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Maine-Québec Number Theory Conference, October 2019

1



Background L2 crescent configs Lp Geometry Lp line-like configs Lp crescent configs End

Outline
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Erdős distinct distances problem

Question [Erdős, 1946]

Given n points in a plane, what is the minimum number of distinct
distances ∆(n) that they determine?

We “expect”
(n

2

)
= O(n2) distinct distances. How low can we go?
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Erdős Distinct Distances Problem: Bounds

Upper bounds:

∆(n) = O( n√
log n

) (Erdős, 1946)

Lower bounds:

∆(n) = Ω(n1/2) (Erdős, 1946)

∆(n) = Ω(n2/3) (Moser, 1952)

∆(n) = Ω(n5/7) (Chung, 1984)

∆(n) = Ω(n4/5/ log n) (Chung + Szemerédi + Trotter, 1992)

∆(n) = Ω(n4/5) (Székely, 1993)

∆(n) = Ω(n6/7) (Solymosi + Tóth, 2001)

∆(n) = Ω(n
4ε

5ε−1 ) ≈ Ω(n0.8636) (Tardos, 2003)

∆(n) = Ω(n
48−14ε
55−16ε ) ≈ Ω(n0.8641) (Katz + Tardos, 2004)

∆(n) = Ω( n
log n ) (Guth + Katz, 2015)
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Erdős Distinct Distances Problem: Variants

The structure of all near-optimal point sets (which obtain O( n√
log n

))

Restriction: no 3 points on a line

Restriction: no 3 points on a line and no 4 points on a circle
(general position)

Higher dimensions

Bipartite problems (points lie on one of two lines)

Distinct distances with local properties

Crescent configurations
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Erdős’ Question

Question [Erdős, 1989]

Does there exist a set of n points such that:

1 The n points determine n − 1 distinct distances

2 For all 1 ≤ i ≤ n − 1, there exists a distance which occurs exactly i
times

Answer: Yes!
1 n equally spaced points on a line
2 n equally spaced points on a circular arc
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Erdős’ Crescent configurations

To rule out these trivial configurations, Erdős introduced an additional
requirement that the points lie in general position.

Definition

We say that n points in the plane lie in general position if no three
points lie on a common line and no four points lie on a common circle.

This leads to the definition of a crescent configuration.

Definition

We say that n points in the plane form a crescent configuration if:

1 The n points lie in general position

2 The n points determine n − 1 distinct distances

3 For all 1 ≤ i ≤ n − 1, there exists a distance which occurs exactly i
times
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Current results about crescent configurations

For 4 ≤ n ≤ 8, constructions are known (Erdős, I. Pàlàsti, A. Liu, and C.
Pomerance).

For n ≥ 9, it is an open problem whether crescent configurations of size
n exist.
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Crescent configurations are rare: heuristics

We “expect” crescent configurations to be extremely rare.

Definition

We say that n points in the plane form a crescent configuration if:

1 The n points lie in general position

2 The n points determine n − 1 distinct distances

3 For all 1 ≤ i ≤ n − 1, there exists a distance which occurs exactly i
times

By Guth and Katz (2015), n points determine Ω( n
log n ) distinct

distances. Just n − 1 distinct distances is cutting close!

The general position condition is very restrictive.

The multiplicity condition is very restrictive.
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Lp norm

We examine how crescent configurations behave under a generalization
of the L2 norm, the Lp norm.

Definition (Lp distance)

Let 1 ≤ p <∞. Let a = (ax , ay ) and b = (bx , by ) be two points in the
plane. Their Lp distance is given by:

dp(a, b) = (|bx − ax |p + |by − ay |p)1/p

There is also the notion of the L∞ norm.

Definition (L∞ distance)

Let a = (ax , ay ) and b = (bx , by ) be two points in the plane. Their L∞

distance is given by:

d∞(a, b) = max{|bx − ax |, |by − ay |}
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Lp unit balls and perpendicular bisectors

Unit ball: set of points which have 1 from the origin.

Perpendicular bisector: set of points which are equidistant from two
given points.

L1 L2 L3 L∞
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Crescent configurations in Lp

Now we can ask the same question about crescent configurations in Lp.

Question [in Lp]

Does there exist a set of n points such that:

1 The n points determine n − 1 distinct distances

2 For all 1 ≤ i ≤ n − 1, there exists a distance which occurs exactly i
times

Recall in L2, we introduced the condition that the points must lie in
general position in order to eliminate trivial crescent configurations.

