Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
000	0000	0000	00000000	0000	000

Crescent Configurations Under Non-Euclidean Norms

Dylan King Wake Forest University

Catherine Wahlenmayer Gannon University

Sara Fish California Institute of Technology

Advised by Steven J. Miller SMALL REU at Williams College

Maine-Québec Number Theory Conference, October 2019

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
000	0000	0000	00000000	0000	000
Outline					

- Erdős distinct distances problem
- Crescent configurations under Euclidean norms
- Crescent configurations under L^p norms
 - Line-like configurations in L^p
 - Crescent configurations in ${\cal L}^p$

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
●00	0000	0000	00000000	0000	000

Erdős distinct distances problem

Question [Erdős, 1946]

Given *n* points in a plane, what is the minimum number of distinct distances $\Delta(n)$ that they determine?

We "expect" $\binom{n}{2} = O(n^2)$ distinct distances. How low can we go?

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
0●0	0000	0000	00000000	0000	000

Erdős Distinct Distances Problem: Bounds

Upper bounds:

• $\Delta(n) = O(\frac{n}{\sqrt{\log n}})$ (Erdős, 1946)

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
000					

Erdős Distinct Distances Problem: Bounds

Upper bounds:

•
$$\Delta(n) = O(\frac{n}{\sqrt{\log n}})$$
 (Erdős, 1946)

Lower bounds:

•
$$\Delta(n) = \Omega(n^{1/2})$$
 (Erdős, 1946)

•
$$\Delta(n) = \Omega(n^{2/3})$$
 (Moser, 1952)

•
$$\Delta(n) = \Omega(n^{5/7})$$
 (Chung, 1984)

•
$$\Delta(n) = \Omega(n^{6/7})$$
 (Solymosi + Tóth, 2001)

•
$$\Delta(n) = \Omega(n^{\frac{4\epsilon}{5\epsilon-1}}) \approx \Omega(n^{0.8636})$$
 (Tardos, 2003)

•
$$\Delta(n) = \Omega(n^{\frac{48-14\epsilon}{55-16\epsilon}}) \approx \Omega(n^{0.8641})$$
 (Katz + Tardos, 2004)

•
$$\Delta(n) = \Omega(\frac{n}{\log n})$$
 (Guth + Katz, 2015)

Erdős Distinct Distances Problem: Variants

- The structure of all near-optimal point sets (which obtain $O(\frac{n}{\sqrt{\log n}})$)
- Restriction: no 3 points on a line
- Restriction: no 3 points on a line and no 4 points on a circle (general position)
- Higher dimensions
- Bipartite problems (points lie on one of two lines)
- Distinct distances with local properties
- Crescent configurations

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
000	●○○○	0000	00000000		000

Erdős' Question

Question [Erdős, 1989]

Does there exist a set of n points such that:

- **①** The *n* points determine n-1 distinct distances
- ② For all 1 ≤ i ≤ n − 1, there exists a distance which occurs exactly i times

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
000	●○○○	0000	00000000	0000	000

Erdős' Question

Question [Erdős, 1989]

Does there exist a set of n points such that:

- **①** The *n* points determine n 1 distinct distances
- ② For all 1 ≤ i ≤ n − 1, there exists a distance which occurs exactly i times

Answer: Yes!

- In equally spaced points on a line
- In equally spaced points on a circular arc

Background	L^2 crescent configs $\circ \bullet \circ \circ$	L ^p Geometry	<i>L^p</i> line-like configs	L ^p crescent configs	End
000		0000	00000000	0000	000

Erdős' Crescent configurations

To rule out these trivial configurations, Erdős introduced an additional requirement that the points lie in general position.

Definition

We say that *n* points in the plane lie in **general position** if no three points lie on a common line and no four points lie on a common circle.

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
000	○●○○	0000	00000000	0000	000

Erdős' Crescent configurations

To rule out these trivial configurations, Erdős introduced an additional requirement that the points lie in general position.

Definition

We say that *n* points in the plane lie in **general position** if no three points lie on a common line and no four points lie on a common circle.

This leads to the definition of a crescent configuration.

Definition

We say that n points in the plane form a **crescent configuration** if:

- **1** The *n* points lie in general position
- **2** The *n* points determine n 1 distinct distances
- So For all 1 ≤ i ≤ n − 1, there exists a distance which occurs exactly i times

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
	0000				

Current results about crescent configurations

For $4 \le n \le 8$, constructions are known (Erdős, I. Pàlàsti, A. Liu, and C. Pomerance).

For $n \ge 9$, it is an open problem whether crescent configurations of size n exist.

Background	L ² crescent configs	L ^p line-like configs	L ^p crescent configs	End
000	○○○●	00000000	0000	000

Crescent configurations are rare: heuristics

We "expect" crescent configurations to be extremely rare.

