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What is Newman’s conjecture about?

@ Newman’s conjecture is related to the Riemann zeta
function ((s).

@ Itis an “almost counter-conjecture” to the Riemann
hypothesis!

@ We’'ll look at what happens when we study Newman’s
conjecture in the function fields setting.
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Riemann zeta function

The Riemann zeta function is initially defined, for Re(s) > 1, by

<(s) = % ( 1] 11p3)'

p prime

Riemann Hypothesis (1859)

If {(s) = 0, then either s is a “trivial zero” or Re(s)
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Riemann zeta function

Define a new function =(x) for x € C as follows:

o Let&(s) = ss(s— 1)~ S/21($)¢(s) (“completed zeta
function”).

o Let =(x) =& (% + ix)
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(o] J

Riemann zeta function

Define a new function =(x) for x € C as follows:
o Let&(s) = ss(s— 1)~ S/21($)¢(s) (“completed zeta
function”).
o Let =(x) =& (% + ix)

Facts:

@ If x € R, then =(x) € R.
@ RH is equivalent to: all the zeros of =(x) are real.
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Newman’s conjecture

Pélya’s idea (around 1920s):

=(x) —— o) —2— o) —1 - =(x)

@ Step 0: Start with =(x)
@ Step 1: Take the Fourier transform

1

o(u) = > /OOO =(x) cos ux dx.

@ Step 2: Multiply by e
@ Step 3: Fourier inversion

Zi(x) = / e o(u) cos ux du.
0
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Newman’s conjecture

In other words, study a family of functions given by

(x) = / e o(u) cos ux du,
0

with Zp(x) = =(x).
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Newman’s conjecture

In other words, study a family of functions given by
Zi(x) = / e & (u) cos ux du,
0
with Zp(x) = =(x).

De Bruijn and Newman showed there exists A € R (called the

De Bruijn—Newman constant) which divides the real line in
half:

t<A t>A
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=t has a nonreal zero A =t has only real zeros
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Newman’s conjecture

Relationship of A to RH

t<A t>A

(§
L4

N

=; has a nonreal zero =t has only real zeros

A

RH <= = has only real zeros «<— A <0

Conjecture (Newman)
A>0

Newman: “The new conjecture is a quantitative version of the
dictum that the Riemann hypothesis, if true, is only barely so.”
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Newman’s conjecture

Zix) = / e d(u) cos ux du
0

If we define F(x,t) = =¢(x), then

OF [ &F _

ot + 0x? 0.
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Newman’s conjecture

Zix) = / e d(u) cos ux du
0

If we define F(x,t) = =¢(x), then

OF [ &F _

ot + 0x? 0.

In other words F(x, t) satisfies the backwards heat equation.
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Example of backwards heat equation

An example of something that solves the backwards heat
equation:

f:(x) = 10e* cos 2x — 2v/5e' cos x — 1
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Example of backwards heat equation

Movement of zeros

t=0: (fo(x) =10cos2x — 2/5cosx — 1)

Zeros:
X1, X0 = =+ 0.532
X3,X4 = M+t 0.879

As we can see, all four zeros of the original function f are real.
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Example of backwards heat equation

Movement of zeros

Zeros:
X1, X0 = =+ 0.473
X3,X4 = w+0.889

As we move time back, the peaks get smaller.
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Example of backwards heat equation

Movement of zeros

Zeros:
X1, X0 = =+ 0.393
X3,X4 = w+0.900

As we move time back, the peaks get smaller.
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Example of backwards heat equation

Movement of zeros

Zeros:
X1, X0 = =+ 0.269
X3, X4 = w+0.911

As we move time back, the peaks get smaller.
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Example of backwards heat equation

Movement of zeros

t~ —0.188565066:

=
o
T

Zeros:
X1, X2 = 0

-1 3 X3, X4 = 7+0.919
: 5F

At t =~ —0.189, the first two zeros coalesce!

-
o
T
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Example of backwards heat equation

Movement of zeros

=
o
T

Zeros:
X1, X2

RN

-
o
T

If we keep moving time back, those zeros “pop off”

= +0.152j
= m+0.933

the real line!




Introduction
[efe] ]

Example of backwards heat equation

f,(x) at t ~ —0.188565066:
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Example of backwards heat equation

f,(x) at t ~ —0.188565066:

/\

<t

AN

t>1

L 2

"IN

fi has a nonreal zero

f has only real zeros




Previous work

Results on A

(RH: A <0, Newman: A > 0.)

