Framework

Decompositions

Number of Summands

Future/Thanks

Graph-Restricted Decompositions: A Further Generalization of Zeckendorf's Theorem

Noah Luntzlara and Hunter Wieman

nluntzla@umich.edu, hlw2@williams.edu Collaborators: Hung Chu, Madeleine Farris, Ben Logsdon, and Mengxi Wang Advisor: Steven J. Miller

> 2018 Young Mathematicians Conference The Ohio State University, August 12, 2018

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
Outline				

		00000000	0000000
Outline			
Outime			
Outline			

• Introduction to Zeckendorf Decompositions

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
Outline				

- Introduction to Zeckendorf Decompositions
- Framework: Graph-Restricted Decompositions

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
Outline				

- Introduction to Zeckendorf Decompositions
- Framework: Graph-Restricted Decompositions
- Results on Decomposition Behavior

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
Outline				

- Introduction to Zeckendorf Decompositions
- Framework: Graph-Restricted Decompositions
- Results on Decomposition Behavior
- Questions for Future Research

Introduction ●○○○	Framework 0000000000	Decompositions	Number of Summands	Future/Thanks

Introduction to Zeckendorf Decompositions

Introduction Fra

Framework 0000000000 Decompositions

Number of Summands

Future/Thanks

The Zeckendorf Decomposition

Definition (Zeckendorf Decomposition)

A **Zeckendorf Decomposition** is a way of writing a natural number as a sum of distinct Fibonacci numbers which are not adjacent.

roduction	
000	

In

Framework

Decompositions

Number of Summands

Future/Thanks

The Zeckendorf Decomposition

Definition (Zeckendorf Decomposition)

A **Zeckendorf Decomposition** is a way of writing a natural number as a sum of distinct Fibonacci numbers which are not adjacent.

Fibonacci numbers for reference:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584

uction	Frame

Introd

0000

r**amework** 000000000 Decompositions

Number of Summands

Future/Thanks

The Zeckendorf Decomposition

Definition (Zeckendorf Decomposition)

A **Zeckendorf Decomposition** is a way of writing a natural number as a sum of distinct Fibonacci numbers which are not adjacent.

- 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584
 - Example: 108

oduction	F
00	

Int

ramework

Decompositions

Number of Summands

Future/Thanks

The Zeckendorf Decomposition

Definition (Zeckendorf Decomposition)

A **Zeckendorf Decomposition** is a way of writing a natural number as a sum of distinct Fibonacci numbers which are not adjacent.

- 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584
 - Example: 108 = 89 + 19

oduction	
00	i

Intro

00

ramework 000000000 Decompositions

Number of Summands

Future/Thanks

The Zeckendorf Decomposition

Definition (Zeckendorf Decomposition)

A **Zeckendorf Decomposition** is a way of writing a natural number as a sum of distinct Fibonacci numbers which are not adjacent.

- 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584
 - Example: 108 = 89 + 19 = 89 + 13 + 6

roduction	
00	

Int

Framework

Decompositions

Number of Summands

Future/Thanks

The Zeckendorf Decomposition

Definition (Zeckendorf Decomposition)

A **Zeckendorf Decomposition** is a way of writing a natural number as a sum of distinct Fibonacci numbers which are not adjacent.

- 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584
 - Example: 108 = 89 + 19 = 89 + 13 + 6 = 18 + 13 + 5 + 1

roduction	
00	

Int

Framework 0000000000 Decompositions

Number of Summands

Future/Thanks

The Zeckendorf Decomposition

Definition (Zeckendorf Decomposition)

A **Zeckendorf Decomposition** is a way of writing a natural number as a sum of distinct Fibonacci numbers which are not adjacent.

- 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584
 - Example: 108 = 89 + 19 = 89 + 13 + 6 = 18 + 13 + 5 + 1
 - Example: 2018

roduction	
00	

Framework 0000000000 Decompositions

Number of Summands

Future/Thanks

The Zeckendorf Decomposition

Definition (Zeckendorf Decomposition)

A **Zeckendorf Decomposition** is a way of writing a natural number as a sum of distinct Fibonacci numbers which are not adjacent.

- 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584
 - Example: 108 = 89 + 19 = 89 + 13 + 6 = 18 + 13 + 5 + 1
 - Example: 2018 = 1597 + 421

oduction		
00		

Int

ramework

Decompositions

Number of Summands

Future/Thanks

The Zeckendorf Decomposition

Definition (Zeckendorf Decomposition)

A **Zeckendorf Decomposition** is a way of writing a natural number as a sum of distinct Fibonacci numbers which are not adjacent.

