Crescent Configurations Under Non-Euclidean Norms

Students: Sara Fish, Dylan King, Catherine Wahlenmayer
Mentors: Prof. Steven J. Miller, Prof. Eyvindur Palsson

SMALL REU at Williams College

UMass REU Conference
July 23, 2019
Outline

- Erdős distinct distances problem
- Crescent configurations under Euclidean norms
- Crescent configurations under L^p norms
 - Line-like configurations in L^p
 - Crescent configurations in L^p
Erdős distinct distances problem

Question [Erdős, 1946]

Given n points in a plane, what is the minimum number of distinct distances $\Delta(n)$ that they determine?

We “expect” $\binom{n}{2} = O(n^2)$ distinct distances. How low can we go?
Erdős Distinct Distances Problem: Bounds

Upper bounds:
- \(\Delta(n) = O\left(\frac{n}{\sqrt{\log n}}\right) \)

Lower bounds:
- \(\Delta(n) = \Omega(n^{1/2}) \) (Erdős, 1946)
- \(\Delta(n) = \Omega(n^{2/3}) \) (Moser, 1952)
- \(\Delta(n) = \Omega(n^{5/7}) \) (Chung, 1984)
- \(\Delta(n) = \Omega(n^{4/5}/\log n) \) (Chung + Szemerédi + Trotter, 1992)
- \(\Delta(n) = \Omega(n^{4/5}) \) (Székely, 1993)
- \(\Delta(n) = \Omega(n^{6/7}) \) (Solymosi + Tóth, 2001)
- \(\Delta(n) = \Omega(n^{4\epsilon/5\epsilon-1}) \approx \Omega(n^{0.8636}) \) (Tardos, 2003)
- \(\Delta(n) = \Omega(n^{48-14\epsilon/55-16\epsilon}) \approx \Omega(n^{0.8641}) \) (Katz + Tardos, 2004)
- \(\Delta(n) = \Omega(n^{\frac{n}{\log n}}) \) (Guth + Katz, 2015)
Erdős Distinct Distances Problem: Variants

- The structure of all near-optimal point sets (which obtain $O\left(\frac{n}{\sqrt{\log n}}\right)$)
- Restriction: no 3 points on a line
- Restriction: no 3 points on a line and no 4 points on a circle (general position)
- Restriction: points must be in convex position
- Higher (and lower) dimensions
- Bipartite problems (points lie on one of two lines)
- Distinct distances with local properties
- Crescent configurations
Erdős’ Question

Question [Erdős, 1989]

Does there exist a set of n points such that:

1. The n points determine $n - 1$ distinct distances
2. For all $1 \leq i \leq n - 1$, there exists a distance which occurs exactly i times

Answer: Yes!

1. n equally spaced points on a line
2. n equally spaced points on a circular arc
Erdős’ Crescent configurations

To rule out these trivial configurations, Erdős introduced an additional requirement that the points lie in general position.

Definition

We say that \(n \) points in the plane lie in **general position** if no three points lie on a common line and no four points lie on a common circle.

This leads to the definition of a crescent configuration.

Definition

We say that \(n \) points in the plane form a **crescent configuration** if:

1. The \(n \) points lie in general position
2. The \(n \) points determine \(n - 1 \) distinct distances
3. For all \(1 \leq i \leq n - 1 \), there exists a distance which occurs exactly \(i \) times
Current results about crescent configurations

For $3 \leq n \leq 8$, constructions are known (Erdős, I. Pálásti, A. Liu, and C. Pomerance).

For $n \geq 9$, it is an open problem whether crescent configurations of size n exist.
Crescent configurations are rare: heuristics

We “expect” crescent configurations to be extremely rare.

Definition

We say that n points in the plane form a **crescent configuration** if:

1. The n points lie in general position
2. The n points determine $n - 1$ distinct distances
3. For all $1 \leq i \leq n - 1$, there exists a distance which occurs exactly i times

- By Guth and Katz (2015), n points determine $\Omega\left(\frac{n}{\log n}\right)$ distinct distances. Just $n - 1$ distinct distances is cutting close!
- The general position condition is very restrictive.
- The multiplicity condition is very restrictive.
We examine how crescent configurations behave under a generalization of the L^2 norm, the L^p norm.

Definition (L^p distance)

Let $1 \leq p < \infty$. Let $a = (a_x, a_y)$ and $b = (b_x, b_y)$ be two points in the plane. Their L^p distance is given by:

$$d_p(a, b) = (|b_x - a_x|^p + |b_y - a_y|^p)^{1/p}$$

There is also the notion of the L^∞ norm.

Definition (L^∞ distance)

Let $a = (a_x, a_y)$ and $b = (b_x, b_y)$ be two points in the plane. Their L^∞ distance is given by:

$$d_p(a, b) = \max\{|b_x - a_x|, |b_y - a_y|\}$$
L^p unit balls and perpendicular bisectors

Unit ball: set of points which have 1 from the origin.

Perpendicular bisector: set of points which are equidistant from two given points.

