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Background
One of the main interests of Random Ma-
trix Theory is the study of the distribu-
tion of eigenvalues of matrices under differ-
ent symmetry constraints. Imposed struc-
tures lead to different behavior for the limit-
ing distribution. Certain structured random
matrices have been successfully applied to
model zeros of L-functions and energy lev-
els of heavy nuclei.

Motivation
While the eigenvalue density of the family
of real symmetric matrices converges to a
semicircle, different behavior emerges as the
symmetry increases. Two different groups
completely analyzed the case of real sym-
metric Toeplitz matrices in 2005, seeing a
new distribution that is almost Gaussian;
this was extended in 2007 to real symmetric
palindromic Toeplitz matrices (so the first
row of the matrix is a palindrome), where
the extra symmetry leads to Gaussian be-
havior.

Why Banded Matrices?
Banded matrices have a long history; band
one matrices – not constant on diagonals –
are related to the Laplacian of some sys-
tems in mathematical physics. Further-
more, the behavior of their eigenvalues
transitions from that of the density they are
drawn from to the semicircle distribution as
the number of bands increases from 1 (only
the main diagonal) to D = N (the full ma-
trix), with the transition to semicircular be-
havior essentially complete once D ≈

√
N .

Our Work
We study a new case: N × N banded
symmetric palindromic Toeplitz matrices
(BSPT) constructed by adding constant
diagonals, called bands, to the center and
corners of the zero matrix.

If the matrix AN,D has D bands, then it will
have non-zero entries on the D diagonals
above and below the main diagonal, as well
as the corresponding upper and lower cor-
ners due to the palindromic constraint.

Entries are drawn from probability distri-
bution pwith mean 0, variance 1, and finite
higher moments. AN,D is parameterized
by D numbers (a1, a2, . . . , aD).

Below, we show the graphs of eigenvalue
distribution with 1, 50 and 99 bands (left to
right).

Preliminaries
We define a probability space
(ΩN,D,FN,D,PN,D) ofN×N BSPT matrices
with D bands, where

PN,D({AN,D : ai ∈ [αi, βi]}) =
D∏
i=1

βi∫
xi=αi

p(xi) dxi

To each AN,D we define the empirical spec-
tral measure µAN,D

by affixing a mass of
size 1

N at each normalized eigenvalue:

µAN,D
=

1

N

N∑
i=1

δ

(
x−

λi(AN,D)
√
2D

)

We use the empirical spectral measure to de-
fine a cumulative distribution function

FAN,D
(x) =

{#i ≤ N :
λi(AN,D)

√
2D

≤ x}

N

Our main interest is the behavior of
FAN,D/

√
2D with varying AN,D as N → ∞

and D is fixed.

The kth moment of the measure µAN,D
is

Mk(AN,D) =

∫ ∞
−∞

xkµAN,D
dx

=
1

N

1

(2D)
k
2

N∑
i=1

λki (AN,D)

We are interested in the expectation value
of the moments, denoted Mk,D.
We cannot compute the moments directly
from the eigenvalues since these are un-
known. Thus, we use Eigenvalue Trace
Lemma to compute and bound moments:

N∑
i=1

λki = Tr(Ak
N,D)

=
∑

1≤i1,...,ik≤N

ai1,i2ai2i3 · · · aiki1 .

Results
We show that all odd moments vanish and
we normalize so that the second moment
M2,D = 1.
Fourth Moment

For a term to contribute, the a’s must be
matched in either pairs or a quadruple. The
total contribution given is

M4,D = 3

(
1− 1

D

)
p22 +

(
1

2D

)
p4

where pk denotes the k’th moment of p.
Sixth Moment
Using the same approach, we derive the
sixth moment:

Lower Bound
We compute a lower bound for the even
moments which can be used to show that
the eigenvalue distributions for eachD have
unbounded support:

F (D)(2k − 1)!! ≤M2k,D

where F (D) is a positive constant depen-
dent on D.

Upper Bound
We also compute an upper bound for the
even moments.

M2k,D ≤ [F1(D)(2k− 1)!! +F2(D)] ·max(P )

where the maximum is taken over all prod-
ucts of moments of p whose orders sum
to 2k. This allows us to apply Carleman’s
condition to prove that the moments of the
eigenvalue distribution determine a unique
distribution.
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