- 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584
 - Example: 108 = 89 + 19 = 89 + 13 + 6 = 18 + 13 + 5 + 1
 - Example: 2018 = 1597 + 421 = 1597 + 377 + 44

troduction	
000	

Framework

Decompositions

Number of Summands

Future/Thanks

The Zeckendorf Decomposition

Definition (Zeckendorf Decomposition)

A **Zeckendorf Decomposition** is a way of writing a natural number as a sum of distinct Fibonacci numbers which are not adjacent.

- 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584
 - Example: 108 = 89 + 19 = 89 + 13 + 6 = 18 + 13 + 5 + 1
 - Example: 2018 = 1597 + 421 = 1597 + 377 + 44 = 1597 + 377 + 34 + 10

ntroduction	
000	

Framework

Decompositions

Number of Summands

Future/Thanks

The Zeckendorf Decomposition

Definition (Zeckendorf Decomposition)

A **Zeckendorf Decomposition** is a way of writing a natural number as a sum of distinct Fibonacci numbers which are not adjacent.

- 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584
 - Example: 108 = 89 + 19 = 89 + 13 + 6 = 18 + 13 + 5 + 1
 - Example: 2018 = 1597 + 421 = 1597 + 377 + 44 = 1597 + 377 + 34 + 10 = 1597 + 377 + 34 + 8 + 2

Introduction ○○●○	Framework 000000000	Decompositions	Number of Summands	Future/Thanks

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

Introduction ○○●○	Framework 000000000	Decompositions	Number of Summands	Future/Thanks

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

Introduction	Framework 000000000	Decompositions	Number of Summands	Future/Thanks

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

Sketch of Proof

Greedy Algorithm

Introduction	Framework 000000000	Decompositions	Number of Summands	Future/Thanks

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

- Greedy Algorithm
 - To decompose *n*, find the largest $F_k \leq n$

Introduction 0000	Framework	Decompositions	Number of Summands	Future/Thanks

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

- Greedy Algorithm
 - To decompose *n*, find the largest $F_k \leq n$
 - Then $n F_k < F_{k-1}$

Introduction 0000	Framework	Decompositions	Number of Summands	Future/Thanks

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

- Greedy Algorithm
 - To decompose *n*, find the largest $F_k \leq n$
 - Then $n F_k < F_{k-1}$
 - Repeat

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks

Theorem (Zeckendorf's Theorem)

Every natural number has a unique Zeckendorf decomposition.

- Greedy Algorithm
 - To decompose *n*, find the largest $F_k \leq n$
 - Then $n F_k < F_{k-1}$
 - Repeat
- The largest number we can decompose using $\{F_1, \ldots, F_{k-1}\}$ is less than F_k

Framework

Decompositions

Number of Summands

Future/Thanks

Equivalent Definition of The Fibonacci Numbers

Proposition

The Fibonacci numbers form the unique sequence with the following property:

Framework

Decompositions

Number of Summands

Future/Thanks

Equivalent Definition of The Fibonacci Numbers

Proposition

The Fibonacci numbers form the unique sequence with the following property:

Every natural number has a **unique** decomposition using distinct, **nonadjacent** terms.

Framework

Decompositions

Number of Summands

Future/Thanks

Equivalent Definition of The Fibonacci Numbers

Proposition

The Fibonacci numbers form the unique sequence with the following property:

Every natural number has a **unique** decomposition using distinct, **nonadjacent** terms.

Remark: This only works if we start the Fibonaccis

 $1, 2, 3, 5, 8, \ldots$

Framework

Decompositions

Number of Summands

Future/Thanks

Equivalent Definition of The Fibonacci Numbers

Proposition

The Fibonacci numbers form the unique sequence with the following property:

Every natural number has a **unique** decomposition using distinct, **nonadjacent** terms.

Remark: This only works if we start the Fibonaccis

 $1,2,3,5,8,\ldots$

(Starting 1, 1, or 0, 1, would lose unique decomposition!)

Introduction 0000	Framework ●ooooooooo	Decompositions	Number of Summands	Future/Thanks

Framework: Graph-Restricted Decompositions

Introduction	Framework o●oooooooo	Decompositions	Number of Summands	Future/Thanks		
The G-de	composition					

Let *G* be a graph on nodes indexed by \mathbb{N} , connected by edges.

Introduction	Framework o●oooooooo	Decompositions	Number of Summands	Future/Thanks

Let *G* be a graph on nodes indexed by \mathbb{N} , connected by edges.

Definition (*G***-decomposition)**

The G-decomposition

Given a sequence of integers $\{a_k\}$, we call

$$a_{k_1} + a_{k_2} + \cdots + a_{k_d}$$

a legal *G*-decomposition provided that no pair of indices (k_i, k_j) share an edge in *G*.

Introduction	Framework ooooooooo	Decompositions	Number of Summands	Future/Thanks

The *G*-decomposition

Let *G* be a graph on nodes indexed by \mathbb{N} , connected by edges.

