ABBA and the Random Matrix Discotheque

Keller Blackwell kellerb@mail.usf.edu Wanqiao Xu wanqiaox@umich.edu

1/15/20

1 / 27

SMALL REU 2019, Williams College

Joint work with Neelima Borade, Charles Devlin VI, Renyuan Ma, and Dr. Steven Miller

Supported by NSF Grant #DMS1659037

AMS-MAA-SIAM Special Session on Research in Mathematics by Undergraduates and Students in Post-Baccalaureate Programs, I

January 15th, 2020

Definition: Random Matrices

"A random matrix is a matrix ... that is random."

Classical Mechanics: 3-body problem - intractable!

・ロト ・四ト ・ヨト ・ヨト

Classical Mechanics: 3-body problem - intractable!

Heavy Nuclei: Uranium 200+ protons/neutrons - worse!

ヘロト 人間 とくほとくほう

Classical Mechanics: 3-body problem - intractable!

Heavy Nuclei: Uranium 200+ protons/neutrons - worse!

Schrödinger Equation

$$H\psi_n = E_n\psi_n$$

H: Hamiltonian matrix; entries dependent on system

Classical Mechanics: 3-body problem - intractable!

Heavy Nuclei: Uranium 200+ protons/neutrons - worse!

Schrödinger Equation

$$H\psi_n = E_n\psi_n$$

H: Hamiltonian matrix; entries dependent on system

Classical Mechanics: 3-body problem - intractable!

Heavy Nuclei: Uranium 200+ protons/neutrons - worse!

Schrödinger Equation

$$H\psi_n = E_n\psi_n$$

H: Hamiltonian matrix; entries dependent on system

Wigner's Insights

- Treat H as random Hermitian matrix
- Eigenvalue behavior of *H* well approximated by averaging over Hermitian ensemble

K. Blackwell & W. Xu

1/15/20 3 / 27

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Montgomery's Pair Correlation Conjecture: Spacing between Riemann-zeta function zeros: $1 - \left(\frac{\sin \pi u}{\pi u}\right)^2 + \delta(u)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへ⊙

Montgomery's Pair Correlation Conjecture: Spacing between Riemann-zeta function zeros: $1 - \left(\frac{\sin \pi u}{\pi u}\right)^2 + \delta(u)$

Montgomery's Conjecture:

70 million $\zeta(s)$ zero spacings, vs. random matrix prediction (Odlyzko)

• • = • • = •

Why combine random matrices?

"Tridge" in Midland, Michigan

K. Blackwell & W. Xu

1/15/20 5 / 27

イロト イ団ト イヨト イ

	Number Theory	Random Matrix Theory		
Object	L-functions	Random Matrices		
Events	Zeros	Eigenvalues		
Process	Rankin-Selberg Convolution	???		

Let A, B be $N \times N$ random real symmetric matrices, with entries i.i.d. from a distribution with mean 0, variance 1, and all finite moments.

Sac

Let A, B be $N \times N$ random real symmetric matrices, with entries i.i.d. from a distribution with mean 0, variance 1, and all finite moments.

Imposed structure on A:

$$A = \begin{bmatrix} a_0 & a_1 & a_2 & \cdots & a_2 & a_1 & a_0 \\ a_1 & a_0 & a_1 & \cdots & a_3 & a_2 & a_1 \\ a_2 & a_1 & a_0 & \cdots & a_4 & a_3 & a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_0 & a_1 & a_2 \\ a_1 & a_2 & a_3 & \cdots & a_1 & a_0 & a_1 \\ a_0 & a_1 & a_2 & \cdots & a_2 & a_1 & a_0 \end{bmatrix}$$

Symmetric Palindromic Toeplitz (SPT)

Sac

Let A, B be $N \times N$ random real symmetric matrices, with entries i.i.d. from a distribution p with mean 0, variance 1, and all finite moments.

