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Summary

Zeckendorf’s Theorem

Our research is inspired by an elegant theorem of Zeckendorf.

Theorem
Write the Fibonacci numbers as F1 = 1, F2 = 2, Fn = Fn−1 + Fn−2
for n > 2. All natural numbers can be uniquely written as a sum of
non-consecutive Fibonacci numbers.

Proof of existence uses the greedy algorithm and uniqueness
follows by induction.

Example

2013 = 1597 + 377 + 34 + 5 = F16 + F13 + F8 + F4
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Summary

Previous research

The number of summands in the Zeckendorf decomposition of
integers in [Fn,Fn+1) converges to the Gaussian distribution
as n→∞.

This result extends to non-negative recurrence relations of the
form

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn−L+1,

where c1, c2, . . . , cL are nonnegative integers and L, c1, cL
are positive.
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Summary

Going the other way

Previous work: linear recurrence sequence → notion of legality.

Our work: notion of legality → linear recurrence sequence.
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Definition and Examples

f -Decompositions

We focused on constructing sequences from notions of legal
decomposition.

Many notions of “legal” decompositions can be encoded as
f -decompositions.

Definition
Let f : N0 → N0. A sum x =

∑k
i=0 ani of terms of {an} is an

f -decomposition of x using {an} if for every ani , the previous f (ni)
terms are not in the sum.
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Definition and Examples

Definition
Let f : N0 → N0. A sum x =

∑k
i=0 ani of terms of {an} is an

f -decomposition of x using {an} if for every ani , the previous f (ni)
terms are not in the sum.

Example (Base b representation)
Base b representation can be interpreted as f -decompositions. For
example, consider base 5:

{an} = 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, 100, . . .

Here, an = 5an−4.
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Definition and Examples

Definition
Let f : N0 → N0. A sum x =

∑k
i=0 ani of terms of {an} is an

f -decomposition of x using {an} if for every ani , the previous f (ni)
terms are not in the sum.

Example (Zeckendorf Decompositions)
Consecutive terms may not be chosen: this is equivalent to saying
f (n) = 1 for all n ∈ N.
We construct a sequence by appending the smallest number that
cannot be decomposed using previous terms.

{Fn} =

1, 2, 3, 5, 8, 13, 21, 34, . . .
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Analogue to Zeckendorf’s Theorem

Theorem
For any f : N0 → N0, there exists a sequence of natural numbers
{an}∞n=0 such that every positive integer has a unique
f -decomposition using {an}.

Construction of {an}.
Let a0 = 1 and an = an−1 + an−1−f (n−1) (assume an = 1
when n < 0). The proof of existence is by induction.
Consider any x ∈ [am, am+1) = [am, am + am−f (m)). Clearly,
x − am ∈ [0, am−f (m)).
By the induction hypothesis, x − am has an f -decomposition
in {an}m−f (m)−1

n=0 .
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Linear Recurrence

Theorem
If f : N0 → N0 is periodic, then the corresponding {an} satisfies a
linear recurrence relation.

Using linear algebra, we can show that the subsequence
{ai ,n} = ai , ai+b, ai+2b, ai+3b, . . . satisfies some linear
recurrence relation for all i ∈ {0, 1, 2, . . . , b − 1}.
By finding a common recurrence relation we can show that
the interleaved sequence satisfies a linearly recurrent sequence.
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Linear Recurrence

We can combine two linear recurrence relations by finding the
recurrence relation corresponding to the product of their respective
characteristic polynomials.

Example
{Fn} = 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .
satisfies Fn = Fn−1 + Fn−2.
{an} = 1, 4, 15, 56, 209, 780, 2911, 10864, 40545, . . .
satisfies an = 4an−1 − an−2.
pF (x)pa(x) = (x2−x−1)(x2−4x+1) = x4−5x3+4x2+3x−1.
Both sequences satisfy sn = 5sn−1 − 4sn−2 − 3sn−3 + sn−4.

(sn − sn−1 − sn−2)− 4(sn−1 − sn−2 − sn−3)

+ (sn−2 − sn−3 − sn−4) = 0
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Bins

Motivation

Previous research only handles linear recurrence relations with
nonnegative coefficients.

Question
Do notions of legal decomposition exist for other sequences?