Definition (*G***-decomposition)**

Given a sequence of integers $\{a_k\}$, we call

$$a_{k_1} + a_{k_2} + \cdots + a_{k_d}$$

a legal *G*-decomposition provided that no pair of indices (k_i, k_j) share an edge in *G*.

For example, the Zeckendorf decomposition rule corresponds to the graph *G* where adjacent vertices are connected.

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks			
The G-dec	The G-decomposition						

Question: Does there always exist a good choice of sequence in which to *G*-decompose numbers?

Introduction 0000	Framework 000000000	Decompositions	Number of Summands	Future/Thanks

The G-sequence

Definition (*G***-sequence)**

Given a graph *G*, the *G*-sequence is the sequence $\{a_k^G\}$ that satisfies

Introduction	Framework 000000000	Decompositions	Number of Summands	Future/Thanks

The G-sequence

Definition (*G***-sequence)**

Given a graph *G*, the *G*-sequence is the sequence $\{a_k^G\}$ that satisfies

•
$$a_1^G = 1$$
Introduction	Framework ooo●oooooo	Decompositions	Number of Summands	Future/Thanks

The G-sequence

Definition (*G***-sequence)**

Given a graph *G*, the *G*-sequence is the sequence $\{a_k^G\}$ that satisfies

•
$$a_1^G = 1$$

a^G_k is the smallest natural number that does not yet have a *G*-decomposition

Introduction	Framework ooo●oooooo	Decompositions	Number of Summands	Future/Thanks

The G-sequence

Definition (*G***-sequence)**

Given a graph *G*, the *G*-sequence is the sequence $\{a_k^G\}$ that satisfies

•
$$a_1^G = 1$$

a^G_k is the smallest natural number that does not yet have a *G*-decomposition

Example:

Introduction	Framework ooo●oooooo	Decompositions	Number of Summands	Future/Thanks

The G-sequence

Definition (*G***-sequence)**

Given a graph *G*, the *G*-sequence is the sequence $\{a_k^G\}$ that satisfies

a^G_k is the smallest natural number that does not yet have a *G*-decomposition

Example:

What is the G-sequence of this graph?

duction		

Framework

Decompositions

Number of Summands

Future/Thanks

 Introduction
 Framework

 0000
 000000000

Decompositions

Number of Summands

Future/Thanks

Introduction	Framework	Decompositions	Number of Summands	Future
	000000000			

Introduction	Framework	Decompositions	Number of Summands	Future/Tha
	000000000			

Introduction	Framework	Decompositions	Number of Summands	Future/Th
	000000000			

anks

Introduction	Framework	Decompositions	Number of Summands	Future
	000000000			

Thanks

Introduction	Framework	Decompositions	Number of Summands	Futu
	000000000			000

re/Thanks

Introduction	Framework	Decompositions	Number
	000000000		000000

Number of Summands

Future/Thanks

The G-sequence of the Zeckendorf graph

8: 1 2 3 5 8

ction	Framework
	0000000000

Decompositions

Number of Summands

Future/Thanks

The G-sequence of the Zeckendorf graph

ction	Framework
	0000000000

Introdu

Decompositions

Number of Summands

Future/Thanks

The G-sequence of the Zeckendorf graph

- 3: 1-2-3------
- 5: 1-2-3-5-----
- 6: 1-2-3-5-----

7: 1-2-3-5-----

- 8: 1-2-3-5-8-----9: 1-2-3-5-8-----
- 10: 1 2 3 5 8

ction	Framework
	0000000

Introdu

Number of Summands

Future/Thanks

The G-sequence of the Zeckendorf graph

- 3:
- 4:
- 5:
- 6: . . .

7: 8 : 9: (5) 10: 11: (1

ction	Framework
	00000000

Decompositions

Number of Summands

Future/Thanks

The G-sequence of the Zeckendorf graph

00

- 4: 1 2 3 - -
- 5: 1-2-3-5-----
- 6 : 1 2 3 5 - - -

7: 1-2-3-5-----

8: 5 3 2 8 (5)-9: 3 8 2 -(3)-(5)-10:(1 2 8 י 2 י (5) 11:(1 3 8 12 : (3 2 5 8

iction	Framev
	00000

Introd

ramework ○○○●○○○○○ Decompositions

Number of Summands

Future/Thanks

The G-sequence of the Zeckendorf graph

7: 1-2-3-5-----

8: 3 5 2 8 (5)-9: (3) 8 2 10: -(3)-(5)-1 2 8 -(2) 11:(1) -(3)-(5)-(8 12 : (1 2) 5 3 8 13:(1 2) (3 5 8 13

ction	Framework	Dec
	0000000000	

compositions

Number of Summands

Future/Thanks

G-decompositions in the *G*-sequence

Proposition

Introdu

- Every $n \in \mathbb{N}$ has a *G*-decomposition in a_k^G
- This G-decomposition is not always unique

roduction	Framework	Decompositions	Numbe
000	0000000000		

Number of Summands

Future/Thanks

G-decompositions in the *G*-sequence

Proposition

- Every $n \in \mathbb{N}$ has a *G*-decomposition in a_k^G
- This G-decomposition is not always unique