Year

Lower bound on A

1988
1991
1992
1994
2000
2011

—50

-5

—0.39
—4.4.10°°
—2.7-107°
—-1.2.10~ "




Previous work

Results on A

(RH: A <0, Newman: A > 0.)

Year

Lower bound on A

1988
1991
1992
1994
2000
2011

—-50

-5

—0.39
—4.4.10°°
—2.7-107°
—-1.2.10~ "

Strategy of Csordas, Smith, Varga (1994): look for “unusually”
close pairs of zeros of =(x).

eSS ==
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Generalizations of Newman’s conjecture

Stopple (2013) showed that the exact same setup can be done
for quadratic Dirichlet L-functions L(s, xp), where D is a
fundamental discriminant.

Generalized Newman Conjecture: Ap > 0 for all D.

Stopple investigated weaker conjecture: sup Ap > 0.

Stopple found for D = 175990483, we have —1.13-10~7 < Ap.
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Generalizations of Newman'’s conjecture

Possible to generalize these results even more?

For ¢ and the L-functions Stopple looked at, the completed
function satisfies “nicest” symmetry possible:

(s, xp) = &(1 —s,xp)

Symmetries that are not good enough:

° f(S,X) = 6(1 - SaY)
@ £(s,x) =€£(1 —s,x), where e # 1.
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Generalizations of Newman'’s conjecture

Looking for L-functions

Automorphic L-functions!

Function field quadratic L-functions!
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Function fields
°
Overview of function fields

Let Fq denote the finite field with g elements. We will need to
assume g is odd.

Let Fq[T] denote ring of polynomials in T with coefficients in .

Fq[T] (in “function field” setting) behaves a lot like Z (in
“number field” setting).
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°
L-functions

As in number fields, can look at quadratic Dirichlet L-function
L(s, xp) for fundamental discriminants D € F4[T].

BO)




;

Function fields
°
L-functions

As in number fields, can look at quadratic Dirichlet L-function
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Function fields
°
L-functions

As in number fields, can look at quadratic Dirichlet L-function
L(s, xp) for fundamental discriminants D € F4[T].

Fact: £(s, xp) := qQ9%°L(s, xp) satisfies the functional equation
(s, xp) = €(1 — s, xp)- (Here, deg D — 1 = 2g.)

Bonus fact:

Theorem (RH for curves over a finite field)

IfL(s, xp) = 0, then Re(s) = 3.

N TS
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Newman’s conjecture in function fields

Can define =(x, xo) = & (4 + ikg. xo).

eSS -




Function fields
©00000
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Newman’s conjecture in function fields

Can define =(x, xp) = ¢ (; ik, XD).
It has a very nice form:

g
=(X,xp) = Po+ > _ Pp- (€™ + &™)
n=1

g
:¢0+2Z¢n'cosnx

n=1

for some &g, ..., d5 c R (deg D — 1 = 2g).

L
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Newman’s conjecture in function fields

g
=(x,xp) = Po+2) &, oS nx
n=1
Can still follow Pdlya.
— 1 2 2 3 -
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Newman’s conjecture in function fields

g
=(x,xp) = Po+2) &, oS nx
n=1
Can still follow Pdlya.
— 1 2 2 3 -

Important! Here we take the Fourier transform on the circle.
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Newman’s conjecture in function fields

g
=(x,xp) = Po+2) &, oS nx
n=1
Can still follow Pdlya.
— 1 2 2 3 -

Important! Here we take the Fourier transform on the circle. We
end up with

g
Zi(x,xp) = Po +2 Z e ®, . cos nx.

n=1

[
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Newman’s conjecture in function fields

Our example from the beginning:

fi(x) = 10e* cos 2x — 2v/5ef cos x — 1.
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Newman’s conjecture in function fields

Our example from the beginning:

fi(x) = 10e* cos 2x — 2v/5ef cos x — 1.

A
VA

D=T°+T*4+ T3 +2T +2c Fs[T].

I
-1

-5

-10

That is actually =¢(x, xp) for
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Newman’s conjecture in function fields

10}

w
T

7INT X

-10F

SoforD=T°+ T4+ T3 +2T +2 € Fs[T],
Ap =~ —0.188565066.
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Newman’s conjecture in function fields

10}

w
T

7INT X

-10F

SoforD=T°+ T4+ T3 +2T +2 € Fs[T],
Ap =~ —0.188565066.

t</\D tZ/\D

L 2

"IN

=t has a nonreal zero A =t has only real zeros
D
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Newman’s conjecture in function fields

Very important: We were able to calculate Ap!!

