The Fibonacci Quilt Game

Alexandra Newlon
Colgate University
anewlon@colgate.edu

Mentored by Steven J. Miller.

Women in Mathematics in New England
Smith College, September 21, 2019
Outline

1. History
2. The Fibonacci Quilt Sequence
3. The Game
4. Game Length
5. Future Work
The Fibonacci Sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55...
The Fibonacci Sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55...

Let $F_0 = F_1 = 1$, and for $n \geq 2$

$$F_n = F_{n-1} + F_{n-2}$$
The Fibonacci Sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55...

Let $F_0 = F_1 = 1$, and for $n \geq 2$

$$F_n = F_{n-1} + F_{n-2}$$

Theorem (Zeckendorf)

Every positive integer can be written uniquely as the sum of non-consecutive Fibonacci numbers where

$$F_n = F_{n-1} + F_{n-2}$$

and $F_1 = 1$, $F_2 = 2$.
The Fibonacci Quilt Sequence
The Fibonacci Quilt Sequence
The Fibonacci Quilt Sequence

1 2 3
4
5
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
1 2 3
4
The Fibonacci Quilt Sequence
The Fibonacci Quilt Sequence
FQ-legal Decomposition

Definition (Catral, Ford, Harris, Miller, Nelson)

Let an increasing sequence of positive integers $q_{i=1}^\infty$ be given. We declare a decomposition of an integer

$$m = q_{l_1} + q_{l_2} + \cdots + q_{l_t}$$

(where $q_{l_i} > q_{l_{i+1}}$) to be an FQ-legal decomposition if for all i, j, $|l_i - l_j| \neq 0, 1, 3, 4$ and $\{1, 3\} \not\subset \{l_1, l_2, \ldots, l_t\}$.
The Fibonacci Quilt Sequence

Definition (Catral, Ford, Harris, Miller, Nelson)

The Fibonacci Quilt sequence is an increasing sequence of positive integers \(\{q_i\}_{i=1}^{\infty} \), where every \(q_i \) \((i \geq 1)\) is the smallest positive integer that does not have an FQ-legal decomposition using the elements \(\{q_1, \ldots, q_{i-1}\} \).
Recurrence Relations

Theorem (Catral, Ford, Harris, Miller, Nelson)

Let \(q_n \) denote the \(n^{th} \) term in the Fibonacci Quilt, then

- for \(n \geq 5 \), \(q_{n+1} = q_{n-1} + q_{n-2} \),
- for \(n \geq 6 \), \(q_{n+1} = q_n + q_{n-4} \).
General Rules

- Inspired by the Two Player Zeckendorf Game
- Two players alternate turns, the last person to move wins
- Start the game with n 1’s (q_1’s)
- A turn consists of one of 5 rules, which preserve that $\sum q_i = n$ by exchanging a pair q_i, q_j such that i, j are an illegal distance apart for a single term or legal pair.
Rule 1

For $n \geq 2$, $q_n + q_{n+1} \rightarrow q_{n+3}$
General Rules

Rule 2

For $n \geq 2$, $q_n + q_{n+4} \rightarrow q_{n+5}$
General Rules

Rule 3

For $n \geq 7$, $2q_n \rightarrow q_{n+2} + q_{n-5}$
General Rules

Rule 4

For $n \geq 7$, $q_n + q_{n+3} \rightarrow q_{n-5} + q_{n+4}$
General Rules

Rule 5

\[q_1 + q_3 \rightarrow q_4 \]
General Rules

Rule 5

\[q_1 + q_3 \rightarrow q_4 \]

To handle base cases, we added additional base rules that

- preserves \(\sum q_i = n \)
- does not produce violation of legality
General Rules

Rule 5

\[q_1 + q_3 \rightarrow q_4 \]

To handle base cases, we added additional base rules that

- preserves \(\sum q_i = n \)
- does not produce violation of legality

Special Rule

\[1 + 5 \rightarrow 2 + 4 \]

Note: This rule can only be applied when nothing else can be done.
Example Game

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28...

\[n = 10 = 9 + 1 \]

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 7 & 9 \\
10 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Example Game

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28...

n = 10 = 9 + 1

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Rule 3: \(q_1^2 \rightarrow q_2 \)
Example Game

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28...

\[n = 10 = 9 + 1 \]

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 7 & 9 \\
10 & 0 & 0 & 0 & 0 & 0 & 0 \\
8 & 1 & 0 & 0 & 0 & 0 & 0 \\
7 & 0 & 1 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Rule 3: \(q_1^2 \rightarrow q_2 \)

Rule 1: \(q_1 + q_2 \rightarrow q_3 \)
Example Game

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28...

