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Introduction

Introduction

Given A ⊂ Z, let

A + A = {a1 + a2 : a1, a2 ∈ A},
A− A = {a1 − a2 : a1, a2 ∈ A}.

Question: If A is finite, how does |A + A| compare to |A− A|?

Typical pair of elements in a1, a2 ∈ A has two differences, but only one
sum. Expect sets A with |A + A| > |A− A| to be rare.
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Introduction

Previous Results

Set A is MSTD (More-Sums-Than-Differences) if |A + A| > |A− A|.

Let ρn be the proportion of sets A ⊂ [0, n] (= {0, . . . , n}) that are MSTD.

Theorem [Martin and O’Bryant, 2006]
For n ≥ 14, ρn > 2 · 10−7.

Theorem [Zhao, 2010]
As n→∞, ρn converges to a limit ρ > 4.28 · 10−4.

Monte Carlo simulations suggest ρ ≈ 4.5 · 10−4.
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Introduction

Fringe Elements

Key idea: fringe elements are important.

A L M R

A + A LS MS RS

A− A LD MD RD

To show that ρn is positive, carefully fix elements in L and R so that

|(A + A) ∩ (LS ∪ RS)| > |(A− A) ∩ (LD ∩ RD)|.

With positive probability independent of n, MS ⊂ A + A (and therefore A
is MSTD) .
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Introduction

Sets Characterized by Missing Sums and Differences

Theorem [Hegarty, 2007]
For any s, d ∈ N0, there exists a constant c ∈ (0, 1) that, for n sufficiently
large depending on (s, d), at least c · 2n+1 subsets A of [0, n] satisfy
|A + A| = (2n + 1)− s and |A− A| = (2n + 1)− 2d .

In particular, Hegarty explicitly constructs fringe sets L and R such that
(A + A) ∩ (LS ∪ RS) is missing s sums and (A− A) ∩ (LD ∪ RD) is missing
2d differences.

With positive probability, MS ⊂ A + A and MD ⊂ A− A (and therefore
A + A and A− A are missing no other sums and differences).
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Higher Dimensions

Exploring Higher Dimensions

This summer, we considered finite subsets A of ZD

(elements of A are vectors that add and subtract component-wise).

A simple extension is to consider sets A ⊂ [0, n]D.

Question
What is the fringe structure?

22



Higher Dimensions

Exploring Higher Dimensions
This summer, we considered finite subsets A of ZD

(elements of A are vectors that add and subtract component-wise).

A simple extension is to consider sets A ⊂ [0, n]D.

Question
What is the fringe structure?

23



Higher Dimensions

Exploring Higher Dimensions
This summer, we considered finite subsets A of ZD

(elements of A are vectors that add and subtract component-wise).

A simple extension is to consider sets A ⊂ [0, n]D.

Question
What is the fringe structure?

24



Higher Dimensions

Exploring Higher Dimensions
This summer, we considered finite subsets A of ZD

(elements of A are vectors that add and subtract component-wise).

A simple extension is to consider sets A ⊂ [0, n]D.

Question
What is the fringe structure?

25



Higher Dimensions

Corner Fringe

Theorem
Let D ∈ N. For any (s, d) ∈ Z≥0 × Z≥0, there exists a constant
cs,d ∈ (0, 1) such that, for n sufficiently large depending on (s, d), at least
cs,d · 2(n+1)D subsets of [0, n]d satisfy |A + A| = (2n + 1)D − s and
|A− A| = (2n + 1)D − 2d .

In particular, it suffices to fix a fringe about the corners:
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Higher Dimensions

Different Shapes
We can generalize further. Higher dimensions allow for different
geometries of our set.

Let P be a convex polytope in Rd with vertices in Zd . We consider sets
A ⊂ L(nP) = nP ∩ Zd .

P
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Higher Dimensions

Main Result

Theorem
Let P be a convex polytope in RD with vertices in ZD, and let s, d ∈ N0
be given. Then there exists a constant c > 0 such that for n large, a
uniformly randomly chosen subset of L(nP) has s missing sums and at
least 2d missing differences with probability at least c.

Remark
In particular, this theorem implies the existence of a positive percentage of
”more missing differences than missing sums” sets, which are in some
sense an analogue of MSTD sets.
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The proof idea is similar to the ideas found in previous work.
Construct a constant fixed fringe for each nP, which guarantees that
exactly s sums and 2d differences are missing from the fringes of the
sumset and difference set.
Show that there is a positive probability that every sum is present in
the region outside the controlled fringes of the sumset.
Conclude that we have exactly s sums missing and at least 2d
differences missing for a positive percentage of sets.
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Constructing the Fringe

Constructing the Fringe

Like in the cube, we fix a fringe of constant size about the corners.

Missing sums and missing differences are controlled on the edges within
the corner fringe.
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Constructing the Fringe

Lattice Points on the Edges

Since vertices are integer lattice points, note that:
nP has at least n + 1 lattice points on each edge
Each edge forms its own 1D lattice structure
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Constructing the Fringe

Controlling Missing Sums
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Constructing the Fringe

Controlling Missing Differences
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Constructing the Fringe

Putting It All Together
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Special Case
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Positive Percentage

Probability that a Sum is Missing

Lemma
Let A be a uniformly randomly chosen subset of L(P) with our fixed
fringe. Let k be given in L((P + P) \ Fs). Then

P[k 6∈ P + P] ≤
(3

4

)|L(P∩(k−P))|/2
.

Proof.
If x, y ∈ L(P) with x + y = k, then x, y ∈ L(k− P) too.
Partition L(P ∩ k− P) into independent pairs of points adding to k.
If the sum k is missing, each pair is missing at least one point.
Probability for each pair is at most 3/4. Exponentiate by # of pairs.
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Positive Percentage

Probability that All Middle Sums are Present

We wish to find a constant c > 0 so that∑
k∈(L(P)+L(P))\Fs

P[k 6∈ P + P] < 1− c.

This will imply that all middle sums are present with probability at least c.

First, we must get a handle on the area of P ∩ (k− P).
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Positive Percentage

To handle the sum ∑
k∈(L(P)+L(P))\Fs

P[k 6∈ P + P],

we partition the region L(P) + L(P) into three regions:

Our fixed fringe.
A middle region where P ∩ (k− P) is so large that the probability of
any given sum to be missing is less than ε

|L(P+P)| .
An intermediate region, close enough to the vertices that P ∩ (k− P)
is simple enough that its area can be estimated.
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Positive Percentage

Thus, we can fix a large enough fringe so that∑
k∈(L(P)+L(P))\Fs

P[k 6∈ P + P] < 1− c,

so for n large, all middle sums are present with probability at least c.

Since our fixed fringe guarantees s missing fringe sums and at least 2d
missing differences, we have found a positive proportion of subsets with
exactly s missing sums and at least 2d missing differences overall.
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