Imposed structure on A:

A =	[a ₀	a_1	a 2	a ₃	a ₃	a 2	a_1	a_0
	<i>a</i> 1	a_0	a_1	a 2	a ₃	a ₃	a 2	<i>a</i> 1
	a ₂	a_1	a_0	a_1	<i>a</i> ₂	a ₃	a ₃	a ₂
	a ₃	<i>a</i> ₂	a_1	a_0	a_1	a 2	a ₃	a ₃
	a ₃	a ₃	a 2	a_1	a_0	a_1	a 2	a ₃
	a ₂	a ₃	a ₃	a 2	a_1	a_0	a_1	a 2
	a ₁	a 2	a ₃	a ₃	<i>a</i> 2	a_1	a_0	<i>a</i> 1
	a_0	a_1	a_2	a ₃	a ₃	a_2	a_1	a_0

Symmetric Palindromic Toeplitz (SPT)

< 1[™] ►

Let A, B be $N \times N$ random real symmetric matrices, with entries i.i.d. from a distribution p with mean 0, variance 1, and all finite moments.

Imposed structure on A:

<i>A</i> =	a_0	a_1	a 2	a ₃	a ₃	a 2	a_1	a_0
	<i>a</i> 1	a_0	a_1	a 2	a ₃	a ₃	a 2	<i>a</i> 1
	a ₂	a_1	a_0	a_1	a 2	a ₃	a ₃	a 2
	a ₃	a 2	a_1	a_0	a_1	a 2	a ₃	a ₃
	a ₃	a ₃	a 2	a_1	a_0	a_1	a 2	a ₃
	a ₂	a ₃	a ₃	a 2	a_1	a_0	a_1	a 2
	a ₁	a 2	a ₃	a ₃	a 2	a_1	a_0	<i>a</i> 1
	a_0	a_1	a 2	a ₃	a ₃	a 2	a_1	a_0

Symmetric Palindromic Toeplitz (SPT)

∃ ⊳.

Disco!

Definition: "Disco" of A, B

$$\mathcal{D}(A,B) = \begin{bmatrix} A & B \\ B & A \end{bmatrix} =$$

Limiting Distributions of A, B

A: Gaussian (Massey, Miller, and Sinsheimer, 2007)

$$\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-t^{2}/2} dt$$

10K imes 10K SPT

Limiting Distributions of A, B

A: Gaussian (Massey, Miller, and Sinsheimer, 2007)

B: Semi-circle (Wigner, 1955)

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^{2}/2} dt \qquad f(x) = \begin{cases} \frac{1}{2\pi} \sqrt{4-x^{2}}, & |x| \leq 2\\ 0, & |x| > 2. \end{cases}$$

Defining Probability Space

The kth Moment of D

$$M_k(\mathcal{D}) = \lim_{N \to \infty} \frac{1}{(2N)^{\frac{k}{2}+1}} \mathbb{E}\left[\sum_{i=1}^{2N} \lambda_i^k(\mathcal{D})\right]$$

<ロト < 団ト < 団ト < 団ト

The kth Moment of D

$$M_k(\mathcal{D}) = \lim_{N \to \infty} \frac{1}{(2N)^{\frac{k}{2}+1}} \mathbb{E}\left[\sum_{i=1}^{2N} \lambda_i^k(\mathcal{D})\right]$$

Eigenvalue Trace Lemma

$$\sum_{i=1}^{2N} \lambda_i^k(\mathcal{D}) = \operatorname{Trace}(\mathcal{D}^k)$$

<ロト < 団ト < 団ト < 団ト

The kth Moment of D

$$M_k(\mathcal{D}) = \lim_{N \to \infty} \frac{1}{(2N)^{\frac{k}{2}+1}} \mathbb{E}\left[\sum_{i=1}^{2N} \lambda_i^k(\mathcal{D})\right]$$

Eigenvalue Trace Lemma

$$\sum_{i=1}^{2N} \lambda_i^k(\mathcal{D}) = \operatorname{Trace}(\mathcal{D}^k)$$

Key Equation

$$M_k(\mathcal{D}) = \lim_{N \to \infty} \frac{1}{(2N)^{\frac{k}{2}+1}} \mathbb{E}\left[\mathsf{Trace}(\mathcal{D}^k)\right]$$

・ロト ・日下・ ・ ヨト・

Lemma

$$\operatorname{tr}(\mathcal{D}^{k}) = \operatorname{tr}((A+B)^{k}) + \operatorname{tr}((A-B)^{k})$$
$$= 2\sum_{\substack{l=0\\l: \text{even}}}^{k}\sum_{\substack{i_{1}+\dots+i_{p}=k-l\\j_{1}+\dots+j_{p}=l}}\operatorname{tr}(A^{i_{1}}B^{j_{1}}\cdots A^{i_{p}}B^{j_{p}})$$

Note: Only the terms with even power survive!

