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Summary

Zeckendorf’s Theorem

Our research is inspired by an elegant theorem of Zeckendorf.

Write the Fibonacci numbers as F1 =1, Fo =2, F, = Fo—1+ Fh—s
for n > 2. All natural numbers can be uniquely written as a sum of
non-consecutive Fibonacci numbers.

Proof of existence uses the greedy algorithm and uniqueness
follows by induction.

2013 =1597 + 377 +34+5=Fie + Fi1s+ Fgs + F4
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Summary

Previous research

@ The number of summands in the Zeckendorf decomposition of
integers in [Fp, Foi1) converges to the Gaussian distribution
as n — oo.

@ This result extends to non-negative recurrence relations of the
form

Hn+1 = C1Hn + C2anl + -+ CLHn—L+1>

where c1, ¢, ..., ¢, are nonnegative integers and L, ¢1, ¢
are positive.
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Going the other way

Previous work: linear recurrence sequence — notion of legality.

Our work: notion of legality — linear recurrence sequence.
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f-Decompositions

@ We focused on constructing sequences from notions of legal
decomposition.
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f-Decompositions

@ We focused on constructing sequences from notions of legal
decomposition.

@ Many notions of “legal” decompositions can be encoded as
f-decompositions.

Definition

Let f: Ng — Ng. A sum x = Zf'(:o ap, of terms of {a,} is an
f-decomposition of x using {a,} if for every a,,, the previous f(n;)
terms are not in the sum.
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Definition and Examples

Definition

Let f: Ng — Ng. A sum x = Y% a,, of terms of {a,} is an
f-decomposition of x using {an} if for every ap,, the previous f(n;)
terms are not in the sum.

Example (Base b representation)

Base b representation can be interpreted as f-decompositions. For
example, consider base 5:

{an} =1,2,3,4,5,10, 15, 20, 25, 50, 75, 100, . . .

Here, a, = 5a,_4.
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Definition

Let f: Ng — Ng. A sum x = Z,I'(:o ap, of terms of {a,} is an
f-decomposition of x using {a,} if for every a,,, the previous f(n;)
terms are not in the sum.

Example (Zeckendorf Decompositions)

Consecutive terms may not be chosen: this is equivalent to saying
f(n) =1 for all n € N.

We construct a sequence by appending the smallest number that
cannot be decomposed using previous terms.

{Fn}:
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Definition

Let f: Ng — Ng. A sum x = Z,I'(:o ap, of terms of {a,} is an
f-decomposition of x using {a,} if for every a,,, the previous f(n;)
terms are not in the sum.

Example (Zeckendorf Decompositions)

Consecutive terms may not be chosen: this is equivalent to saying
f(n) =1 for all n € N.

We construct a sequence by appending the smallest number that
cannot be decomposed using previous terms.

{Fn}:17
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Definition

Let f: Ng — Ng. A sum x = Z,I'(:o ap, of terms of {a,} is an
f-decomposition of x using {a,} if for every a,,, the previous f(n;)
terms are not in the sum.

Example (Zeckendorf Decompositions)

Consecutive terms may not be chosen: this is equivalent to saying
f(n) =1 for all n € N.

We construct a sequence by appending the smallest number that
cannot be decomposed using previous terms.

{Fn} = 1727
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Definition and Examples

Definition

Let f: Ng — Ng. A sum x = Z,I'(:o ap, of terms of {a,} is an
f-decomposition of x using {a,} if for every a,,, the previous f(n;)
terms are not in the sum.

Example (Zeckendorf Decompositions)

Consecutive terms may not be chosen: this is equivalent to saying
f(n) =1 for all n € N.

We construct a sequence by appending the smallest number that
cannot be decomposed using previous terms.

{Fn} = 172737
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Definition

Let f: Ng — Ng. A sum x = Z,I'(:o ap, of terms of {a,} is an
f-decomposition of x using {a,} if for every a,,, the previous f(n;)
terms are not in the sum.

Example (Zeckendorf Decompositions)

Consecutive terms may not be chosen: this is equivalent to saying
f(n) =1 for all n € N.

We construct a sequence by appending the smallest number that
cannot be decomposed using previous terms.

