
A Benford Walk Down Wall Street
Xixi Edelsbrunner, Karen Huan, Blake Mackall, Jasmine Powell, Madeleine Weinstein
Advisor: Steven J. Miller
SMALL 2014, Williams College

Intro and Definitions

Benford’s Law
In many naturally arising data sets, the fre-
quency of first digits follows a distribution
known as Benford’s Law. In such sets, a
first digit of 1 occurs about 30% of the time,
whereas a first digit of 9 occurs only 4.5% of
the time. Some examples of systems follow-
ing Benford’s Law are:

• Fibonacci numbers

• Lengths of rivers

• Death rates

• Mathematical constants

Formal definition
Weak: A system is Benford base B if
the probability of seeing a first digit d is
logB

d
d+1 .

Strong: A system is Benford base B if the
probability of seeing a significand at most s
is logB s.

Background

Speculative Stock Prices
Burton Gordon Malkiel’s random walk hy-
pothesis of markets predicts that stock mar-
ket prices follow a random walk and are
thus distributed according to a Gaussian.
In The Variation of Certain Speculative Prices,
Benoit Mandelbrot observed that fluctua-
tions in price data were too variable to be
modeled with a normal distribution and in-
stead are better modeled by stable distri-
butions, including the Cauchy and Lévy
distributions. Many of these distributions
have infinite variance, which Mandelbrot
believed the stock prices exhibited.
First digit frequencies from Cauchy and
Lévy distributions are almost Benford.

The Lévy Distribution
The Lévy P.D.F. centered at 0 is given by

p(x;µ, c) =

√
c

2π

ec/(2x)

x3/2

where c is a scale parameter. Using methods
described in "Approach," we found that the
fluctuation from Benford (which we mea-
sure as the maximum difference between
the derivative and 1) for a given B is

EB,c ≤ 2
√
2

e−π
2/ logB

1− e−π2/ logB

, which for B = 10 is ≈ 0.039449143.

Approach
Let p(x) be a probability density function for
a random variable X . An equivalent defini-
tion of X being Benford base B is if its log-
arithm base B is equidistributed modulo 1,
or if

∞∑
n=−∞

∫ n+b

n

p(By)By logB dy = b.

Taking the derivative with respect to b of
both sides, we looked at the derivative of
the logarithm base B modulo 1, and we
quantified how far away it is from 1 (If
the derivative is 1, we know that the loga-
rithm base B modulo 1 is equidistributed,
and the system is Benford). For the Cauchy
and Lévy distributions, we were able to take
the Fourier transform of the P.D.F. and use
Poisson’s Summation to evaluate the infi-
nite sum and quantify how close it is to 1.
Poisson’s Summation states that, if f̂(y) is
the Fourier transform of f(x), then

∞∑
n=−∞

f̂(n) =
∞∑

k=−∞

f(k).

These forms of the derivative decay very
rapidly as n increases. And, as the original
function is a probability density function,
the Fourier transform evaluated at n = 0 is
equal to 1. Thus, this form is better suited to
quantify and bound how close the deriva-
tive is to 1.

The Cauchy Distribution
The Standard Cauchy Probability Density
function is given by

p (x) =
1

π (1 + x2)
.

We consider the more general function

fa,r (x) =
1

1 +
(
x
a

)r , 0 < a <∞, 1 < r <∞

which we can turn into a probability density
function with the right constant. By trans-
forming this P.D.F. and using Possoin sum-
mation, we find that the derivative is very
close to 1, where the maximum fluctuation
given a base B and fixing a and r is

EB,a,r = sin
(π
r

) ∑
n∈Z,n6=0

csc
(π
r
(1− 2πin)

)
In the special case of the Cauchy Distribu-
tion base 10, (a = 1, r = 2, B = 10), we
find that the fluctuation from 1 is less than
0.05578. So the Cauchy Distribution is very
close to Benford! Furthermore, we see that
in the limit as r approaches 1, our P.D.F. be-
comes arbitrily close to Benford.

Digit Observed Predicted
Cauchy % Benford %

1 30.908 30.103
2 17.130 17.609
3 11.819 12.494
4 9.340 9.691
5 7.924 7.918
6 6.857 6.695
7 6.065 5.799
8 5.252 5.115
9 4.705 4.576
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