イロト イヨト イヨト イヨト

A Simple Example

Take k = 4.

$$M_4(\mathcal{D}) = \lim_{N \to \infty} \frac{1}{(2N)^3} \mathbb{E}[\operatorname{tr}(\mathcal{D}^4)]$$

=
$$\lim_{N \to \infty} \frac{1}{(2N)^3} \mathbb{E}[\operatorname{tr}((A+B)^4) + \operatorname{tr}((A-B)^4)]$$

=
$$\lim_{N \to \infty} \frac{2}{(2N)^3} \mathbb{E}[\operatorname{tr}(A^4) + 4\operatorname{tr}(A^2B^2) + 2\operatorname{tr}(ABAB) + \operatorname{tr}(B^4)]$$

1/15/20 14 / 27

A Simple Example

Take k = 4.

$$M_{4}(\mathcal{D}) = \lim_{N \to \infty} \frac{1}{(2N)^{3}} \mathbb{E}[\operatorname{tr}(\mathcal{D}^{4})]$$

=
$$\lim_{N \to \infty} \frac{1}{(2N)^{3}} \mathbb{E}[\operatorname{tr}((A+B)^{4}) + \operatorname{tr}((A-B)^{4})]$$

=
$$\lim_{N \to \infty} \frac{2}{(2N)^{3}} \mathbb{E}[\operatorname{tr}(A^{4}) + 4\operatorname{tr}(A^{2}B^{2}) + 2\operatorname{tr}(ABAB) + \operatorname{tr}(B^{4})]$$

We know

$$\lim_{N \to \infty} \frac{1}{N^3} \mathbb{E}[\operatorname{tr}(A^4)] = M_4(A)$$
$$\lim_{N \to \infty} \frac{1}{N^3} \mathbb{E}[\operatorname{tr}(B^4)] = M_4(B)$$

1/15/20 14 / 27

$$\begin{aligned} \mathsf{tr}(A^2B^2) &= \sum_{1 \leq i_1, \dots, i_4 \leq 4} a_{i_1, i_2} a_{i_2, i_3} b_{i_3, i_4} b_{i_4, i_1} \\ \mathsf{tr}(ABAB) &= \sum_{1 \leq i_1, \dots, i_4 \leq 4} a_{i_1, i_2} b_{i_2, i_3} a_{i_3, i_4} b_{i_4, i_1} \end{aligned}$$

1/15/20 15 / 27

$$\begin{aligned} \mathsf{tr}(A^2B^2) &= \sum_{1 \leq i_1, \dots, i_4 \leq 4} a_{i_1, i_2} a_{i_2, i_3} b_{i_3, i_4} b_{i_4, i_1} \\ \mathsf{tr}(ABAB) &= \sum_{1 \leq i_1, \dots, i_4 \leq 4} a_{i_1, i_2} b_{i_2, i_3} a_{i_3, i_4} b_{i_4, i_1} \end{aligned}$$

1/15/20 15 / 27

$$\begin{aligned} \operatorname{tr}(A^2B^2) &= \sum_{1 \leq i_1, \dots, i_4 \leq 4} a_{i_1, i_2} a_{i_2, i_3} b_{i_3, i_4} b_{i_4, i_1} \\ \operatorname{tr}(ABAB) &= \sum_{1 \leq i_1, \dots, i_4 \leq 4} a_{i_1, i_2} b_{i_2, i_3} a_{i_3, i_4} b_{i_4, i_1} \end{aligned}$$