Definition

We say that n points in the plane form a crescent configuration if:

- The *n* points lie in general position
- 2 The *n* points determine n-1 distinct distances
- So For all 1 ≤ i ≤ n − 1, there exists a distance which occurs exactly i times
 - By Guth and Katz (2015), n points determine Ω(n log n) distinct distances. Just n 1 distinct distances is cutting close!
 - The general position condition is very restrictive.
 - The multiplicity condition is very restrictive.

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
000	0000	●○○○	00000000	0000	000
L ^p norm					

We examine how crescent configurations behave under a generalization of the L^2 norm, the L^p norm.

Definition (L^p distance)

Let $1 \le p < \infty$. Let $a = (a_x, a_y)$ and $b = (b_x, b_y)$ be two points in the plane. Their L^p distance is given by:

$$d_p(a,b) = (|b_x - a_x|^p + |b_y - a_y|^p)^{1/p}$$

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
000	0000	●○○○	00000000	0000	000
L ^p norm					

We examine how crescent configurations behave under a generalization of the L^2 norm, the L^p norm.

Definition (L^p distance)

Let $1 \le p < \infty$. Let $a = (a_x, a_y)$ and $b = (b_x, b_y)$ be two points in the plane. Their L^p distance is given by:

$$d_p(a,b) = (|b_x - a_x|^p + |b_y - a_y|^p)^{1/p}$$

There is also the notion of the L^{∞} norm.

Definition (L^{∞} distance)

Let $a = (a_x, a_y)$ and $b = (b_x, b_y)$ be two points in the plane. Their L^{∞} distance is given by:

$$d_{\infty}(a,b) = \max\{|b_x - a_x|, |b_y - a_y|\}$$

Background	L ² crescent configs	L ^P Geometry	L ^p line-like configs	L ^p crescent configs	End
000	0000	○●○○		0000	000

L^p unit balls and perpendicular bisectors

Unit ball: set of points which have 1 from the origin.

Perpendicular bisector: set of points which are equidistant from two given points.

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
000	0000	○○●○	0000000	0000	000
Crescent	configurations	in IP			

Now we can ask the same question about crescent configurations in L^{p} .

Question [in L^p]

Does there exist a set of n points such that:

- **①** The *n* points determine n 1 distinct distances
- ② For all 1 ≤ i ≤ n − 1, there exists a distance which occurs exactly i times

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
000	0000	○○●○	00000000	0000	000
Croscont	configurations	in IP			

Now we can ask the same question about crescent configurations in L^{p} .

Question [in L^p]

Does there exist a set of n points such that:

- **①** The *n* points determine n 1 distinct distances
- ② For all 1 ≤ i ≤ n − 1, there exists a distance which occurs exactly i times

Recall in L^2 , we introduced the condition that the points must lie in general position in order to eliminate trivial crescent configurations.

Step 1: For $1 \le p \le \infty$, find all trivial crescent configurations in L^p . **Step 2**: Introduce a condition in the definition of L^p crescent configurations to eliminate these trivial configurations.

Background	L ² crescent configs	L ^p Geometry	<i>L^p</i> line-like configs	L ^p crescent configs	End
000	0000	○○○●	00000000	0000	000

Line-like configurations

Recall the trivial crescent configurations in L^2 :

Key observation: The distance graphs of all of these trivial crescent configurations are isomorphic to the distance graph of n equally spaced points on a line.

Background	L ² crescent configs	L ^p Geometry	<i>L^p</i> line-like configs	L ^p crescent configs	End
000	0000	○○○●	00000000	0000	000

Line-like configurations

Recall the trivial crescent configurations in L^2 :

Key observation: The distance graphs of all of these trivial crescent configurations are isomorphic to the distance graph of n equally spaced points on a line.

Definition

We say that n points in the plane form a **line-like configuration** if their distance graph is isomorphic to the distance graph of n equally spaced points on a line.

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
			0000000		

L^p crescent configurations

Definition

We say that n points in the plane form a **line-like configuration** if their distance graph is isomorphic to the distance graph of n equally spaced points on a line.

The trivial crescent configurations in L^p are precisely the line-like configurations.

Definition (L^p crescent configuration)

We say that n points in the plane form a **crescent configuration** if:

- **()** The *n* points do not contain a line-like configuration of size four
- 2 No three points lie on a line, and no four points lie on a L^p ball
- The *n* points determine n-1 distinct distances
- For all 1 ≤ i ≤ n − 1, there exists a distance which occurs exactly i times

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
000	0000	0000	○●○○○○○		000

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
			000000		

L^p line-like configurations, $p \in (1,\infty) \setminus \{2\}$

Conjecture

For $p \in (1, \infty) \setminus \{2\}$, the only line-like configurations of size $n \ge 5$ are sets of equally spaced points on a line.