<table>
<thead>
<tr>
<th></th>
<th>L^1</th>
<th>L^2</th>
<th>L^3</th>
<th>L^∞</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend
- Background
- L^2 crescent configs
- L^p Geometry
- L^p line-like configs
- L^p crescent configs
- End
Crescent configurations in L^p

Now we can ask the same question about crescent configurations in L^p.

Question [in L^p]

Does there exist a set of n points such that:

1. The n points determine $n - 1$ distinct distances
2. For all $1 \leq i \leq n - 1$, there exists a distance which occurs exactly i times

Recall in L^2, we introduced the condition that the points must lie in general position in order to eliminate trivial crescent configurations.

Step 1: For each $1 \leq p \leq \infty$, find all trivial crescent configurations in L^p.

Step 2: Introduce a condition in the definition of L^p crescent configurations to eliminate these trivial configurations.
Line-like configurations

Recall the trivial crescent configurations in L^2:

Key observation: The distance graphs of all of these trivial crescent configurations are isomorphic to the distance graph of n equally spaced points on a line.

Definition

We say that n points in the plane form a **line-like configuration** if their distance graph is isomorphic to the distance graph of n equally spaced points on a line.
Definition

We say that \(n \) points in the plane form a **line-like configuration** if their distance graph is isomorphic to the distance graph of \(n \) equally spaced points on a line.

The trivial crescent configurations in \(L^p \) are precisely the line-like configurations.

Definition (\(L^p \) crescent configuration)

We say that \(n \) points in the plane form a **crescent configuration** if:

1. The \(n \) points do not contain a line-like configuration of size four
2. The \(n \) points determine \(n - 1 \) distinct distances
3. For all \(1 \leq i \leq n - 1 \), there exists a distance which occurs exactly \(i \) times
Constructing line-like configurations: A geometrical approach

For $1 \leq p \leq \infty$, we can construct line-like configurations in L^p using the same general approach.
Conjecture

For $p \in (1, \infty) \setminus \{2\}$, the only line-like configurations of size $n > 4$ are sets of equally spaced points on a line.

Reasoning: We have numerical evidence (Mathematica) which suggests that no other line-like configurations exist. Trying to geometrically construct a line-like configuration which does not lie on a straight line results in near-misses:
We have a large family of L^1 line-like configurations, for example:

We can show that all L^1 line-like configurations are of this form by a geometrical argument:
There are four types of line-like configurations in L^∞.

- **straight**: $n \geq 3$
- **screw**: $3 \leq n \leq 4$
- **staircase**: $3 \leq n \leq 6$
- **twisted**: ?

Conjecture

For sufficiently large n, every L^∞ line-like configuration is straight.
Our results show that:

1. Line-like configurations have four different types of behavior for $p = 1$, $p = 2$, $p \in (1, \infty) \setminus \{2\}$, and $p = \infty$.

2. Having an understanding of the line-like configurations in L^p means that we have an understanding of the trivial crescent configurations in L^p.
Crescent configurations in L^p

Definition (L^p crescent configuration)

We say that n points in the plane form a **crescent configuration** if:

1. The n points do not contain a line-like configuration of size four
2. The n points determine $n - 1$ distinct distances
3. For all $1 \leq i \leq n - 1$, there exists a distance which occurs exactly i times

Recall: Crescent configurations are rare. In L^2, it is an open problem whether crescent configurations of size n exist for $n \geq 9$.

Our Question

In L^p, for which n do there exist crescent configurations of size n?
Crescent configurations in L^p, $1 < p < \infty$

We have a construction for a crescent configuration of size $n = 4$.
Crescent configurations in L^1

We have constructions for crescent configurations in L^1 of size $3 \leq n \leq 4$.

$P_1 = (0, 0)$
$P_2 = \left(\frac{3}{2}, \frac{1}{2}\right)$
$P_3 = \left(\frac{3}{2}, -\frac{1}{2}\right)$
$P_4 = (-2, 0)$
Crescent configurations in L^∞

We have constructions for crescent configurations in L^∞ of size $3 \leq n \leq 7$.

\[P_1 = (0, 0) \]
\[P_2 = (2, 1) \]
\[P_3 = (1, 3) \]
\[P_4 = (4, -1) \]
\[P_5 = (1, -2) \]
\[P_6 = (5, -3) \]
\[P_7 = (-1, -4) \]
Future Work

Continuations of our work

- Rigorously understanding line-like configurations in L^p, $1 < p < \infty$
- Constructing more crescent configurations in L^p, $1 \leq p \leq \infty$

Extensions of our work

- Applying our L^p framework to other discrete geometry problems (other than the problem of crescent configurations)
- Searching for L^2 crescent configurations in higher dimensional spaces
Acknowledgements

Thanks to

- Prof. Steven J. Miller (Mentor, NSF Grant DMS1561945),
- Prof. Eyvindur Palsson (Mentor),
- the SMALL REU program (NSF grant DMS1659037)
- and to you, for your attention today!
Questions

Sara Fish
(sfish@caltech.edu)

Catherine Wahlenmayer
(wahlenma001@knights.gannon.edu)