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Bands?
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Random Matrix Theory?
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Objectives

Review classical random matrix theory.

Introduce band matrices

Investigate the dependence of the limiting eigenvalue
distribution on the number of bands.
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Classical Random Matrix Theory
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Origins of Random Matrix Theory

Nuclear physics (1950’s): Solve for energy eigenfunctions.

Fundamental Equation:

Hψn = Enψn

H : matrix, entries depend on system

En : energy levels

ψn : energy eigenfunctions

Strategy

Average over eigenvalues of random matrices.

Hope system behaves close to average.
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Random Matrix Example: Real Symmetric

A =


a1,1 a1,2 a1,3 · · · a1,N

a1,2 a2,2 a2,3 · · · a2,N
...

...
...

. . .
...

a1,N a2,N a3,N · · · aN,N

 = AT

Fix p, define

Prob(A) =
∏

1≤i≤j≤N
p(aij).

This means

Prob (A : aij ∈ [αij , βij ]) =
∏

1≤i≤j≤N

∫ βij

xij=αij

p(xij)dxij .

Want to understand eigenvalues of A.
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Eigenvalue Density Measure

µA,N(x)dx =
1

N

N∑
i=1

δ

(
x − λi (A)√

N

)
dx .

The kth moment of µA,N(x) is

Mk(A,N) =
1

N
k
2

+1

N∑
i=1

λki (A)

Let
Mk = lim

N→∞
EA [Mk(A,N)] ;
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MAIN TOOL: Eigenvalue Trace Lemma

Want to understand the eigenvalues of A, but we cannot
compute the eigenvalues directly.

Eigenvalue Trace Lemma

Let A be an N × N matrix with eigenvalues λi (A). Then

Trace(Ak) =
N∑

n=1

λi (A)k ,

where

Trace(Ak) =
N∑

i1=1

· · ·
N∑

ik=1

ai1,i2ai2,i3 · · · aik ,i1 .
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Wigner’s Semi-Circle Law

Wigner’s Semi-Circle Law

N × N real symmetric matrices, entries i.i.d.r.v. from a fixed p(x)
with mean 0, variance 1, and other moments finite. Then for
almost every A, as N →∞

µA,N(x) −→

{
2
π

√
1− x2 if |x | ≤ 1

0 otherwise.
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New limiting distributions

Different behavior emerges as symmetry increases!

From semi-circle to ...
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Full palindromic Toeplitz

[MMS] Massey, Miller and Sinsheimer (2007)

For real symmetric palindromic matrices, converge in probability to
the Gaussian (if p is even, then have strong convergence)

Figure 1: Eigenvalue distribution Symmetric Palindromic Toeplitz 10Kx10K
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Banded Matrices



Introduction Classical RMT Band Matrices Results Future work Acknowledgements

Why banded matrices?

Banded matrices have a long history; band one matrices (not
constant on diagonals) are related to the Laplacian of some
systems in mathematical physics.

Example of a Band One Matrix:

a1,1 a1,2 0 0 · · · 0
a1,2 a2,2 a2,3 0 · · · 0

0 a2,3 a3,3 a2,4 · · · 0
...

...
...

...
. . .

...
...

...
...

... · · · aN−1,N

0 0 0 ·· aN−1,N aN,N


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Our Work

We study a new case: N × N banded symmetric palindromic Toeplitz
(BSPT) matrices constructed by adding constant diagonals to the
center and corners of the zero matrix.

Example: 8-by-8 real symmetric palindromic Toeplitz matrix with 2
bands: 

0 a1 a2 0 0 a2 a1 0
a1 0 a1 a2 0 0 a2 a1

a2 a1 0 a1 a2 0 0 a2

0 a2 a1 0 a1 a2 0 0
0 0 a2 a1 0 a1 a2 0
a2 0 0 a2 a1 0 a1 a2

a1 a2 0 0 a2 a1 0 a1

0 a1 a2 0 0 a2 a1 0


.
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Our Work

The imposed additional symmetry of our palindromic Toeplitz
case greatly increases the number of terms that contribute to
the moments of the eigenvalue distribution compared to the case
of band matrices which are not constant along diagonals.
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Approach

Entries are drawn from probability distribution p with mean 0,
variance 1, and finite higher moments.

We calculate the moments using method of moments. Due to
the banded nature of our matrices, this work turns out different
than previous published work:

We look at the expected value for the moments:

Mn(N) := E(Mn(A,N)) =
1

N(2D)
k
2

∑
1≤i1,...,in≤N

E(ai1,i2ai2,i3 · · · ain,i1).

For small values of D, our matrices are sparse and few terms
contribute in the moment calculation as N →∞. If D is
comparable to N

2 , however, the same behavior as the full
palindromic Toeplitz emerges.
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Approach (Cont’d)

[DMMM] Devlin, Ma, Mattos da Silva, and Miller (2019)

If we fix a number of bands D and let the size of matrix N tend to
infinity, only the terms in the bulk of the matrix contribute to the
moment.

