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Introduction Previous work Function fields Degree 3 case

What is Newman’s conjecture about?

Newman’s conjecture is related to the Riemann zeta
function ζ(s).

It is an “almost counter-conjecture” to the Riemann
hypothesis!

We’ll look at what happens when we study Newman’s
conjecture in the function fields setting.
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Riemann zeta function

The Riemann zeta function is initially defined, for Re(s) > 1, by

ζ(s) =
∞∑

n=1

1
ns

 =
∏

p prime

1
1− p−s

 .

Riemann Hypothesis (1859)

If ζ(s) = 0, then either s is a “trivial zero” or Re(s) = 1
2 .
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Riemann zeta function

Define a new function Ξ(x) for x ∈ C as follows:

Let ξ(s) = 1
2s(s − 1)π−s/2Γ( s

2)ζ(s) (“completed zeta
function”).
Let Ξ(x) = ξ

(1
2 + ix

)

Facts:

If x ∈ R, then Ξ(x) ∈ R.
RH is equivalent to: all the zeros of Ξ(x) are real.
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Newman’s conjecture

Pólya’s idea (around 1920s):

Ξ(x)

1−−−−→ Φ(u)
2−−−−→ etu2

Φ(u)
3−−−−→ Ξt (x)

Step 0: Start with Ξ(x)

Step 1: Take the Fourier transform

Φ(u) =
1

2π

∫ ∞
0

Ξ(x) cos ux dx .

Step 2: Multiply by etu2

Step 3: Fourier inversion

Ξt (x) =

∫ ∞
0

etu2
Φ(u) cos ux du.
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Newman’s conjecture

In other words, study a family of functions given by

Ξt (x) =

∫ ∞
0

etu2
Φ(u) cos ux du,

with Ξ0(x) = Ξ(x).

De Bruijn and Newman showed there exists Λ ∈ R (called the
De Bruijn–Newman constant) which divides the real line in
half:

Λ
Ξt has a nonreal zero Ξt has only real zeros

t < Λ t ≥ Λ
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Introduction Previous work Function fields Degree 3 case

Newman’s conjecture

Relationship of Λ to RH

Λ
Ξt has a nonreal zero Ξt has only real zeros

t < Λ t ≥ Λ

RH ⇐⇒ Ξ0 has only real zeros ⇐⇒ Λ ≤ 0

Conjecture (Newman)
Λ ≥ 0

Newman: “The new conjecture is a quantitative version of the
dictum that the Riemann hypothesis, if true, is only barely so.”
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Newman’s conjecture

Ξt (x) =

∫ ∞
0

etu2
Φ(u) cos ux du

If we define F (x , t) = Ξt (x), then

∂F
∂t

+
∂2F
∂x2 = 0.

In other words F (x , t) satisfies the backwards heat equation.
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Example of backwards heat equation

An example of something that solves the backwards heat
equation:

ft (x) = 10e4t cos 2x − 2
√

5et cos x − 1

25
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Example of backwards heat equation

Movement of zeros

t = 0: (f0(x) = 10 cos 2x − 2
√

5 cos x − 1)

-1 1 2 3 4

-10

-5

5

10

Zeros:
x1, x2 = ± 0.532
x3, x4 = π±0.879

As we can see, all four zeros of the original function f are real.
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Example of backwards heat equation

Movement of zeros

t = − 0.05:

-1 1 2 3 4

-10

-5

5

10

Zeros:
x1, x2 = ± 0.473
x3, x4 = π±0.889

As we move time back, the peaks get smaller.
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Example of backwards heat equation

Movement of zeros

t = − 0.1:

-1 1 2 3 4

-10

-5

5

10

Zeros:
x1, x2 = ± 0.393
x3, x4 = π±0.900

As we move time back, the peaks get smaller.
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Example of backwards heat equation

Movement of zeros

t = − 0.15:

-1 1 2 3 4

-10

-5

5

10

Zeros:
x1, x2 = ± 0.269
x3, x4 = π±0.911

As we move time back, the peaks get smaller.
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Example of backwards heat equation

Movement of zeros

t ≈ − 0.188565066:

-1 1 2 3 4

-10

-5

5

10

Zeros:
x1, x2 = 0
x3, x4 = π±0.919

At t ≈ −0.189, the first two zeros coalesce!
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Example of backwards heat equation

Movement of zeros

t = − 0.25:

-1 1 2 3 4

-10

-5

5

10

Zeros:
x1, x2 = ± 0.152i
x3, x4 = π±0.933

If we keep moving time back, those zeros “pop off” the real line!
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Example of backwards heat equation

ft (x) at t0 ≈ −0.188565066:

-1 1 2 3 4

-10

-5

5

10

t0
ft has a nonreal zero ft has only real zeros

t < t0 t ≥ t0
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Results on Λ

(RH: Λ ≤ 0, Newman: Λ ≥ 0.)

