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The Zeckendorf Decomposition

Definition (Zeckendorf Decomposition)
A Zeckendorf Decomposition is a way of writing a
natural number as a sum of distinct Fibonacci numbers
which are not adjacent.

Fibonacci numbers for reference:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584

Example: 108 = 89 + 19 = 89 + 13 + 6 =
18 + 13 + 5 + 1

Example: 2018 = 1597 + 421 = 1597 + 377 + 44 =
1597 + 377 + 34 + 10 = 1597 + 377 + 34 + 8 + 2
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Zeckendorf’s Theorem

Theorem (Zeckendorf’s Theorem)
Every natural number has a unique Zeckendorf
decomposition.

Sketch of Proof
Greedy Algorithm

To decompose n, find the largest Fk ≤ n
Then n − Fk < Fk−1
Repeat

The largest number we can decompose using
{F1, . . . ,Fk−1} is less than Fk
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Equivalent Definition of The Fibonacci Numbers

Proposition
The Fibonacci numbers form the unique sequence with
the following property:

Every natural number has a unique decomposition using
distinct, nonadjacent terms.

Remark: This only works if we start the Fibonaccis

1,2,3,5,8, . . .

(Starting 1,1, or 0,1, would lose unique decomposition!)
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Framework: Graph-Restricted
Decompositions
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The G-decomposition

Let G be a graph on nodes indexed by N, connected by
edges.

Definition (G-decomposition)
Given a sequence of integers {ak}, we call

ak1 + ak2 + · · ·+ akd

a legal G-decomposition provided that no pair of indices
(ki , kj) share an edge in G.

For example, the Zeckendorf decomposition rule
corresponds to the graph G where adjacent vertices are
connected.
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The G-decomposition

Question: Does there always exist a good choice of
sequence in which to G-decompose numbers?
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The G-sequence

Definition (G-sequence)

Given a graph G, the G-sequence is the sequence {aG
k }

that satisfies

aG
1 = 1

aG
k is the smallest natural number that does not yet

have a G-decomposition

Example:
What is the G-sequence of this graph?

G : · · ·

35



Introduction Framework Decompositions Number of Summands Future/Thanks

The G-sequence

Definition (G-sequence)

Given a graph G, the G-sequence is the sequence {aG
k }

that satisfies
aG

1 = 1

aG
k is the smallest natural number that does not yet

have a G-decomposition

Example:
What is the G-sequence of this graph?

G : · · ·

36



Introduction Framework Decompositions Number of Summands Future/Thanks

The G-sequence

Definition (G-sequence)

Given a graph G, the G-sequence is the sequence {aG
k }

that satisfies
aG

1 = 1
aG

k is the smallest natural number that does not yet
have a G-decomposition

Example:
What is the G-sequence of this graph?

G : · · ·

37



Introduction Framework Decompositions Number of Summands Future/Thanks

The G-sequence

Definition (G-sequence)

Given a graph G, the G-sequence is the sequence {aG
k }

that satisfies
aG

1 = 1
aG

k is the smallest natural number that does not yet
have a G-decomposition

Example:

What is the G-sequence of this graph?

G : · · ·

38



Introduction Framework Decompositions Number of Summands Future/Thanks

The G-sequence

Definition (G-sequence)

Given a graph G, the G-sequence is the sequence {aG
k }

that satisfies
aG

1 = 1
aG

k is the smallest natural number that does not yet
have a G-decomposition

Example:
What is the G-sequence of this graph?

G : · · ·

39



Introduction Framework Decompositions Number of Summands Future/Thanks

The G-sequence of the Zeckendorf graph

1 : 1 · · ·

2 : 1 2 · · ·

3 : 1 2 3 · · ·

4 : 1 2 3 · · ·

5 : 1 2 3 5 · · ·

6 : 1 2 3 5 · · ·

7 : 1 2 3 5 · · ·

8 : 1 2 3 5 8 · · ·

9 : 1 2 3 5 8 · · ·

10 : 1 2 3 5 8 · · ·

11 : 1 2 3 5 8 · · ·

12 : 1 2 3 5 8 · · ·

13 : 1 2 3 5 8 13 · · ·
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G-decompositions in the G-sequence

Proposition
1 Every n ∈ N has a G-decomposition in aG

k
2 This G-decomposition is not always unique

Part 1 is clear, since constructing the G-sequence always
adds the smallest number which has no decomposition.

Part 2

5 : 1 2 3 4 7 11 · · ·
‘

5 : 1 2 3 4 7 11 · · ·
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The G-sequence is Canonical

Fix a graph G.

Theorem (Special-ness of the G-sequence)
If there exists a sequence {ak} such that the
G-decomposition of n in {ak} is unique for all n ∈ N, then
it is the G-sequence.

In other words, the G-sequence is the only hope of having
unique decomposition.

From now on, when we say G-decomposition, we
mean G-decomposition in the G-sequence.
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Examples
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A Lot of Past Work is Special Cases!

f -decompositions (more on these later)

The Zeckendorf lattice

Quilt sequence

Kentucky sequence
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Graph for the Zeckendorf Lattice

The Zeckendorf Lattice
For each n ∈ N, check if any downward/leftward path
sums to the n. If not, add the number to the sequence so
that it is added to the shortest unfilled diagonal moving
from the bottom right to the top left.