{Fn} = 17273757
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Definition and Examples

Definition

Let f: Ng — Ng. A sum x = Z,I'(:o ap, of terms of {a,} is an
f-decomposition of x using {a,} if for every a,,, the previous f(n;)
terms are not in the sum.

Example (Zeckendorf Decompositions)

Consecutive terms may not be chosen: this is equivalent to saying
f(n) =1 for all n € N.

We construct a sequence by appending the smallest number that
cannot be decomposed using previous terms.

{Fn} =1,2,3,5,8,13,21,34,...
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Analogue to Zeckendorf’s Theorem

For any f : Ng — Ny, there exists a sequence of natural numbers
{an}22,, such that every positive integer has a unique
f-decomposition using {an}.
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For any f : Ng — Ny, there exists a sequence of natural numbers
{an}22,, such that every positive integer has a unique
f-decomposition using {an}.

Construction of {a,}.

® Let ap =1and a, = a,-1 + ap_1_f(p—1) (assume a, =1
when n < 0). The proof of existence is by induction.
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when n < 0). The proof of existence is by induction.
o Consider any x € [am, am+1) = [am, 3m + am—f(m))- Clearly,
X —am€E [0, am_f(m)).
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Analogue to Zeckendorf’s Theorem

For any f : Ng — Ny, there exists a sequence of natural numbers
{an}22,, such that every positive integer has a unique
f-decomposition using {an}.

Construction of {a,}

® Let ap =1and a, = a,-1 + ap_1_f(p—1) (assume a, =1
when n < 0). The proof of existence is by induction.

o Consider any x € [am, am+1) = [am, 3m + am—f(m))- Clearly,
X —am € [0, am_f(m)).

@ By the induction hypothesis, x — ap, has an f-decomposition
in {a,}7 (M1,
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If f : Ng — Ny is periodic, then the corresponding {a,} satisfies a
linear recurrence relation.
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Linear Recurrence

If f : Ng — Ny is periodic, then the corresponding {a,} satisfies a
linear recurrence relation.

@ Using linear algebra, we can show that the subsequence
{ain} = ai, ai1p, ait2b, Ait3b, - . . Satisfies some linear
recurrence relation for all / € {0,1,2,...,b—1}.
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Linear Recurrence

If f : Ng — Ny is periodic, then the corresponding {a,} satisfies a
linear recurrence relation.

@ Using linear algebra, we can show that the subsequence
{ain} = ai, ai1p, ait2b, Ait3b, - . . Satisfies some linear
recurrence relation for all / € {0,1,2,...,b—1}.

@ By finding a common recurrence relation we can show that
the interleaved sequence satisfies a linearly recurrent sequence.

DT
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Linear Recurrence

We can combine two linear recurrence relations by finding the
recurrence relation corresponding to the product of their respective
characteristic polynomials.
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Linear Recurrence

We can combine two linear recurrence relations by finding the
recurrence relation corresponding to the product of their respective
characteristic polynomials.

Example

o {F,} =1,2,3,5,8,13,21,34,55,89, 144,233, ...
satisfies F, = F,_1 + Fp—o.
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Linear Recurrence

We can combine two linear recurrence relations by finding the
recurrence relation corresponding to the product of their respective
characteristic polynomials.

Example
o {F,} =1,2,3,5,8,13,21,34,55,89, 144,233, ...
satisfies F, = F,_1 + Fp—o.

o {a,} =1,4,15,56,209,780,2911,10864, 40545, . ..
satisfies a, = 4a,—1 — an—o.
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Linear Recurrence

We can combine two linear recurrence relations by finding the

recurrence relation corresponding to the product of their respective
characteristic polynomials.

Example
o {F,} =1,2,3,5,8,13,21,34,55,89, 144,233, ...
satisfies F, = F,_1 + Fp—o.

o {a,} =1,4,15,56,209,780,2911,10864, 40545, . ..
satisfies a, = 4a,—1 — an—o.

o pr(x)pa(x) = (x?—x—1)(x>—4x+1) = x*—5x3+4x%+3x—1.
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Linear Recurrence

We can combine two linear recurrence relations by finding the
recurrence relation corresponding to the product of their respective
characteristic polynomials.