In our example, Ap ~ —0.188565066 < 0. Is this surprising?
(Recall for ¢: RH: A < 0. Newman: A > 0.)

Don’t want to conjecture that Ap > 0 for all D.

Instead, do what Stopple did: consider an entire “family.”
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Many different kinds of families:




Function fields
00000®

Newman’s conjecture in function fields

Many different kinds of families:

Conjecture (Newman for function fields, g version)
Keep q, the size of the finite field, fixed. Then

sup Ap > 0.
DeFq[T]
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Newman’s conjecture in function fields

Many different kinds of families:

Conjecture (Newman for function fields, degree version)
Keep d, the degree, fixed. Then

sup Ap > 0.
deg D=d
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Newman’s conjecture in function fields

Many different kinds of families:

Conjecture (Newman for function fields, D version)

Fix D € Z[T] squarefree. For each prime p, let Dy be the
polynomial in Fp[T] obtained by reducing D mod p. Then

sup/Ap, > 0.
p

T0)




Degree 3 case
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Fix D € Z[T] squarefree with deg D = 3.
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Fix D € Z[T] squarefree with deg D = 3. For each odd prime p,
we can reduce D to D, € Fy[T] and get the function

=X, xp,) = —ap(D) + 2/p €' cosx.
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Fix D € Z[T] squarefree with deg D = 3. For each odd prime p,
we can reduce D to D, € Fy[T] and get the function

=X, xp,) = —ap(D) + 2/p €' cosx.

Note: ap(D) is called the trace of Frobenius of the elliptic
curve y? = D(T).
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Degree 3 case
@0000

Fix D € Z[T] squarefree with deg D = 3. For each odd prime p,
we can reduce D to D, € Fy[T] and get the function

=X, xp,) = —ap(D) + 2/p €' cosx.

Note: ap(D) is called the trace of Frobenius of the elliptic
curve y? = D(T).

Theorem (Exact expression for Ap))
|ap(D)|

Ap, = log 2/p

y
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ap(D
ADpzlogﬂzp(ﬁn

Hasse showed in the 1930s that |a,(D)| < 2,/p.
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ap(D
ADpzlogﬂzp(ﬁn

Hasse showed in the 1930s that |a,(D)| < 2,/p.

What is the distribution of
ap(D)
2,/p

?

y
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Pick any squarefree D € Z[T]. Then ap(D)/(2,/p) will give you
one of two distributions:
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Pick any squarefree D € Z[T]. Then ap(D)/(2,/p) will give you
one of two distributions:

SRERi|
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Pick any squarefree D € Z[T]. Then ap(D)/(2,/p) will give you
one of two distributions:

[T

05 00 05 10 10 05

Easy to show if D has complex multiplication, then will have
distribution on left.
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Conjecture (Sato-Tate, 1960s)

Let D € Z[T] be squarefree and such that the elliptic curve
y? = D(T) does not have complex multiplication. Then as p
varies, the distribution of (D) js-

2,p

>
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Conjecture (Sato-Tate, 1960s)

Let D € Z[T] be squarefree and such that the elliptic curve
y? = D(T) does not have complex multiplication. Then as p

. . . . ap(D) ;..
varies, the distribution of = b s

o ED

Clozel, Harris, Shepherd-Barron, and Taylor announced a proof
in 2006. (They only proved for special cases.)

QD
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Ao — log 2(D)

Dp 2./p

Theorem (Newman’s conjecture for fixed D, deg D = 3)

Let D € Z[T] be squarefree with deg D = 3. If Sato-Tate is true

for y? = D(T) or if the curve has complex multiplication, then
sup, Ap, = 0.
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Ao — log 2(D)

Dp 2./p

Theorem (Newman’s conjecture for fixed D, deg D = 3)

Let D € Z[T] be squarefree with deg D = 3. If Sato-Tate is true

for y? = D(T) or if the curve has complex multiplication, then
sup, Ap, = 0.

We can find a sequence of primes py, po, . .. such that

lim ap,(D) —

n—oo 2\/,07
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Things to look at?

@ Fix D of higher degree? (much harder)
@ Study the other versions of Newman’s conjecture.
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