Part 1

oduction		
0 C		

Int

Framework

Decompositions

Number of Summands

Future/Thanks

G-decompositions in the *G*-sequence

Proposition

- Every $n \in \mathbb{N}$ has a *G*-decomposition in a_k^G
- 2 This G-decomposition is not always unique

Part 1 is clear, since constructing the *G*-sequence always adds the smallest number which has no decomposition.

oduction		
00		

Int

Framework

Decompositions

Number of Summands

Future/Thanks

G-decompositions in the *G*-sequence

Proposition

- Every $n \in \mathbb{N}$ has a *G*-decomposition in a_k^G
- 2 This G-decomposition is not always unique

Part 1 is clear, since constructing the *G*-sequence always adds the smallest number which has no decomposition.

Part 2

duction		

Framework

Decompositions

Number of Summands

Future/Thanks

G-decompositions in the *G*-sequence

Proposition

- Every $n \in \mathbb{N}$ has a *G*-decomposition in a_k^G
- This G-decomposition is not always unique

Part 1 is clear, since constructing the *G*-sequence always adds the smallest number which has no decomposition.

Part 2

$$5: 1 2 3 4 7 11 ... ,$$

$$5: 1 2 3 4 7 11 ... ,$$

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks

The G-sequence is Canonical

Fix a graph G.

tion	Framework
	000000000000000000000000000000000000000

Decompositions

Number of Summands

Future/Thanks

The G-sequence is Canonical

Fix a graph G.

Theorem (Special-ness of the *G*-sequence)

If there exists a sequence $\{a_k\}$ such that the *G*-decomposition of *n* in $\{a_k\}$ is unique for all $n \in \mathbb{N}$, then it is the *G*-sequence.

uction	Frame
	0000

Introd

ramework 000000●000 Decompositions

Number of Summands

Future/Thanks

The G-sequence is Canonical

Fix a graph G.

Theorem (Special-ness of the G-sequence)

If there exists a sequence $\{a_k\}$ such that the *G*-decomposition of *n* in $\{a_k\}$ is unique for all $n \in \mathbb{N}$, then it is the *G*-sequence.

In other words, the *G*-sequence is the only hope of having unique decomposition.

uction	Fram
	0000

ramework 000000●000 Decompositions

Number of Summands

Future/Thanks

The G-sequence is Canonical

Fix a graph G.

Theorem (Special-ness of the G-sequence)

If there exists a sequence $\{a_k\}$ such that the *G*-decomposition of *n* in $\{a_k\}$ is unique for all $n \in \mathbb{N}$, then it is the *G*-sequence.

In other words, the *G*-sequence is the only hope of having unique decomposition.

From now on, when we say *G*-decomposition, we mean *G*-decomposition in the *G*-sequence.

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
Examples				

Introduction	Framework ooooooo●oo	Decompositions	Number of Summands	Future/Thanks
Examples				

• Fibonacci

Introduction	Framework ooooooooooo	Decompositions	Number of Summands	Future/Thanks
Examples				

• Fibonacci $G: (1-2-3-5-8-13-\cdots)$

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
Examples				

• Fibonacci $G: (1-2-3-5-8-13-\cdots)$

Integers

Introduction	Framework ooooooo●oo	Decompositions	Number of Summands	Future/Thanks
Examples				

- Fibonacci $G: (1-2-3-5-8-13-\cdots)$
- Integers

Introduction	Framework ooooooo●oo	Decompositions	Number of Summands	Future/Thanks
Examples				

- Fibonacci $G: (1-2-3-5-8-13-\cdots)$
- Integers

Powers of 2

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
Examples				

- Fibonacci $G: (1-2-3-5-8-13-\cdots)$
- Integers

- Powers of 2
 - $G: (1) (2) (4) (8) (16) (32) \cdots$

000000000000000000000000000000000000000		

Introduction 0000	Framework ooooooooooo	Decompositions	Number of Summands	Future/Thanks

• f-decompositions (more on these later)

Introduction	Framework ooooooooooo	Decompositions	Number of Summands	Future/Thanks

- f-decompositions (more on these later)
- The Zeckendorf lattice

Introduction	Framework 0000000000	Decompositions	Number of Summands	Future/Thanks

- f-decompositions (more on these later)
- The Zeckendorf lattice
- Quilt sequence

Introduction	Framework ooooooooooo	Decompositions	Number of Summands	Future/Thanks

A Lot of Past Work is Special Cases!