Reasoning: We have numerical evidence (Mathematica) which suggests that no other line-like configurations exist. Trying to geometrically construct a line-like configuration which does not lie on a straight line results in near-misses:

We have a large family of L^1 line-like configurations, for example

We can construct infinitely many L^1 line-like configurations like this by a geometrical argument:

This construction works for every norm which is not strictly convex.

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
			0000000		

Definition

Line-like crescent configuration

- No three points lie on a common line.
- **2** No four points lie on a common L^{∞} circle.
- **③** Distance graph is isomorphic to *n* equally spaced points on a line.

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
			00000000		

Background 000	L ² crescent configs	L ^p Geometry 0000	L^p line-like configs	L ^p crescent configs	End 000

Theorem

Let $n \ge 7$. Then every line-like crescent configuration in L^{∞} of size n is a perpendicular perturbation of a horizontal or vertical line.

Background	L ² crescent configs	L ^p line-like configs	L ^p crescent configs	End
000	0000	○○○○○●○	0000	000

Theorem

Let $n \ge 7$. Then every line-like crescent configuration in L^{∞} of size n is a perpendicular perturbation of a horizontal or vertical line.

Every line-like configuration of size $n \ge 7$ in L^{∞} satisfies at least one of the following three properties.

- Three points lie on a common line.
- 2 Four points lie on a common L^{∞} circle.
- The set of n points is a perpendicular perturbation of a horizontal or vertical line, i.e., has very similar structure to a set of n equally spaced points on a horizontal or vertical line.

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
000	0000	0000	○○○○○○●	0000	000

Line-like configurations: summary

Our results show that:

- Line-like configurations have four different types of behavior for $p = 1, p = 2, p \in (1, \infty) \setminus \{2\}$, and $p = \infty$.
- Having an understanding of the line-like configurations in L^p means that we have an understanding of the trivial crescent configurations in L^p.

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End		
000	0000	0000	00000000	●000	000		

Crescent configurations in L^p

Definition (*L^p* crescent configuration)

We say that n points in the plane form a crescent configuration if:

- **1** The *n* points do not contain a line-like configuration of size four
- 2 No three points lie on a line, and no four points lie on a L^p ball
- **③** The *n* points determine n 1 distinct distances
- So For all 1 ≤ i ≤ n − 1, there exists a distance which occurs exactly i times

Recall: Crescent configurations are rare. In L^2 , it is an open problem whether crescent configurations of size n exist for $n \ge 9$.

Our Question

In L^p , for which *n* do there exist crescent configurations of size *n*?

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
	0000	0000	00000000	0●00	000

Crescent configurations in L^p , 1

We have a construction for a crescent configuration in L^p of size n = 4.

This construction can be generalized to any norm.

Crescent configurations in L^1

We constructed crescent configurations in L^1 of sizes 4, 5, 6, 7. Our construction of size 7:

$$P_1 = (0, 0)$$

$$P_2 = (0, 2)$$

$$P_3 = (2, 2)$$

$$P_4 = (4, 6)$$

$$P_5 = (4, 8)$$

$$P_6 = (5, 1)$$

$$P_7 = (7, 1)$$

Background	L ² crescent configs	L ^p Geometry	<i>L^p</i> line-like configs	L ^p crescent configs	End
000	0000	0000	00000000	000●	000

Crescent configurations in L^{∞}

We constructed crescent configurations in L^{∞} of sizes 4, 5, 6, 7, 8. Our construction of size 8:

$$P_1 = (0,0)$$

$$P_2 = (0,6)$$

$$P_3 = (1,3)$$

$$P_4 = (2,4)$$

$$P_5 = (3,2)$$

$$P_6 = (4,1)$$

$$P_7 = (5,5)$$

$$P_8 = (6,7)$$

Background	L ² crescent configs	L ^p Geometry	L ^p line-like configs	L ^p crescent configs	End
000	0000	0000	00000000	0000	●○○
Future W	/ork				

Continuations of our work

- Disproving the existence of large (strong) crescent configurations and large line-like configurations in most norms
- Constructing crescent configurations of size \geq 5 in generic norms

Extensions of our work

- Classifying line-like crescent configurations in non-strictly convex norms
- Generalize the notion of higher dimensional crescent configurations to arbitrary normed spaces

Background	L ² crescent configs	L ^p Geometry	<i>L^p</i> line-like configs	L ^p crescent configs	000		
000	0000	0000	00000000	0000			
Acknowledgements							

Thanks to

- Prof. Steven J. Miller (Mentor, NSF Grant DMS1561945),
- Prof. Eyvindur Palsson (Mentor),
- the SMALL REU program (NSF grant DMS1659037),
- The N.S Reynolds foundation for funding,
- and to you, for your attention today!

Background	L ² crescent configs	L ^p Geometry	<i>L^p</i> line-like configs	L ^p crescent configs	End
000	0000	0000		0000	○○●

Questions

Dylan King (kingda16@wfu.edu) Catherine Wahlenmayer (wahlenma001@knights.gannon.edu)