Note that for each row in the bulk, we have 2D choices of columns
for which the chosen entry is nonzero.



Introduction Classical RMT Band Matrices Results Future work Acknowledgements

Results
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FIRST DIFFICULTY: Normalization

The banded nature of our matrices also affects the normalization;
we can no longer use the same factor as in [MMS].

We calculate the contributions to the second moment without any
normalization and then use this result to find an appropriate factor
so that M2 = 1.

Recall the 2kth moment of a Gaussian distribution is (2k − 1)!!
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Second Moment

Let pk denote the moments of the initial distribution, e.g. p2 is the
second moment of p.
For the second moment calculation, we consider

E[ai,jaj,i ] = E[a2
i,j ]

We have (N − 2D) rows in the bulk with 2D choices of non-zero entries

Since we have attached a point mass of size 1
N at each eigenvalue, we

must normalize the quantity

2D − 2
D

N
.

If we wish for the second moment to be 1 in the limit N →∞, we must
normalize it by a factor of

√
2D.

Hence, the moment equation becomes

Mk(A,N,D) =
1

N

1

(2D)
k
2

N∑
i=1

λki (A)
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Fourth Moment

We consider E[ai ,jaj ,kak,lal ,i ].

ij ij ij

klkl
kl

jk jk jk
lilili

Figure 2: Adjacent pairings and non-adjacent pairing configuration.

In contrast to [MMS], a quadruple pairing will contribute to our
fourth moment since our normalization factor differs from 1

N3 .
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Fourth Moment

Adjacent case: x1 = x2 and x3 = x4:

j − i = −(k − j) + 0 `− k = −(i − `) + 0,

which implies
i = k

and ` is arbitrary.

This gives that the contribution is

(N − 2D)(2D)(2D − 2)p2
2

where p2 is second moment of the probability distribution p.
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Fourth Moment

Non-adjacent case: x1 = x3 and x2 = x4:

j − i = −(`− k) + C1 k − j = −(i − `) + C2,

or equivalently

j = i + k − `+ C1 = i + k − `− C2.

We see that C1 + C2 = 0.

No Diophantine obstruction! (Similar to [MMS].)

It follows that the contribution is

(N − 2D)(2D)(2D − 2)p2
2 .
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Fourth Moment

Quadruple case: x1 = x3 = x2 = x4:

Using the same counting approach, we see that

(N − 2D)(2D)p4

where p4 is fourth moment of p.

With the adjacent and non-adjacent cases the fourth moment is

M4 =

(
3− 3

D

)
p2

2 +

(
1

2D

)
p4.
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Higher Moments

Any higher moment can be calculated by brute force computation
and more complicated combinatorics.

Figure 3: Configurations for the six moment

M6 = 15

(
1− 3

D
+

2

D2

)
p3

2 + 15

(
1

2D
− 1

2D2

)
p2p4 +

(
1

4D2

)
p6

where p2, p4, p6 are second, fourth and sixth moments of p (respectively).
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Distributions for different D’s

Figure 4: Distribution for 1 band, size 200× 200.

Initial distribution p has mean 0, variance 1, and finite higher moments.
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Distributions for different D’s

Figure 5: Distribution for 50 bands, size 200× 200.

Initial distribution p has mean 0, variance 1, and finite higher moments.
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Lower Bound: Unbounded Support

Lemma: Suppose D ≥ 2. If p has mean 0 and variance 1, then

M2k,D ≥ (2k − 1)!! · F (k ,D)

where F (k ,D) > 0 is a constant for fixed D.

Conjecture: F (k,D) is bounded below uniformly in k by a fixed
positive constant.

Corollary: Devlin, Ma, Mattos da Silva, and Miller (2019)

lim
k→∞

2k
√

M2k,D =∞

Hence, the support of the limiting spectral measure is unbounded.
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Upper Bound: Unique Distribution

Carleman’s Condition

Let µ be a measure on R which has finite moments of all orders.
Then µ is uniquely determined by its moments provided that

∞∑
k=1

M
−1/(2k)
2k =∞.

Assume p is a distribution with mean 0, variance 1, and finite
higher moments. Need moments of p to grow slow enough that the
sum of reciprocals of the 2kth root of our upper bound diverges.
Conjecture: For k ≥ 4 and

M2k,D ≤ P(k) · (2k − 1)!!

(
k−1∑
i=0

(−1)i s(k , i + 1)

(
1

D

)i
)
p2k (1)

where P(k) is the number of integer partitions of a set with k
elements.
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Future Work

Investigate strength of upper bound, and determine if
moments of eigenvalue distribution determine a unique
distribution.

Determine a closed form for the higher even moments
(calculate 8th moment explicitly).

Deduce further convergence results.
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