\(n = 10 = 9 + 1 \)

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Rule 3: \(q_1^2 \rightarrow q_2 \)
Rule 1: \(q_1 + q_2 \rightarrow q_3 \)
Rule 3: \(q_1^2 \rightarrow q_2 \)
Example Game

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28...

\[n = 10 = 9 + 1 \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Rule 3: \(q_1^2 \rightarrow q_2 \)

Rule 1: \(q_1 + q_2 \rightarrow q_3 \)

Rule 3: \(q_2 \rightarrow q_2 \)

Rule 1: \(q_1 + q_2 \rightarrow q_3 \)
Example Game

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28...

\[n = 10 = 9 + 1 \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Rule 3: \(q_1^2 \rightarrow q_2 \)

Rule 1: \(q_1 + q_2 \rightarrow q_3 \)

Rule 3: \(q_1^2 \rightarrow q_2 \)

Rule 1: \(q_1 + q_2 \rightarrow q_3 \)

Rule 5: \(q_1 + q_3 \rightarrow q_4 \)
Example Game

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28...

n = 10 = 9 + 1

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Rule 3: $q_1^2 \rightarrow q_2$
Rule 1: $q_1 + q_2 \rightarrow q_3$
Rule 3: $q_1^2 \rightarrow q_2$
Rule 1: $q_1 + q_2 \rightarrow q_3$
Rule 5: $q_1 + q_3 \rightarrow q_4$
Rule 2: $q_1 + q_4 \rightarrow q_5$
Example Game

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28...

\[n = 10 = 9 + 1 \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Rule 3: \(q_1^2 \rightarrow q_2 \)

Rule 1: \(q_1 + q_2 \rightarrow q_3 \)

Rule 3: \(q_1 \rightarrow q_2 \)

Rule 1: \(q_1 + q_2 \rightarrow q_3 \)

Rule 5: \(q_1 + q_3 \rightarrow q_4 \)

Rule 2: \(q_1 + q_4 \rightarrow q_5 \)

Rule 3: \(q_1^2 \rightarrow q_2 \)
Example Game

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28...

\[n = 10 = 9 + 1 \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Rule 3: \[q_1^2 \rightarrow q_2 \]

Rule 1: \[q_1 + q_2 \rightarrow q_3 \]

Rule 3: \[q_1^2 \rightarrow q_2 \]

Rule 1: \[q_1 + q_2 \rightarrow q_3 \]

Rule 5: \[q_1 + q_3 \rightarrow q_4 \]

Rule 2: \[q_1 + q_4 \rightarrow q_5 \]

Rule 3: \[q_1^2 \rightarrow q_2 \]

Rule 4: \[q_2 + q_5 \rightarrow q_6 \]
Example Game

1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28...

\[n = 10 = 9 + 1 \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Rule 3: \(q_1^2 \rightarrow q_2 \)
Rule 1: \(q_1 + q_2 \rightarrow q_3 \)
Rule 3: \(q_1^2 \rightarrow q_2 \)
Rule 1: \(q_1 + q_2 \rightarrow q_3 \)
Rule 5: \(q_1 + q_3 \rightarrow q_4 \)
Rule 2: \(q_1 + q_4 \rightarrow q_5 \)
Rule 3: \(q_1^2 \rightarrow q_2 \)
Rule 4: \(q_2 + q_5 \rightarrow q_6 \)
Rule 4: \(q_3 + q_6 \rightarrow q_1 + q_7 \)
The Game is Playable

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.
The Game is Playable

Theorem
Every game terminates in a finite number of moves at an FQ-legal decomposition.

Proof Sketch: The sum of the square roots of the indices of the terms is a strict monovariant.
The Game is Playable

Theorem
Every game terminates in a finite number of moves at an FQ-legal decomposition.

Proof Sketch: The sum of the square roots of the indices of the terms is a strict monovariant.

\[q_n \land q_{n+1} \rightarrow q_{n+3}: \sqrt{n + 3} - \sqrt{n} - \sqrt{n + 1} < 0 \]
The Game is Playable

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

Proof Sketch: The sum of the square roots of the indices of the terms is a strict monovariant.

\[
q_n \land q_{n+1} \rightarrow q_{n+3}: \sqrt{n + 3} - \sqrt{n} - \sqrt{n + 1} < 0 \\
q_n \land q_{n+4} \rightarrow q_{n+5}: \sqrt{n + 5} - \sqrt{n} - \sqrt{n + 4} < 0
\]
The Game is Playable

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

Proof Sketch: The sum of the square roots of the indices of the terms is a strict monovariant.