- *f*-decompositions (more on these later)
- The Zeckendorf lattice
- Quilt sequence
- Kentucky sequence

Introduction Framewo	ork D	ecompositions	Number of Summands	Future/Thanks
00000 000000	0000	000000	0000000	000000

Graph for the Zeckendorf Lattice

The Zeckendorf Lattice

For each $n \in \mathbb{N}$, check if any downward/leftward path sums to the *n*. If not, add the number to the sequence so that it is added to the shortest unfilled diagonal moving from the bottom right to the top left.

Introduction	Framework 000000000●	Decompositions	Number of Summands	Future/Thanks

Graph for the Zeckendorf Lattice

The Zeckendorf Lattice

For each $n \in \mathbb{N}$, check if any downward/leftward path sums to the *n*. If not, add the number to the sequence so that it is added to the shortest unfilled diagonal moving from the bottom right to the top left.

See Joshua Siktar's talk tomorrow yesterday Gaussian Behavior in Zeckendorf Decompositions Arising From

Introduction	Framework 0000000000	Decompositions •oooooo	Number of Summands	Future/Thanks

Results on Decomposition Behavior

Introduction	Framework	Decompositions oooooo	Number of Summands	Future/Thanks

By **uniqueness of decomposition**, we mean that every $n \in \mathbb{N}$ has exactly one legal *G*-decomposition.

Introduction	Framework 000000000	Decompositions 0e00000	Number of Summands	Future/Thanks

By **uniqueness of decomposition**, we mean that every $n \in \mathbb{N}$ has exactly one legal *G*-decomposition.

Why care about uniqueness of decomposition?

Introduction	Framework	Decompositions 0e00000	Number of Summands	Future/Thanks

By **uniqueness of decomposition**, we mean that every $n \in \mathbb{N}$ has exactly one legal *G*-decomposition.

Why care about uniqueness of decomposition?

It imposes interesting structure and nice behavior

Introduction	Framework	Decompositions o●ooooo	Number of Summands	Future/Thanks

By **uniqueness of decomposition**, we mean that every $n \in \mathbb{N}$ has exactly one legal *G*-decomposition.

Why care about uniqueness of decomposition?

- It imposes interesting structure and nice behavior
- The G-sequence is less canonical without uniqueness

Introduction	Framework	Decompositions 000000	Number of Summands	Future/Thanks

By **uniqueness of decomposition**, we mean that every $n \in \mathbb{N}$ has exactly one legal *G*-decomposition.

Why care about uniqueness of decomposition?

- It imposes interesting structure and nice behavior
- The G-sequence is less canonical without uniqueness
- To analyze the number of summands

Introduction	Framework	Decompositions 000000	Number of Summands	Future/Thanks

By **uniqueness of decomposition**, we mean that every $n \in \mathbb{N}$ has exactly one legal *G*-decomposition.

Why care about uniqueness of decomposition?

- It imposes interesting structure and nice behavior
- The G-sequence is less canonical without uniqueness
- To analyze the number of summands

We produce a sufficient condition for uniqueness.

Introduction	Framework	Decompositions 000000	Number of Summands	Future/Thanks

By **uniqueness of decomposition**, we mean that every $n \in \mathbb{N}$ has exactly one legal *G*-decomposition.

Why care about uniqueness of decomposition?

- It imposes interesting structure and nice behavior
- The G-sequence is less canonical without uniqueness
- To analyze the number of summands

We produce a sufficient condition for uniqueness. (It gives some additional nice properties.)

Introduction	Framework	Decompositions ○○●○○○○	Number of Summands	Future/Thanks
Uniformity				

Recall that $\{a_k^G\}$ denotes the *G*-sequence.

Introduction	Framework	Decompositions ○○●○○○○	Number of Summands	Future/Thanks
Uniformity	1			

 $A_k^G = \{n \in \mathbb{N} \text{ with a } G \text{-decomp using only } a_1^G, \dots, a_k^G \}.$

Introduction 0000	Framework 0000000000	Decompositions ○○●○○○○	Number of Summands	Future/Thanks
Uniformity				

 $A_k^G = \{n \in \mathbb{N} \text{ with a } G \text{-decomp using only } a_1^G, \dots, a_k^G \}.$

(Note A_k^G are strictly nested and $\bigcup A_k^G = \mathbb{N}$.)

Introduction 0000	Framework 0000000000	Decompositions ○○●○○○○	Number of Summands	Future/Thanks
Uniformity				

 $A_k^G = \{n \in \mathbb{N} \text{ with a } G \text{-decomp using only } a_1^G, \dots, a_k^G \}.$

(Note A_k^G are strictly nested and $\bigcup A_k^G = \mathbb{N}$.)

