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Background

Definition (Riemann Zeta Function)

For all s in the half-plane Re s > 1, let ζ(s) :=
∑∞

n=1 n−s.

1 ζ can be written as Euler product: ζ(s) =
∏

p(1− p−s)−1.
2 Exists a unique way to continue ζ to smooth function on C.

Continued function has a functional equation with symmetry at
Re s = 1/2:

π−
1−s

2 Γ
(

1− s
2

)
ζ(1− s) = π−

s
2 Γ
(

s
2

)
ζ(s)

where Γ(s) =
∫
R×

+
tse−t dt

t is the gamma function.
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1 L-series: L(s) =
∑∞

n=1 ann−s.

2 Euler product? Continuation to C? Functional equation?
3 Fix N ∈ N. A Dirichlet L-function of conductor N is an

L-function of the form

L(s, χ) =
∞∑

n=1

χ(n)n−s

where:
1 If n is not coprime to N, then χ(n) = 0.
2 Else, χ factors through a character (Z/NZ)× → C×.
3 N is the minimal positive integer such that this holds.
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1 We say L(s) satisfies a Riemann Hypothesis iff its zeroes in the
region Re s ∈ [0, 1] all live on the line Re s = 1/2.

2 Level density statistics tell us how the zeroes of L(s) are
distributed on the line.

Definition (n-Level Density)

Assume L(s) has RH. Write zeroes in form 1/2 + iγj. Let φ : Rn → C
be integrable. We define

Dn,L(φ) :=
∑

γj1 ,...,γjn
distinct

φ

(
γj1 ·

log c
2π

, . . . , γjn ·
log c
2π

)

where c is a normalization constant, the analytic conductor of L
(Normalizes so that average spacing is 1).
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Density Conjectures

The Katz-Sarnak Philosophy says:
1 L-functions fall into “families” F . Given N, elements with

conductor c � N have similar zero distributions. Form subfamily
FN .

2 Average zero distribution, as N →∞, has same limit as
distribution of eigenangles in some compact matrix group G, as
dimension→∞.

Conjecture that

Dn,FN (φ) := 1
#FN

∑
L∈FN

Dn,L(φ)

→
∫
Rn
φ(x1, . . . , xn)Wn,G(x1, . . . , xn) dx1 . . . dxn

where Wn,G depends only on n and G.
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Katz-Sarnak is Hard

1 For the Riemann zeta function and families of L-functions over
number fields, little is known.

2 Most results assume φ̂ exists and is supported within a fixed
interval, usually [−2,+2]. Want to remove this restriction!

3 Can say more about families over function fields.
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L-Functions over Fq[T]

1 Fix a prime power q. Define Fq[T] to be ring of polynomials in T
over the finite field Fq.

2 Fq[T] is a “cousin” of the integers Z.
3

Z ⊆ Q Fq[T] ⊆ Fq(T)
Positive n Monic f
Prime p Irreducible P
|n| = #Z/nZ |f | = #Fq[T]/fFq[T] = qdeg f

ζ(s) =
∑∞

n=1 n−s ζFq[T](s) =
∑′

f |f |−s

L(s, χ) =
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n=1 χ(n)n−s LFq[T](s, χ) =
∑′

f χ(f )|f |−s
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Properties of L-Functions over Fq[T]

1 ζFq[T](s) is very simple:

ζFq[T](s) = 1
1− q1−s

2 LFq[T](s, χ) is a polynomial in q−s, so has finitely many zeros.
3 Weil: Nontrivial zeros of LFq[T](s, χ) are

s = 1/2 + iγχ

with γχ ∈ R. Geometric RH has been proven! (Rosen, Number
Theory in Function Fields, p. 41)
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Level Density over Fq[T]

1 LFq[T](s, χ) is vertically periodic with period Tq = 2π/ log q.

2 Test function φ must be periodic. If absolutely integrable with
bounded variation, then can write

φ(s) =
∑
n∈Z

aφ(n)e2πins

after normalizing period to 1.
3 Log-conductor is number of zeroes of LFq[T](s, χ). Do not

include conductor in normalization of spacings. Weight zeroes to
have total mass 1.
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Context

Let Q ∈ Fq[T] be irreducible of degree d. Let FQ be family of
Dirichlet L-functions over Fq[T] of conductor Q.

1 In the limit q→∞ with d fixed, Sato-Tate equidistribution for
Fq(T) implies that this family has unitary statistics

D1,FQ(φ) := 1
(d − 1)#FQ

∑
χ∈FQ

∑
γχ

φ (γχ/Tq)→ aφ(0)

2 The limit d →∞ with q fixed is less clear. Xiong studied
families of degree-d curves with fixed Galois group over P1(Fq).