Step 1: For 1 ≤ p ≤ ∞, find all trivial crescent configurations in Lp.
Step 2: Introduce a condition in the definition of Lp crescent
configurations to eliminate these trivial configurations.
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Line-like configurations

Recall the trivial crescent configurations in L2:

Key observation: The distance graphs of all of these trivial crescent
configurations are isomorphic to the distance graph of n equally spaced
points on a line.

Definition

We say that n points in the plane form a line-like configuration if their
distance graph is isomorphic to the distance graph of n equally spaced
points on a line.
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Lp crescent configurations

Definition

We say that n points in the plane form a line-like configuration if their
distance graph is isomorphic to the distance graph of n equally spaced
points on a line.

The trivial crescent configurations in Lp are precisely the line-like
configurations.

Definition (Lp crescent configuration)

We say that n points in the plane form a crescent configuration if:

1 The n points do not contain a line-like configuration of size four

2 No three points lie on a line, and no four points lie on a Lp ball

3 The n points determine n − 1 distinct distances

4 For all 1 ≤ i ≤ n − 1, there exists a distance which occurs exactly i
times
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Constructing line-like configurations: A geometrical approach

For 1 ≤ p ≤ ∞, we can construct line-like configurations in Lp using the
same general approach.
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Lp line-like configurations, p ∈ (1,∞) \ {2}

Conjecture

For p ∈ (1,∞) \ {2}, the only line-like configurations of size n ≥ 5 are
sets of equally spaced points on a line.

Reasoning: We have numerical evidence (Mathematica) which suggests
that no other line-like configurations exist. Trying to geometrically
construct a line-like configuration which does not lie on a straight line
results in near-misses:
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L1 line-like configurations

We have a large family of L1 line-like configurations, for example

We can construct infinitely many L1 line-like configurations like this by a
geometrical argument:

This construction works for every norm which is not strictly convex.
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L∞ line-like configurations

Definition

Line-like crescent configuration

1 No three points lie on a common line.

2 No four points lie on a common L∞ circle.

3 Distance graph is isomorphic to n equally spaced points on a line.
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L∞ line-like configurations

straight screw stair twisted
n ≥ 3 3 ≤ n ≤ 4 3 ≤ n ≤ 6 n ≤ 8
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L∞ line-like configurations

Theorem

Let n ≥ 7. Then every line-like crescent configuration in L∞ of size n is a
perpendicular perturbation of a horizontal or vertical line.

Every line-like configuration of size n ≥ 7 in L∞ satisfies at least one of
the following three properties.

1 Three points lie on a common line.

2 Four points lie on a common L∞ circle.

3 The set of n points is a perpendicular perturbation of a horizontal or
vertical line, i.e., has very similar structure to a set of n equally
spaced points on a horizontal or vertical line.
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Line-like configurations: summary

Our results show that:

1 Line-like configurations have four different types of behavior for
p = 1, p = 2, p ∈ (1,∞) \ {2}, and p =∞.

2 Having an understanding of the line-like configurations in Lp means
that we have an understanding of the trivial crescent configurations
in Lp.
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Crescent configurations in Lp

Definition (Lp crescent configuration)

We say that n points in the plane form a crescent configuration if:

1 The n points do not contain a line-like configuration of size four

2 No three points lie on a line, and no four points lie on a Lp ball

3 The n points determine n − 1 distinct distances

4 For all 1 ≤ i ≤ n − 1, there exists a distance which occurs exactly i
times

Recall: Crescent configurations are rare. In L2, it is an open problem
whether crescent configurations of size n exist for n ≥ 9.

Our Question

In Lp, for which n do there exist crescent configurations of size n?
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Crescent configurations in Lp, 1 < p <∞

We have a construction for a crescent configuration in Lp of size n = 4.

This construction can be generalized to any norm.
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Crescent configurations in L1

We constructed crescent configurations in L1 of sizes 4, 5, 6, 7.

Our construction of size 7:

P1 = (0, 0)
P2 = (0, 2)

P3 = (2, 2)

P4 = (4, 6)

P5 = (4, 8)

P6 = (5, 1)

P7 = (7, 1)
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Crescent configurations in L∞

We constructed crescent configurations in L∞ of sizes 4, 5, 6, 7, 8.

Our construction of size 8:

P1 = (0, 0)
P2 = (0, 6)

P3 = (1, 3)

P4 = (2, 4)

P5 = (3, 2)

P6 = (4, 1)

P7 = (5, 5)

P8 = (6, 7)
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Future Work

Continuations of our work

Disproving the existence of large (strong) crescent configurations
and large line-like configurations in most norms

Constructing crescent configurations of size ≥ 5 in generic norms

Extensions of our work

Classifying line-like crescent configurations in non-strictly convex
norms

Generalize the notion of higher dimensional crescent configurations
to arbitrary normed spaces
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