Example
o {F,} =1,2,3,5,8,13,21,34,55,89, 144,233, ...
satisfies F, = F,_1 + Fp—o.
o {a,} =1,4,15,56,209,780,2911,10864, 40545, . ..
satisfies a, = 4a,—1 — an—o.
o pr(x)pa(x) = (x?—x—1)(x>—4x+1) = x*—5x3+4x%+3x—1.
@ Both sequences satisfy s, = 5s,_1 — 4s,_2 — 3s,_3 + Sp_4.

(Sn — Sp—1 — 5n72) - 4(5n71 — Sp—2 — 5n73)

+ (5n72 — Sp—3 — 5n74) =0

<
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Motivation

Previous research only handles linear recurrence relations with
nonnegative coefficients.
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Bins

Motivation

Previous research only handles linear recurrence relations with
nonnegative coefficients.

Do notions of legal decomposition exist for other sequences?

Yes! Some functions f yield sequences {a,} that can only be
described by linear recurrence relations with at least one negative
coefficient.

OO



3-Bin Decompositions
0®00

Bins

Definition of 3-Bin Decomposition

Consider the periodic function {f(n)} =1,1,2,1,1,2,....
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Bins

Definition of 3-Bin Decomposition

Consider the periodic function {f(n)} =1,1,2,1,1,2,....
We have “bins” of width 3, and a legal decomposition contains no
consecutive terms and at most one term from each bin.

{an} =1,2,3,4,7,11,15,26,41, 56,97, 153,209, 362,571, . . .

T
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Bins

Definition of 3-Bin Decomposition

Consider the periodic function {f(n)} =1,1,2,1,1,2,....
We have “bins” of width 3, and a legal decomposition contains no
consecutive terms and at most one term from each bin.

{an} =1,2,3,4,7,11,15,26,41, 56,97, 153,209, 362,571, . . .

We can show that no linear recurrence relation describing this
sequence has all nonnegative coefficients, and that the shortest
such relation is a, = 4a,_3 — a,_e. Thus, these decompositions are
out of the scope of previous work.
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Bins

Gaussian Behavior of the Number of Summands

Consider the number of summands for an integer randomly chosen
from the interval [0, asp). As n — oo, what can we say about the
distribution?
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Bins

Gaussian Behavior of the Number of Summands

Consider the number of summands for an integer randomly chosen
from the interval [0, asp). As n — oo, what can we say about the
distribution?

For positive linear recurrence sequences, previous work has shown
that the distribution approaches a Gaussian. Can we extend this to
our new sequences?

YA
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Bins

Gaussian Behavior of the Number of Summands

Pnk
150000 |- °
100000 - :
50000 - .
" L Y L - L L4 K
2 4 6 8 10
First 10 bins
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Bins

Gaussian Behavior of the Number of Summands

Pnk
6x10%

5x10° F

4x101}
3x101°F .
2><101°}

1x101F .

First 20 bins
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Bins

Gaussian Behavior of the Number of Summands

Pnk
1x 107 . :
8x 107 - °
6x 107 - .
4x107
2x1§1} . .
- - & 4 - - - Y Ll \. L L L | L L \. LY Y
10 20 30 40
First 40 bins
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Bins

Gaussian Behavior of the Number of Summands

5><10“4f—
4><1044f—
3><1044; .
2><1044; . .

1x 10| .

20 40 60 80

First 80 bins
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Proof of Gaussianity

Number of summands

Let pj k be the number of integers whose decomposition uses k
summands all from the first n bins.

Pnk = Pn—1,k +3Pn—1,k—1 — Pn—2,k—2

We count the number of ways to choose the summands.

Q0
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@ Either no summand is chosen from the first bin, or...
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Number of summands

Let pj k be the number of integers whose decomposition uses k
summands all from the first n bins.

Pnk = Pn—1,k +3Pn—1,k—1 — Pn—2,k—2

We count the number of ways to choose the summands.

@ Either no summand is chosen from the first bin, or...

@ One of the three summands is chosen from the first bin.
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Proof of Gaussianity

Number of summands

Let pj k be the number of integers whose decomposition uses k
summands all from the first n bins.

Pnk = Pn—1,k +3Pn—1,k—1 — Pn—2,k—2

We count the number of ways to choose the summands.