Definition (Uniform graph)

Introduction 0000	Framework 0000000000	Decompositions ○○●○○○○	Number of Summands	Future/Thanks
Uniformity				

 $A_k^G = \{n \in \mathbb{N} \text{ with a } G \text{-decomp using only } a_1^G, \dots, a_k^G \}.$

(Note A_k^G are strictly nested and $\bigcup A_k^G = \mathbb{N}$.)

Definition (Uniform graph)

We say *G* is **uniform** provided that for all $k \in \mathbb{N}$,

Introduction 0000	Framework 0000000000	Decompositions ○○●○○○○	Number of Summands	Future/Thanks
Uniformity				

 $A_k^G = \{n \in \mathbb{N} \text{ with a } G \text{-decomp using only } a_1^G, \dots, a_k^G \}.$

(Note A_k^G are strictly nested and $\bigcup A_k^G = \mathbb{N}$.)

Definition (Uniform graph)

We say *G* is **uniform** provided that for all $k \in \mathbb{N}$,

$$A_k^G = \{n < a_{k+1}^G\}$$

Introduction 0000	Framework	Decompositions oo●oooo	Number of Summands	Future/Thanks
Uniformity				

 $A_k^G = \{n \in \mathbb{N} \text{ with a } G \text{-decomp using only } a_1^G, \dots, a_k^G \}.$

(Note A_k^G are strictly nested and $\bigcup A_k^G = \mathbb{N}$.)

Definition (Uniform graph)

We say *G* is **uniform** provided that for all $k \in \mathbb{N}$,

$$A_k^G = \{n < a_{k+1}^G\}$$

Non-example:

Introduction 0000	Framework	Decompositions oo●oooo	Number of Summands	Future/Thanks
Uniformity				

 $A_k^G = \{n \in \mathbb{N} \text{ with a } G \text{-decomp using only } a_1^G, \dots, a_k^G \}.$

(Note A_k^G are strictly nested and $\bigcup A_k^G = \mathbb{N}$.)

Definition (Uniform graph)

We say *G* is **uniform** provided that for all $k \in \mathbb{N}$,

$$A_k^G = \{n < a_{k+1}^G\}$$

Non-example: $5 \in A_3^G$ but $5 > a_4^G = 4$

Introduction	Framework 000000000	Decompositions 0000000	Number of Summands	Future/Thanks

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
		000000		

Theorem		
TFAE		

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
		0000000		

Theorem
TFAE
• G is uniform

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks

Introduction	Framework 000000000	Decompositions 0000000	Number of Summands	Future/Thanks

We can completely characterize uniform graphs.

Theorem
TFAE
• G is uniform
• For each $k \in \mathbb{N}$ the set of indices less than k which
are connected to k by an edge is of the form
$\{j : i_k \le j < k\}$

This theorem shows that our uniformity condition is equivalent to the *f*-decompositions introduced by Demontigny, et al.

Introduction 0000	Framework 0000000000	Decompositions 0000000	Number of Summands	Future/Thanks

We can completely characterize uniform graphs.

Theorem
TFAE
• G is uniform
• For each $k \in \mathbb{N}$ the set of indices less than k which
are connected to k by an edge is of the form
$\{j : i_k \le j < k\}$

This theorem shows that our uniformity condition is equivalent to the *f*-decompositions introduced by Demontigny, et al.

Our framework has helped justify their definition, and gives a new perspective from which to ask questions.

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
		0000000		

Uniformity implies Uniqueness

As promised, uniformity is a sufficient condition for uniqueness of decomposition.

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
		0000000		

Uniformity implies Uniqueness

As promised, uniformity is a sufficient condition for uniqueness of decomposition.

Corollary

If G is uniform, then

- G-decompositions are unique
- Greedy algorithm always finds the G-decomposition

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
		0000000		

Nice Properties of Uniform Graphs

Theorem

If G is uniform, then a_k^G is given by the recurrence

$$a_{k+1}^G = a_k^G + a_{i_k}^G$$
 for $k \in \mathbb{N}$

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
		0000000		

Nice Properties of Uniform Graphs

Theorem

If G is uniform, then a_k^G is given by the recurrence

$$a_{k+1}^G = a_k^G + a_{i_k}^G$$
 for $k \in \mathbb{N}$

Corollary

If G, H are uniform graphs and H is a subgraph^{*a*} of G then for all $k \in \mathbb{N}$, $a_k^H \ge a_k^G$.

^afewer edges, same vertices

Introduction	Framework	Decompositions oooooo●	Number of Summands	Future/Thanks

Uniqueness Without Uniformity

Although uniformity is *sufficient* for unique decomposition, it is not necessary.

