When Bands Play in Random Matrix Theory
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Background

One of the main interests of Random Ma-
trix Theory is the study of the distribu-
tion of eigenvalues of matrices under differ-
ent symmetry constraints. Imposed struc-
tures lead to ditferent behavior for the limit-
ing distribution. Certain structured random
matrices have been successtully applied to
model zeros of L-functions and energy lev-
els of heavy nuclei.

Motivation

While the eigenvalue density of the family
of real symmetric matrices converges to a
semicircle, different behavior emerges as the
symmetry increases. Two different groups
completely analyzed the case of real sym-
metric Toeplitz matrices in 2005, seeing a
new distribution that is almost Gaussian;
this was extended in 2007 to real symmetric
palindromic Toeplitz matrices (so the first
row of the matrix is a palindrome), where
the extra symmetry leads to Gaussian be-
havior.

Why Banded Matrices?

Banded matrices have a long history; band
one matrices — not constant on diagonals —
are related to the Laplacian of some sys-
tems in mathematical physics. Further-
more, the behavior of their eigenvalues
transitions from that of the density they are
drawn from to the semicircle distribution as
the number of bands increases from 1 (only
the main diagonal) to D = N (the full ma-
trix), with the transition to semicircular be-
havior essentially complete once D =~ v/N.
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Our Work

We study a new case: N x N banded
symmetric palindromic Toeplitz matrices
(BSPT) constructed by adding constant
diagonals, called bands, to the center and
corners of the zero matrix.

If the matrix A p has D bands, then it will
have non-zero entries on the D diagonals
above and below the main diagonal, as well
as the corresponding upper and lower cor-
ners due to the palindromic constraint.
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Entries are drawn from probability distri-
bution p with mean 0, variance 1, and finite
higher moments. Ay p is parameterized
by D numbers (a1, as,...,ap).

Below, we show the graphs of eigenvalue
distribution with 1, 50 and 99 bands (left to
right).
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Preliminaries

We define a  probability space

(Q]\@D, ‘/—"ij, IP)NJ)) of N x N BSPT matrices
with D bands, where
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To each An p we define the empirical spec-
tral measure 4, , by affixing a mass of
size + at each normalized eigenvalue:
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We use the empirical spectral measure to de-
fine a cumulative distribution function

V2D
Fay px) = =

Our main interest is the behavior of
FAN.D/VED with varying Ay p as N — oo
and D is fixed.

The k™ moment of the measure 14, ,, is
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We are interested in the expectation value
of the moments, denoted M, p.

We cannot compute the moments directly
from the eigenvalues since these are un-
known. Thus, we use Eigenvalue Trace
Lemma to compute and bound moments:
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Results

We show that all odd moments vanish and
we normalize so that the second moment

My p = 1.

Fourth Moment

For a term to contribute, the a’s must be
matched in either pairs or a quadruple. The
total contribution given is
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where p;. denotes the k’th moment of p.
Sixth Moment

Using the same approach, we derive the
sixth moment:
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Lower Bound

We compute a lower bound for the even
moments which can be used to show that
the eigenvalue distributions for each D have
unbounded support:

F(D)2k — 1) < Mok p

where F'(D) is a positive constant depen-
dent on D.

Upper Bound
We also compute an upper bound for the
even moments.

Moy p < [F1(D)(2k — 1)l + Fy(D)] - max(P)

where the maximum is taken over all prod-
ucts of moments of p whose orders sum
to 2k. This allows us to apply Carleman’s
condition to prove that the moments of the
eigenvalue distribution determine a unique
distribution.