1 2

4

6

10

16

18

22

38

44

1 2 4 6 10 16 18 22 38 44 · · ·

See Joshua Siktar’s talk ((((((hhhhhhtomorrow yesterday Gaussian
Behavior in Zeckendorf Decompositions Arising From

Lattices!
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Results on Decomposition Behavior
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Uniqueness of Decomposition

By uniqueness of decomposition, we mean that every
n ∈ N has exactly one legal G-decomposition.

Why care about uniqueness of decomposition?
It imposes interesting structure and nice behavior
The G-sequence is less canonical without uniqueness
To analyze the number of summands

We produce a sufficient condition for uniqueness.
(It gives some additional nice properties.)
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Uniformity

Recall that {aG
k } denotes the G-sequence.

Let {AG
k } be the sequence of sets

AG
k = {n ∈ N with a G-decomp using only aG

1 , . . . ,a
G
k }.

(Note AG
k are strictly nested and

⋃
AG

k = N.)

Definition (Uniform graph)
We say G is uniform provided that for all k ∈ N,

AG
k = {n < aG

k+1}

Non-example: 5 ∈ AG
3 but 5 > aG

4 = 4

1 2 3 4 7 11 · · ·
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Structure of Uniform Graphs

We can completely characterize uniform graphs.

Theorem
TFAE

G is uniform
For each k ∈ N the set of indices less than k which
are connected to k by an edge is of the form
{j : ik ≤ j < k}

This theorem shows that our uniformity condition is
equivalent to the f -decompositions introduced by
Demontigny, et al.

Our framework has helped justify their definition, and
gives a new perspective from which to ask questions.
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Uniformity implies Uniqueness

As promised, uniformity is a sufficient condition for
uniqueness of decomposition.

Corollary
If G is uniform, then

G-decompositions are unique
Greedy algorithm always finds the G-decomposition
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Nice Properties of Uniform Graphs

Theorem
If G is uniform, then aG

k is given by the recurrence

aG
k+1 = aG

k + aG
ik for k ∈ N

Corollary
If G,H are uniform graphs and H is a subgrapha of G then
for all k ∈ N, aH

k ≥ aG
k .

afewer edges, same vertices
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Uniqueness Without Uniformity

Although uniformity is sufficient for unique decomposition,
it is not necessary.

The following graph gives unique decomposition and is
not uniform:

G : 1 2 3 4 8 16 32 64 128 · · ·
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Distributions of Number of Summands
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Counting Summands

We are interested in the number of summands.

Example: The Zeckendorf decomposition of 19

19 : 1 2 3 5 8 13 · · ·

. . .uses three summmands

Lekkerkerker’s Theorem (1952)
The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to

n
ϕ2+1 ≈ .276n, where ϕ = 1+

√
5

2 is the golden mean.

We would also like to know what the distribution of the
number of summands looks like.
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Counting Summands

Figure: Number of summands in the Zeckendorf
[F2018,F2019);F2018 ≈ 10421112
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Past Results

Theorem (KKMW 2010)
As n→∞, the distribution of numbers of summands in
Zeckendorf decompositions [Fn,Fn+1) is Gaussian.

Theorem (DDKMMV 2013)
As n→∞, the distribution of numbers of summands in
Factorial Number System Representations is Gaussian.

Theorem (GCKMSSWY 2018)
As n→∞, the distribution of numbers of summands in a
large class of mixed-radix decompositions is Gaussian.
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New Results

We show Gaussianity for the following family of uniform
graphs.

Theorem
If the only edges in G are between adjacent vertices (i.e.
G is a subgraph of the Zeckendorf graph), then G is
Gaussian.

Example of a subgraph of the Zeckendorf Graph

G : 1 2 3 6 9 15 30 45 90 135 225 · · ·
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Gaussianity

Based on past results, we expect Gaussianity to be the
default behavior in many situations.

Our perspective (G-decompositions) gives a language to
talk about how general this behavior is, and what
structures we expect to produce it.

Open Question: which graphs G do we expect to
produce Gaussian distributions of summands?
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Non-Gaussianity

We exhibit a uniform graph with non-Gaussian distribution
of number of summands.

It has the following distribution of number of summands.
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Connection to Growth Rate?

The previous example of non-Gaussian behavior have
linear asymptotic growth rate, while most examples of
Gaussianity exhibit exponential or near-exponential
growth.

We conjecture that if a uniform graph gives exponential
growth rate, then it will produce a Gaussian distribution.
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Questions for Future Research
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Questions for Future Research

Sequences to Graphs

How can you tell if a sequence is the G-sequence for
some graph?
Is there an algorithm which takes in a sequence and
spits out a graph G which generates it, if one exists?
For which sequences is there a unique graph which
generates them?
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Questions for Future Research

Growth Rates

What growth rates can G-sequences have? (Must be
between linear w/ difference 1 and geometric w/ ratio
2.)
Can we relate growth rate to edge density (or a
different measure of how connected G is)?
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Gaussianity

Which graphs G give Gaussian distributions of
summands?
Is this related to growth rate? E.g., does exponential
growth of aG

k imply Gaussianity?
Can we find a non-Gaussian distribution whose mean
goes to infinity?
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