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks

Uniqueness Without Uniformity

Although uniformity is *sufficient* for unique decomposition, it is not necessary.

The following graph gives unique decomposition and is not uniform:

Introduction	Framework 000000000	Decompositions	Number of Summands	Future/Thanks

Uniqueness Without Uniformity

Although uniformity is *sufficient* for unique decomposition, it is not necessary.

The following graph gives unique decomposition and is not uniform:

Introduction	Framework 0000000000	Decompositions	Number of Summands •ooooooo	Future/Thanks

Distributions of Number of Summands

Introduction 0000	Framework	Decompositions	Number of Summands	Future/Thanks	
Counting Summands					

We are interested in the number of summands.

Introduction	Framework	Decompositions	Number of Summands o●oooooo	Future/Thanks
Counting Summands				

We are interested in the number of summands.

Example:

Introduction 0000	Framework	Decompositions	Number of Summands	Future/Thanks
Counting Summands				

We are interested in the number of summands.

Example: The Zeckendorf decomposition of 19

Introduction 0000	Framework 0000000000	Decompositions	Number of Summands o●oooooo	Future/Thanks
Counting	Summands			

We are interested in the number of summands.

Example: The Zeckendorf decomposition of 19

19: 1-2-3-5-8-13-...

...uses three summands

Introduction 0000	Framework	Decompositions	Number of Summands o●oooooo	Future/Thanks
Counting	Summands			

We are interested in the number of summands.

Example: The Zeckendorf decomposition of 19

19: 1 2 3 5 8 13 ...

...uses three summands

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Introduction	Framework 0000000000	Decompositions	Number of Summands	Future/Thanks
Counting	Summands			

We are interested in the number of summands.

Example: The Zeckendorf decomposition of 19

19: 1-2-3-5-8-13-...

...uses three summands

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

We would also like to know what the distribution of the number of summands looks like.

tion	Framework

Decompositions

Number of Summands

Future/Thanks

Counting Summands

Figure: Number of summands in the Zeckendorf

112

Introduction 0000	Framework 0000000000	Decompositions	Number of Summands	Future/Thanks
Past Result	s			

Theorem (KKMW 2010)

As $n \to \infty$, the distribution of numbers of summands in Zeckendorf decompositions $[F_n, F_{n+1})$ is Gaussian.

Introduction 0000	Framework 000000000	Decompositions	Number of Summands	Future/Thanks

Past Results

Theorem (KKMW 2010)

As $n \to \infty$, the distribution of numbers of summands in Zeckendorf decompositions $[F_n, F_{n+1})$ is Gaussian.

Theorem (DDKMMV 2013)

As $n \to \infty$, the distribution of numbers of summands in Factorial Number System Representations is Gaussian.

Introduction	Framework 0000000000	Decompositions	Number of Summands	Future/Thanks

Past Results

Theorem (KKMW 2010)

As $n \to \infty$, the distribution of numbers of summands in Zeckendorf decompositions $[F_n, F_{n+1})$ is Gaussian.

Theorem (DDKMMV 2013)

As $n \to \infty$, the distribution of numbers of summands in Factorial Number System Representations is Gaussian.

Theorem (GCKMSSWY 2018)

As $n \to \infty$, the distribution of numbers of summands in a large class of mixed-radix decompositions is

Introduction	Framework 0000000000	Decompositions	Number of Summands	Future/Thank

Past Results

Theorem (KKMW 2010)

As $n \to \infty$, the distribution of numbers of summands in Zeckendorf decompositions $[F_n, F_{n+1})$ is Gaussian.

Theorem (DDKMMV 2013)

As $n \to \infty$, the distribution of numbers of summands in Factorial Number System Representations is Gaussian.

Theorem (GCKMSSWY 2018)

As $n \to \infty$, the distribution of numbers of summands in a large class of mixed-radix decompositions is Gaussian.

Introduction	Framework 0000000000	Decompositions	Number of Summands oooo●ooo	Future/Thanks
New Resu	lts			

We show Gaussianity for the following family of uniform graphs.

Theorem

If the only edges in G are between adjacent vertices (i.e. G is a subgraph of the Zeckendorf graph), then G is Gaussian.

Introduction 0000	Framework 0000000000	Decompositions	Number of Summands	Future/Thanks
New Resu	lte			

We show Gaussianity for the following family of uniform graphs.

Theorem

If the only edges in G are between adjacent vertices (i.e. G is a subgraph of the Zeckendorf graph), then G is Gaussian.

Example of a subgraph of the Zeckendorf Graph

$$\boldsymbol{G}: (1-2)(3-6-9)(15-30)(45-90)(135)(225)\cdots$$

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
Gaussiani	ity			

Based on past results, we expect Gaussianity to be the default behavior in many situations.