 $\mathbb{E}[a] = \mathbb{E}[b] = 0 \implies a, b$ have to be paired

1/15/20 15 / 27

Gaussian

1

∃ >

DQC

b

h

b

b

b

h

For 2α a's and 2β b's, the number of contributing pairing configurations is:

$$\mathcal{P}(\alpha,\beta) = \sum_{\substack{|V|=\beta+1\\ \deg(v)=d_1,d_2,\ldots,d_{\beta+1}\\ v \in V}} \frac{2(\alpha+\beta)}{\sigma_r(G)} \prod_{s=1}^{\beta+1} \binom{2r_s+d_s-1}{d_s-1} (2r_s-1)!!$$

- (注) - (注)

$$\mathcal{P}(\alpha,\beta) = \sum_{\substack{|V|=\beta+1\\ \deg(v)=d_1,d_2,...,d_{\beta+1}\\ v \in V}} \frac{2(\alpha+\beta)}{\sigma_r(G)} \prod_{s=1}^{\beta+1} \binom{2r_s+d_s-1}{d_s-1} (2r_s-1)!!$$

900

▲ロト ▲圖ト ▲屋ト ▲屋ト

Odd and Small Even Moments

• For odd k, $M_k(\mathcal{D}) = 0$.

Odd and Small Even Moments

- For odd k, $M_k(\mathcal{D}) = 0$.
- Computation of small even moments:

	Semicircle	Disco of A, B	Gaussian
2	1	1	1
4	2	2.25	3
6	5	7	15
8	14	27.5	105

K. Blackwell & W. Xu

1/15/20 19 / 27

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Theorem (B., Borade, Devlin, Ma, Miller, and X., 2019)
$$M_{2k}(\mathcal{D}) \leq \frac{(2k-1)!! + \sum_{j=1}^{k-1} \binom{2k}{2j} \binom{2j}{j} \frac{(2k-2j-1)!!}{j+1} + \frac{1}{k+1} \binom{2k}{k}}{2^{k-1}} \\ \leq M_{2k}(A)$$

590

Take k = 4.

$$M_{4}(\mathcal{D}) = \lim_{N \to \infty} \frac{1}{(2N)^{3}} \mathbb{E}[\operatorname{tr}(\mathcal{D}^{4})]$$

$$= \lim_{N \to \infty} \frac{1}{(2N)^{3}} \mathbb{E}[\operatorname{tr}((A+B)^{4}) + \operatorname{tr}((A-B)^{4})]$$

$$= \lim_{N \to \infty} \frac{2}{(2N)^{3}} \mathbb{E}[\operatorname{tr}(A^{4}) + 4\operatorname{tr}(A^{2}B^{2}) + 2\operatorname{tr}(ABAB) + \operatorname{tr}(B^{4})]$$

超 と くき とくき とうき

Theorem (B., Borade, Devlin, Ma, Miller, and X., 2019)
$$M_{2k}(\mathcal{D}) \leq \frac{(2k-1)!! + \sum_{j=1}^{k-1} \binom{2k}{2j} \binom{2j}{j} \frac{(2k-2j-1)!!}{j+1} + \frac{1}{k+1} \binom{2k}{k}}{2^{k-1}} \leq M_{2k}(A)$$

Sketch:

$$(2k-1)!! \quad \leftrightarrow \quad \text{Contribution of } \mathbb{E}\left[\mathsf{Tr}\left(A^{2k}\right)\right]$$

$$\frac{1}{k+1}\binom{2k}{k} \quad \leftrightarrow \quad \text{Contribution of } \mathbb{E}\left[\mathsf{Tr}\left(B^{2k}\right)\right]$$

$$\binom{2j}{j}\frac{(2k-2j-1)!!}{j+1} \quad \leftrightarrow \quad \text{Contribution of } \mathbb{E}\left[\mathsf{Tr}\left(A^{2k-2j}B^{2j}\right)\right]$$