3 In studying FQ, we extend Katz-Sarnak to a new kind of
geometric family.
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1-Level Density

Theorem (A-M-P-T)

Let Q ∈ Fq[T] be irreducible of degree d ≥ 2. Let FQ be the family of
Dirichlet L-functions of conductor Q. Let φ(s) =

∑
n∈Z aφ(n)e2πins be

a test function such that, for some ε > 0,

aφ(n)� 1
n2+εqn/2 (2.1)

for all n large enough. Then

D1,FQ(φ) = aφ(0)− 1
(d − 1)(q− 1)

∑
n∈Z

aφ(n)
q|n|/2 + O

(
1

εd1+εqd

)
(2.2)



Proof sketch.
1 Start with φ0(s) = φ(s/Tq)/(d − 1) and 1/2 < c < 1:

FQ∑∑
γχ,j

φ0(γχ,j)

=
FQ∑ 1

2πi

(∫ c+ πi
log q

c− πi
log q

−
∫ 1−c+ πi

log q

1−c− πi
log q

)
L′

L
(s, χ)φ0(−i(s− 1/2)) ds

2 Replace the integral on the line 1− c using the functional
equation of L(s, χ).

3 Key idea: φ has Fourier series rather than Fourier transform.
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Proof sketch, cont.
1 Pulling out Fourier coefficients of φ, we get a geometric

“Explicit Formula.” Estimate

∞∑
n=0

∑
deg f =n

f≡1 (mod Q)

′ Λ(f )aφ(n)
qn/2

Think of Λ(f ) as “indicator on irreducible powers.”

2 Tempted to use Primes in Arithmetic Progressions Theorem.
3 Key idea: Replace with seemingly cruder bound that does not

grow exponentially in d.
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Montgomery’s Conjecture for Fq[T]

To remove restriction on aφ(n):

Conjecture (Montgomery-A-M-P-T)

Let Q ∈ Fq[T] be irreducible of degree d ≥ 2. Let s = 1/2 + iγχ run
through zeros of L(s, χ) ∈ FQ. Then there exists δ > 0 such that∑

χ 6=χ0

∑
γχ

qinγχ � (d − 1)(#FQ)1−δ

for all n.



Using Erdős-Turán, can determine conjectural error term:

Proposition (A-M-P-T)

Let Q ∈ Fq[T] be irreducible of degree d ≥ 2. Let s = 1/2 + iγχ run
through zeros of L(s, χ) ∈ FQ. Suppose that for some 0 ≤ ε1, ε2 < 1,∑

χ 6=χ0

∑
γχ

qinγχ,j � (d − 1)1−ε1#F1−ε2
Q

holds for all n. Then

D1,FQ(φ) = aφ(0) + O
(

ε2d
dε1(#FQ)ε2

)
for all test functions φ(s) =

∑
n∈Z aφ(n)e2πins.



2-Level Density

Theorem (A-M-P-T)

Let Q ∈ Fq[T] be irreducible of degree d ≥ 2. Let
φ(s1, s2) =

∑
n∈Z2 aφ(n1, n2)e2πin·s, such that for some ε > 0,

aφ(n1, n2)� 1
(n1n2)2+εq(n1+n2)/2

for all n large enough. Then

D2,FQ(φ) := 1
(d − 1)2#FQ

∑
χ∈FQ

∑
γχ,1 6=γχ,2

φ

(
γχ,1
Tq

,
γχ,2
Tq

)

→ aφ(0, 0)− aφdiag(0)

as d →∞, where φdiag(s) = φ(s, s). The rate of convergence can be
made explicit.



Future Directions

1 Not too interesting to replace Fq(T), the rational function field,
with a finite extension.

2 Andrade is developing similar results for the hyperelliptic
ensemble, conjectured to have symplectic statistics.
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Ratios Conjecture

1 Tool for handling n-level density is the Ratios Conjecture.
Estimate ∑

L∈F

n∏
j=1

L(1/2 + αj)
L(1/2 + γj)

using approximate functional equation and “illegal” averaging
heuristics.

2 To compute n-level density from Ratios Conjecture:
1 Differentiate estimate w.r.t. α1, . . . , αn and set γj = αj. Error is

still small.
2 Again, contour integration!
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Conrey-Snaith and Mason stated Ratios for number-field families:
1 Shifts of ζ(s).
2 Quadratic Dirichlet L-functions L(s, χD) with D ≤ N.
3 Quadratic Dirichlet twists of fixed L(s,E) of even sign.

Conjecture (A-M-P-T)

Let Q ∈ Fq[T] be irreducible of degree ≥ 2. Choose αj, βj, γj, δj in the
region {s : |Re s| < 1/4 and | Im s| � |Q|}. Then

∑
χ 6=χ0

n∏
j=1

L(1/2 + αj, χ)L(1/2 + βj, χ)
L(1/2 + γj, χ)L(1/2 + δj, χ)

= #FQ ·
n∏

j,k=1

(1− q−(αj+δk))(1− q−(βj+γk))
(1− q−(αj+βk))(1− q−(γj+δk))

AFQ + O(|Q|1/2+ε)

for all ε > 0, where AFQ = AFQ(α, β, γ, δ) ≈ 1 is an Euler product.
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