Year Lower bound on Λ

1988 −50
1991 −5
1992 −0.39
1994 −4.4 · 10−6

2000 −2.7 · 10−9

2011 −1.2 · 10−11

Strategy of Csordas, Smith, Varga (1994): look for “unusually”
close pairs of zeros of Ξ(x).
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Generalizations of Newman’s conjecture

Stopple (2013) showed that the exact same setup can be done
for quadratic Dirichlet L-functions L(s, χD), where D is a
fundamental discriminant.

Generalized Newman Conjecture: ΛD ≥ 0 for all D.

Stopple investigated weaker conjecture: sup ΛD ≥ 0.

Stopple found for D = 175990483, we have −1.13 · 10−7 < ΛD.
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Generalizations of Newman’s conjecture

Possible to generalize these results even more?

For ζ and the L-functions Stopple looked at, the completed
function satisfies “nicest” symmetry possible:

ξ(s, χD) = ξ(1− s, χD)

Symmetries that are not good enough:

ξ(s, χ) = ξ(1− s, χ)

ξ(s, χ) = εξ(1− s, χ), where ε 6= 1.
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Generalizations of Newman’s conjecture

Looking for L-functions

Automorphic L-functions!

Function field quadratic L-functions!
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Introduction Previous work Function fields Degree 3 case

Overview of function fields

Let Fq denote the finite field with q elements.

We will need to
assume q is odd.

Let Fq[T ] denote ring of polynomials in T with coefficients in Fq.

Fq[T ] (in “function field” setting) behaves a lot like Z (in
“number field” setting).
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Introduction Previous work Function fields Degree 3 case

L-functions

As in number fields, can look at quadratic Dirichlet L-function
L(s, χD) for fundamental discriminants D ∈ Fq[T ].

Fact: ξ(s, χD) := qgsL(s, χD) satisfies the functional equation
ξ(s, χD) = ξ(1− s, χD). (Here, deg D − 1 = 2g.)

Bonus fact:

Theorem (RH for curves over a finite field)

If L(s, χD) = 0, then Re(s) = 1
2 .

50



Introduction Previous work Function fields Degree 3 case

L-functions

As in number fields, can look at quadratic Dirichlet L-function
L(s, χD) for fundamental discriminants D ∈ Fq[T ].

Fact: ξ(s, χD) := qgsL(s, χD) satisfies the functional equation
ξ(s, χD) = ξ(1− s, χD). (Here, deg D − 1 = 2g.)

Bonus fact:

Theorem (RH for curves over a finite field)

If L(s, χD) = 0, then Re(s) = 1
2 .

51



Introduction Previous work Function fields Degree 3 case

L-functions

As in number fields, can look at quadratic Dirichlet L-function
L(s, χD) for fundamental discriminants D ∈ Fq[T ].

Fact: ξ(s, χD) := qgsL(s, χD) satisfies the functional equation
ξ(s, χD) = ξ(1− s, χD). (Here, deg D − 1 = 2g.)

Bonus fact:

Theorem (RH for curves over a finite field)

If L(s, χD) = 0, then Re(s) = 1
2 .

52



Introduction Previous work Function fields Degree 3 case

Newman’s conjecture in function fields

Can define Ξ(x , χD) = ξ
(

1
2 + i x

log q , χD

)
.

It has a very nice form:

Ξ(x , χD) = Φ0 +

g∑
n=1

Φn · (einx + e−inx )

= Φ0 + 2
g∑

n=1

Φn · cos nx

for some Φ0, . . . ,Φg ∈ R (deg D − 1 = 2g).
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Newman’s conjecture in function fields

Ξ(x , χD) = Φ0 + 2
g∑

n=1

Φn · cos nx

Can still follow Pólya.