-
 \[q_n \land q_{n+1} \rightarrow q_{n+3} : \sqrt{n + 3} - \sqrt{n} - \sqrt{n + 1} < 0 \]
-
 \[q_n \land q_{n+4} \rightarrow q_{n+5} : \sqrt{n + 5} - \sqrt{n} - \sqrt{n + 4} < 0 \]
-
 \[2q_n \rightarrow q_{n+2} \land q_{n-5} : \sqrt{n + 2} + \sqrt{n - 5} - 2\sqrt{n} < 0 \]
The Game is Playable

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

Proof Sketch: The sum of the square roots of the indices of the terms is a strict monovariant.

- \(q_n \land q_{n+1} \rightarrow q_{n+3}: \sqrt{n+3} - \sqrt{n} - \sqrt{n+1} < 0 \)
- \(q_n \land q_{n+4} \rightarrow q_{n+5}: \sqrt{n+5} - \sqrt{n} - \sqrt{n+4} < 0 \)
- \(2q_n \rightarrow q_{n+2} \land q_{n-5}: \sqrt{n+2} + \sqrt{n-5} - 2\sqrt{n} < 0 \)
- \(q_n \land q_{n+3} \rightarrow q_{n+4} \land q_{n-5}: \sqrt{n+4} + \sqrt{n-5} - \sqrt{n} - \sqrt{n+3} < 0 \)
Other Results

Theorem

There is more than one possible game for any \(n > 3 \).
Other Results

Theorem
There is more than one possible game for any \(n > 3 \).

Theorem
There are games of even and odd length for any \(n > 5 \).
Other Results

Theorem
There is more than one possible game for any $n > 3$.

Theorem
There are games of even and odd length for any $n > 5$.

Conjecture
The game is fair.
Lower Bound on Game Length

Notation
Let $L(n)$ denote the maximum number of terms in an FQ-legal decomposition of n. Let $l(n)$ denote the minimum number of terms in an FQ-legal decomposition of n.

Examples:
$20 = 16 + 4 = 12 + 7 + 1$
$L(20) = 3, \ l(20) = 2$
Lower Bound on Game Length

Notation

Let $L(n)$ denote the maximum number of terms in an FQ-legal decomposition of n. Let $l(n)$ denote the minimum number of terms in an FQ-legal decomposition of n.

Examples:

- $20 = 16 + 4 = 12 + 7 + 1$
 - $L(20) = 3$, $l(20) = 2$
- $50 = 49 + 1 = 28 + 16 + 4 + 2$
 - $L(50) = 4$, $l(50) = 2$
Lower Bound on Game Length

Theorem
The shortest possible game on n is completed in \(n - L(n) \) moves.
Theorem

The shortest possible game on n is completed in $n - L(n)$ moves.

Proof Sketch: Strong induction on n.
Lower Bound on Game Length

Theorem

The shortest possible game on n is completed in $n - L(n)$ moves.

Proof Sketch: Strong induction on n.
If n is in the Fibonacci Quilt Sequence, denoted q_i

$$q_{i-3} + q_{i-2} = q_i$$
Lower Bound on Game Length

Theorem

The shortest possible game on n is completed in $n - L(n)$ moves.

Proof Sketch: Strong induction on n.

If n is in the Fibonacci Quilt Sequence, denoted q_i

$$q_{i-3} + q_{i-2} = q_i$$

If n is not in the sequence

$$n = q_{i_1} + q_{i_2} + \cdots + q_{i_{L(n)}}$$

Number of moves:

$$(q_{i_1} - 1) + (q_{i_2} - 1) + \cdots + (q_{i_{L(n)}} - 1)$$

$$= (q_{i_1} + q_{i_2} + \cdots + q_{i_{L(n)}}) - L(n)$$

$$= n - L(n)$$
Conjecture

The distribution of a random game length approaches Gaussian as n increases.

Figure: Distribution of 1000 games on n=60
Is there a deterministic game that always results in the lower bound?

What patterns emerge from the winner of certain deterministic games as n increases?

Does either player have a winning strategy?
 - Analogous result on the Zeckendorf Game shows that for $n > 2$, player 2 has a winning strategy
Thank You

References

Thank you to Dr. Miller (NSF Grant DMS1561945), the SMALL program (NSF Grant DMS1659037) and Williams College.