{k}\not\in P+P] < 1-c,$$

so for n large, all middle sums are present with probability at least c.

Since our fixed fringe guarantees s missing fringe sums and at least 2d missing differences, we have found a positive proportion of subsets with exactly s missing sums and at least 2d missing differences overall.

Thanks

We would like to thank

- Our advisor, Professor Steven Miller.
- Our co-authors Thao Do, Jake Wellens, and James Wilcox.
- Williams College and the NSF (Grant DMS0850577) for funding our research.