Ξ(x , χD)
1−−−−→ Φn

2−−−−→ etn2
Φn

3−−−−→ Ξt (x , χD)

Important! Here we take the Fourier transform on the circle. We
end up with

Ξt (x , χD) = Φ0 + 2
g∑

n=1

etn2
Φn · cos nx .
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Newman’s conjecture in function fields

Our example from the beginning:

ft (x) = 10e4t cos 2x − 2
√

5et cos x − 1.

-1 1 2 3 4

-10

-5

5

10

That is actually Ξt (x , χD) for

D = T 5 + T 4 + T 3 + 2T + 2 ∈ F5[T ].
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Newman’s conjecture in function fields

-1 1 2 3 4

-10

-5

5

10

So for D = T 5 + T 4 + T 3 + 2T + 2 ∈ F5[T ],

ΛD ≈ −0.188565066.

ΛD
Ξt has a nonreal zero Ξt has only real zeros

t < ΛD t ≥ ΛD
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Newman’s conjecture in function fields

Very important: We were able to calculate ΛD!!

In our example, ΛD ≈ −0.188565066 < 0. Is this surprising?
(Recall for ζ: RH: Λ ≤ 0. Newman: Λ ≥ 0.)

Don’t want to conjecture that ΛD ≥ 0 for all D.

Instead, do what Stopple did: consider an entire “family.”
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Instead, do what Stopple did: consider an entire “family.”
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Newman’s conjecture in function fields

Many different kinds of families:
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Newman’s conjecture in function fields

Many different kinds of families:

Conjecture (Newman for function fields, q version)
Keep q, the size of the finite field, fixed. Then

sup
D∈Fq [T ]

ΛD ≥ 0.
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Newman’s conjecture in function fields

Many different kinds of families:

Conjecture (Newman for function fields, degree version)
Keep d, the degree, fixed. Then

sup
deg D=d

ΛD ≥ 0.
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Newman’s conjecture in function fields

Many different kinds of families:

Conjecture (Newman for function fields, D version)
Fix D ∈ Z[T ] squarefree. For each prime p, let Dp be the
polynomial in Fp[T ] obtained by reducing D mod p. Then

sup
p

ΛDp ≥ 0.
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Fix D ∈ Z[T ] squarefree with deg D = 3.

For each odd prime p,
we can reduce D to Dp ∈ Fq[T ] and get the function

Ξt (x , χDp ) = −ap(D) + 2
√

p et cos x .

Note: ap(D) is called the trace of Frobenius of the elliptic
curve y2 = D(T ).

Theorem (Exact expression for ΛDp )

ΛDp = log
|ap(D)|

2
√

p
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ΛDp = log
|ap(D)|

2
√

p

Hasse showed in the 1930s that |ap(D)| < 2
√

p.

What is the distribution of

ap(D)

2
√

p
?
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ΛDp = log
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Pick any squarefree D ∈ Z[T ]. Then ap(D)/(2
√

p) will give you
one of two distributions:

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Easy to show if D has complex multiplication, then will have
distribution on left.
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Conjecture (Sato–Tate, 1960s)
Let D ∈ Z[T ] be squarefree and such that the elliptic curve
y2 = D(T ) does not have complex multiplication. Then as p
varies, the distribution of ap(D)

2
√

p is:

-1.0 -0.5 0.0 0.5 1.0

Clozel, Harris, Shepherd-Barron, and Taylor announced a proof
in 2006. (They only proved for special cases.)

81



Introduction Previous work Function fields Degree 3 case

Conjecture (Sato–Tate, 1960s)
Let D ∈ Z[T ] be squarefree and such that the elliptic curve
y2 = D(T ) does not have complex multiplication. Then as p
varies, the distribution of ap(D)

2
√

p is:

-1.0 -0.5 0.0 0.5 1.0

Clozel, Harris, Shepherd-Barron, and Taylor announced a proof
in 2006. (They only proved for special cases.)

82



Introduction Previous work Function fields Degree 3 case

ΛDp = log
|ap(D)|

2
√

p

Theorem (Newman’s conjecture for fixed D, deg D = 3)
Let D ∈ Z[T ] be squarefree with deg D = 3. If Sato-Tate is true
for y2 = D(T ) or if the curve has complex multiplication, then
supp ΛDp = 0.

Proof.
We can find a sequence of primes p1,p2, . . . such that

lim
n→∞

apn (D)

2
√

pn
→ 1.
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Things to look at?

Fix D of higher degree? (much harder)
Study the other versions of Newman’s conjecture.
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