@ Either no summand is chosen from the first bin, or...
@ One of the three summands is chosen from the first bin.

@ Can't choose both the last element of the first bin and the
first element of the second bin.

A
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Proof of Gaussianity

Generating Function

@ Begin with

Pnk = Pn—1,k +3Pn—1,k—1 — Pn—2,k—2
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Generating Function

@ Begin with
Pnk = Pn—1,k +3Pn—1,k—1 — Pn—2,k—2
o Let F(x,y) = X, k>0 Pnkx"y*. We can write

F(x,y) = xF(x,y) + 3xyF(x,y) — x*y*F(x,y) + 1
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Proof of Gaussianity

Generating Function

@ Begin with
Pnk = Pn—1,k +3Pn—1,k—1 — Pn—2,k—2
o Let F(x,y) =2, k>0 pnikx"y*. We can write
F(x,y) = xF(x,y) + 3xyF(x,y) = x*y*F(x,y) + 1
@ Simplifying gives us

1

F =
(x:¥) 1 —x —3xy + x2y?




3-Bin Decompositions
0®000

Proof of Gaussianity

Generating Function

@ Begin with
Pnk = Pn—1,k +3Pn—1,k—1 — Pn—2,k—2
o Let F(x,y) =2, k>0 pnikx"y*. We can write
F(x,y) = xF(x,y) + 3xyF(x,y) = x*y*F(x,y) + 1
@ Simplifying gives us

1
1—x—3xy + x%y?

F(x,y)=
o Define gs(y) = > >0 pnky” to isolate x" terms. Using partial
fractions and Taylor series,

) (3y+1+\/ 5y2+6y+1)n+1 7(3y+17\/5y2+6y+1)n+1
y =

2n+14/5y2 16y +1

an(

-
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Proof of Gaussianity

Mean and Variance

e We can use gn(y) = > >0 pnky" to compute mean and
variance of the random variable X, the number of summands
for an integer randomly chosen from [0, a3,).
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Mean and Variance

e We can use gn(y) = > >0 pnky" to compute mean and
variance of the random variable X, the number of summands
for an integer randomly chosen from [0, a3,).

@ The mean is

(1 8+ 3v12
Mn:g"(): +3V12 n+ 0(1)

g,,(l) \/5(4—1- \/ﬁ)
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Proof of Gaussianity

Mean and Variance

e We can use gn(y) = > >0 pnky" to compute mean and
variance of the random variable X, the number of summands
for an integer randomly chosen from [0, a3,).

@ The mean is

(1 8+ 3v12
Mn:g"(): +3V12 n+ 0(1)

g,,(l) \/5(4—1- \/ﬁ)

@ The variance is

o ben(v)]
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Proof of Gaussianity

Moment Generating Function

o If we normalize X, to Y,, = (X, — ptn)/0opn, the moment
generating function of Y, is

(k=pn)
on t/on)a—thn/on
My, (t) = E(etn) = 3 Pk® _ &nleT™)e
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Proof of Gaussianity

Moment Generating Function

o If we normalize X, to Y,, = (X, — ptn)/0opn, the moment
generating function of Y, is

(k=pn)
on t/on)a—thn/on
My, (t) = E(etn) = 3 Pk® _ &nleT™)e

@ After multiple Taylor Series expansions, we get
£2
log(My, (1) = = + o(1)

as n — Q.
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Proof of Gaussianity

Moment Generating Function

o If we normalize X, to Y,, = (X, — ptn)/0opn, the moment
generating function of Y, is

(k=pn)
on t/on)a—thn/on
My, (t) = E(etn) = 3 Pk® _ &nleT™)e

@ After multiple Taylor Series expansions, we get

log(My, (t)) = = + o(1)

as n — Q.

@ Hence, the distribution of Y, converges to the standard
normal distribution.

TS
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Proof of Gaussianity

Generalizations

This method can easily be generalized for large classes of
f-decompositions.

We have proved Gaussian behavior in the following cases:
@ every bin is of width b for any b > 3

@ bins have alternating widths x and y
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Future Directions

@ Does Gaussian behavior hold for all f-decompositions if f is
periodic?

@ Can we find interesting notions of legal decomposition that
are more general than f-decompositions?
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