Introduction	Framework 0000000000	Decompositions	Number of Summands ooooo●oo	Future/Thanks
Gaussiani	ty			

Based on past results, we expect Gaussianity to be the default behavior in many situations.

Our perspective (*G*-decompositions) gives a language to talk about how general this behavior is, and what structures we expect to produce it.

Introduction 0000	Framework	Decompositions	Number of Summands ooooooooo	Future/Thanks
Gaussianit	ÿ			

Based on past results, we expect Gaussianity to be the default behavior in many situations.

Our perspective (*G*-decompositions) gives a language to talk about how general this behavior is, and what structures we expect to produce it.

Open Question: which graphs *G* do we expect to produce Gaussian distributions of summands?

Introduction	Framework 0000000000	Decompositions	Number of Summands ooooooeo	Future/Thanks
Non-Gauss	ianity			

We exhibit a uniform graph with non-Gaussian distribution of number of summands.

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks

Non-Gaussianity

We exhibit a uniform graph with non-Gaussian distribution of number of summands.

It has the following distribution of number of summands.

Distribution of Number of Summands in G-Decompositions

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks

Connection to Growth Rate?

The previous example of non-Gaussian behavior have linear asymptotic growth rate, while most examples of Gaussianity exhibit exponential or near-exponential growth.

Introduction 0000	Framework 000000000	Decompositions	Number of Summands	Future/Thanks

Connection to Growth Rate?

The previous example of non-Gaussian behavior have linear asymptotic growth rate, while most examples of Gaussianity exhibit exponential or near-exponential growth.

We conjecture that if a uniform graph gives exponential growth rate, then it will produce a Gaussian distribution.

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
				000000

Sequences to Graphs

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
				000000

Sequences to Graphs

• How can you tell if a sequence is the *G*-sequence for some graph?

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
				000000

Sequences to Graphs

- How can you tell if a sequence is the *G*-sequence for some graph?
- Is there an algorithm which takes in a sequence and spits out a graph G which generates it, if one exists?

ntroduction	Framework	Decompositions	Number of Summands	Future/Than
				000000

Sequences to Graphs

- How can you tell if a sequence is the *G*-sequence for some graph?
- Is there an algorithm which takes in a sequence and spits out a graph G which generates it, if one exists?
- For which sequences is there a unique graph which generates them?

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
				000000

Growth Rates

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
				000000

Growth Rates

• What growth rates can G-sequences have?

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
				000000

Growth Rates

 What growth rates can G-sequences have? (Must be between linear w/ difference 1 and geometric w/ ratio 2.)
 Introduction
 Framework
 Decompositions

 0000
 000000000
 0000000

Number of Summands

Future/Thanks

Questions for Future Research

Growth Rates

- What growth rates can G-sequences have? (Must be between linear w/ difference 1 and geometric w/ ratio 2.)
- Can we relate growth rate to edge density (or a different measure of how connected *G* is)?

Introduction	Framework	Decompositions	Number of Summands	Future/Thanks
				0000000

Gaussianity

Introduction	Framework	Decompositions	Number of Summands	Future/Thank
				0000000

Gaussianity

• Which graphs *G* give Gaussian distributions of summands?

Introduction	Framework	Decompositions	Number of Summands	Future/Th
				0000000

anks

Questions for Future Research

Gaussianity

- Which graphs *G* give Gaussian distributions of summands?
- Is this related to growth rate? E.g., does exponential growth of a^G_k imply Gaussianity?

Introduction	Framework	Decompositions	Number of Summands

Gaussianity

- Which graphs *G* give Gaussian distributions of summands?
- Is this related to growth rate? E.g., does exponential growth of a^G_k imply Gaussianity?
- Can we find a non-Gaussian distribution whose mean goes to infinity?

Introduction	Framework 0000000000	Decompositions	Number of Summands	Future/Thanks

Acknowledgements

The presenters are supported by NSF grants and Williams College. We are grateful to our excellent advisor Professor Steven J. Miller for valuable guidance, and thank the other contributors Hung Chu, Madeleine Farris, Ben Logsdon, and Mengxi Wang for their help.

Introduction 0000	Framework 0000000000	Decompositions	Number of Summands	Future/Thanks ooooo●o
References				

References

- Demontigny, Do, Kulkarni, Miller, Moon, and Varma: Generalizing Zeckendorf's Theorem to f-decompositions, preprint 2013
- Kologlu, Kopp, Miller and Wang: On the number of summands in Zeckendorf decompositions, Fibonacci Quarterly 49 (2011), no. 2, 116–130.
- C. G. Lekkerkerker, *Voorstelling van natuurlyke getallen door een som van getallen van Fibonacci*, Simon Stevin **29** (1951-1952), 190–195

Introduction	Framework	Decompositions 0000000	Number of Summands	Future/Thanks

Questions?