590

Theorem (B., Borade, Devlin, Ma, Miller, and X., 2019)
$$M_{2k}(\mathcal{D}) \geq \frac{(2k-1)!! + \sum_{j=1}^{k-1} 2k \binom{2j}{j} \frac{(2k-2j-1)!!}{j+1} + \frac{1}{k+1} \binom{2k}{k}}{2^{k-1}}}{2^{k-1}}$$
$$\geq M_{2k}(B)$$

996

Theorem (B., Borade, Devlin, Ma, Miller, and X., 2019)
$$M_{2k}(\mathcal{D}) \geq \frac{(2k-1)!! + \sum_{j=1}^{k-1} 2k \binom{2j}{j} \frac{(2k-2j-1)!!}{j+1} + \frac{1}{k+1} \binom{2k}{k}}{2^{k-1}}}{2^{k-1}}$$
$$\geq M_{2k}(B)$$

Sketch:

$$(2k-1)!! \quad \leftrightarrow \quad \text{Contribution of } \mathbb{E}\left[\mathsf{Tr}\left(A^{2k}\right)\right]$$

$$\frac{1}{k+1}\binom{2k}{k} \quad \leftrightarrow \quad \text{Contribution of } \mathbb{E}\left[\mathsf{Tr}\left(B^{2k}\right)\right]$$

$$\binom{2j}{j}\frac{(2k-2j-1)!!}{j+1} \quad \leftrightarrow \quad \text{Contribution of } \mathbb{E}\left[\mathsf{Tr}\left(A^{2k-2j}B^{2j}\right)\right]$$

590

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一 臣 … の Q ()

Sketch:

$$\left|\frac{(2k-1)!! + \sum_{j=1}^{k-1} \binom{2k}{2j} \binom{2j}{j} \frac{(2k-2j-1)!!}{j+1} + \frac{1}{k+1} \binom{2k}{k}}{2^{k-1}(2k-1)!!}\right| \le \mathcal{O}\left(\left(\frac{5}{6}\right)^k\right)$$

1/15/20 24 / 27

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

Sketch:

$$\left|\frac{(2k-1)!! + \sum_{j=1}^{k-1} \binom{2k}{2j} \binom{2j}{j} \frac{(2k-2j-1)!!}{j+1} + \frac{1}{k+1} \binom{2k}{k}}{2^{k-1}(2k-1)!!}\right| \le \mathcal{O}\left(\left(\frac{5}{6}\right)^k\right)$$

$$\lim_{k \to \infty} \frac{2^{k-1} \frac{1}{k+1} \binom{2^k}{k}}{(2k-1)!! + \sum_{j=1}^{k-1} 2k \binom{2^j}{j} \frac{(2k-2j-1)!!}{j+1} + \frac{1}{k+1} \binom{2^k}{k}} = 0$$

1/15/20 24 / 27

▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

The limiting eigenvalue distribution P of $\mathcal{D}(A, B)$ has unbounded support.

□ ▶ ★ 臣 ▶ ★ 臣

The limiting eigenvalue distribution P of $\mathcal{D}(A, B)$ has unbounded support.

Sketch: If supp $(P) \subset [-B, B]$ then $\sqrt[2k]{M_{2k}(\mathcal{D})} \leq B$ for all k.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣

The limiting eigenvalue distribution P of $\mathcal{D}(A, B)$ has unbounded support.

Sketch: If supp $(P) \subset [-B, B]$ then $\sqrt[2k]{M_{2k}(D)} \leq B$ for all k.

$$\sqrt[2k]{M_{2k}(\mathcal{D})} \geq \left[\frac{(2k-1)!! + \sum_{j=1}^{k-1} 2k \binom{2j}{j} \frac{(2k-2j-1)!!}{j+1} + \frac{1}{k+1} \binom{2k}{k}}{2^k} \right]^{\frac{1}{2k}} \\
\geq \frac{1}{2} \sqrt{k} \qquad (Stirling's Formula) \\
\gg B$$

1

▶ < E ▶ < E</p>

1/15/20

25 / 27

A Brave New Distribution

Disco vs. Gaussian, Semicircle

-

イロト イポト イヨト イ

Thank you!

590

(日) (四) (三) (三) (三)