Answer
Yes! Some functions f yield sequences {an} that can only be
described by linear recurrence relations with at least one negative
coefficient.
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Bins

Definition of 3-Bin Decomposition

Consider the periodic function {f (n)} = 1, 1, 2, 1, 1, 2, . . . .

We have “bins” of width 3, and a legal decomposition contains no
consecutive terms and at most one term from each bin.

{an} = 1, 2, 3, 4, 7, 11, 15, 26, 41, 56, 97, 153, 209, 362, 571, . . .

We can show that no linear recurrence relation describing this
sequence has all nonnegative coefficients, and that the shortest
such relation is an = 4an−3 − an−6. Thus, these decompositions are
out of the scope of previous work.
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Bins

Gaussian Behavior of the Number of Summands

Question
Consider the number of summands for an integer randomly chosen
from the interval [0, a3n). As n→∞, what can we say about the
distribution?

For positive linear recurrence sequences, previous work has shown
that the distribution approaches a Gaussian. Can we extend this to
our new sequences?
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Bins

Gaussian Behavior of the Number of Summands

2 4 6 8 10
k

50 000

100 000

150 000

pn,k

First 10 bins
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Bins

Gaussian Behavior of the Number of Summands

5 10 15 20
k

1 ´ 1010

2 ´ 1010

3 ´ 1010

4 ´ 1010

5 ´ 1010

6 ´ 1010

pn,k

First 20 bins
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Bins

Gaussian Behavior of the Number of Summands

10 20 30 40
k

2 ´ 1021

4 ´ 1021

6 ´ 1021

8 ´ 1021

1 ´ 1022

pn,k

First 40 bins
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Bins

Gaussian Behavior of the Number of Summands

20 40 60 80
k

1 ´ 1044

2 ´ 1044

3 ´ 1044

4 ´ 1044

5 ´ 1044

6 ´ 1044

pn,k

First 80 bins
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Proof of Gaussianity

Number of summands

Let pn,k be the number of integers whose decomposition uses k
summands all from the first n bins.
Claim
pn,k = pn−1,k + 3pn−1,k−1 − pn−2,k−2

We count the number of ways to choose the summands.

Either no summand is chosen from the first bin, or...
One of the three summands is chosen from the first bin.
Can’t choose both the last element of the first bin and the
first element of the second bin.
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Proof of Gaussianity

Generating Function

Begin with

pn,k = pn−1,k + 3pn−1,k−1 − pn−2,k−2

Let F (x , y) =
∑

n,k≥0 pn,kxnyk . We can write

F (x , y) = xF (x , y) + 3xyF (x , y)− x2y2F (x , y) + 1

Simplifying gives us

F (x , y) = 1
1− x − 3xy + x2y2

Define gn(y) =
∑

k≥0 pn,kyk to isolate xn terms. Using partial
fractions and Taylor series,

gn(y)=
(3y+1+

√
5y2+6y+1)

n+1
−(3y+1−

√
5y2+6y+1)

n+1

2n+1
√

5y2+6y+1
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Proof of Gaussianity

Mean and Variance

We can use gn(y) =
∑

k≥0 pn,kyk to compute mean and
variance of the random variable Xn, the number of summands
for an integer randomly chosen from [0, a3n).

The mean is

µn =
g ′n(1)
gn(1)

=
8 + 3

√
12

√
12
(

4 +
√

12
)n + O(1)

The variance is

σ2
n =

d
dy [yg ′n(y)]

∣∣∣
y=1

g(1) − µ2 =

√
3

9 n + O(1)
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Proof of Gaussianity
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Proof of Gaussianity

Moment Generating Function

If we normalize Xn to Yn = (Xn − µn)/σn, the moment
generating function of Yn is

MYn(t) = E(etYn) =
∑
k≥0

pn,ket (k−µn)
σn∑

k≥0 pn,k
=

gn(et/σn)e−tµn/σn

gn(1)

After multiple Taylor Series expansions, we get

log(MYn(t)) =
t2

2 + o(1)

as n→∞.
Hence, the distribution of Yn converges to the standard
normal distribution.
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Proof of Gaussianity

Generalizations

This method can easily be generalized for large classes of
f -decompositions.

We have proved Gaussian behavior in the following cases:
every bin is of width b for any b ≥ 3
bins have alternating widths x and y
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Future Directions

Does Gaussian behavior hold for all f -decompositions if f is
periodic?
Can we find interesting notions of legal decomposition that
are more general than f -decompositions?
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