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The Fibonacci Sequence

1,1,2,3,5,8,13,21,34,55...
Let f[p=F; =1,andforn>=2

Fn:Fn—1+Fn—2

Theorem (Zeckendorf)

Every positive integer can be written uniquely as the sum of
non-consecutive Fibonacci numbers where

Fn:Fn—1+Fn—2

and [ =1, b =2.
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The Fibonacci Quilt Sequence

FQ-legal Decomposition

Definition (Catral, Ford, Harris, Miller, Nelson)

Let an increasing sequence of positive integers g;°, be given.
We declare a decomposition of an integer

m=q,+q,+ - +4q,

(where g, > q,,) to be an FQ-legal decomposition if for all /, j,
‘li_ /]| 7& 0515374and {153} ¢ {I17I25-‘-a/t}'
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The Fibonacci Quilt Sequence

Definition (Catral, Ford, Harris, Miller, Nelson)

The Fibonacci Quilt sequence is an increasing sequence of
positive integers {q;}7°, where every g; (i > 1) is the smallest
positive integer that does not have an FQ-legal decomposition
using the elements {qy,...,qi_1}.
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Recurrence Relations

Theorem (Catral, Ford, Harris, Miller, Nelson)

Let g, denote the n'" term in the Fibonacci Quilt, then
forn>5,qn1 = gn1+ gn_2,

forn>6,qni1 = gn + Qn-a.
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General Rules

@ Inspired by the Two Player Zeckendorf Game
@ Two players alternate turns, the last person to move wins
@ Start the game with n 1’s (g¢’s)

@ A turn consists of one of 5 rules, which preserve that
> g; = nby exchanging a pair q;, g; such that /, j are an
illegal distance apart for a single term or legal pair.
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Forn>2,gn+ Qny1 — Qnys
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General Rules

Forn>2,qn+ Qnia — Qnis
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General Rules

Forn>7, 2qn — Qny2 + Q-5
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General Rules

Forn>7, gn+ Qni3 — Qn-5+ Qny4
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General Rules

g1 +3g3 — Qs

To handle base cases, we added additional base rules that

@ preserves > . qi=n
@ does not produce violation of legality

Special Rule

1+5 = 244

Note: This rule can only be applied when nothing else can be
done.
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Example Game

1,2,3,4,5,7,9,12, 16, 21, 28...
N=10=9+1
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Rule 3: ¢ — qo
Rule1: g1 + g2 — g3
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Example Game

1,2,3,4,5,7,9,12, 16, 21, 28...

nN=10=9 + 1

1 1234|5719
10/0|0|0]0|0|O

g8 |(1|0[(0|0|0]|O Rule 3: ¢ — qo
710(1]0/0]0]O0 Rule1: g1 + g2 — g3
5/1/1]/0|0|0]|0 Rule 3: ¢ — q»

4 10/2|0]0|0]O Rule 1: g1 + g2 — g3
31ol1/1]/0/0/0 Rule5 q+q—aq
2lol1/0[1]/0/0 Rule2 g +q—gs
o (1]|1(0|1|0]0O Rule 3: ¢ — qo
0O|0j1]0j0]1]0 Rule 4: g> + g5 — Qs




The Game
o

Example Game

1,2,3,4,5,7,9,12, 16, 21, 28...
N=10=9+1
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Rule 3: ¢ — qo

Rule1: g1 + g2 — g3
Rule 3: ¢ — q»

Rule 1: g1 + g2 — g3
Rule5: g1 + g3 — qu
Rule 2: g1 + g4 — g5
Rule 3: ¢ — qo

Rule 4: g> + g5 — Qs
Rule 4: g3 +gs — g1 + g7
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°

The Game is Playable

Every game terminates in a finite number of moves at an
FQ-legal decomposition.

Proof Sketch: The sum of the square roots of the indices of
the terms is a strict monovarient.

@ gn A Qnyt — Qnisi VN+3 — vn—vn+1<0
@ Qo AQnia — Qnysi VN+5—/n—Vn+4<0
@ 2gh — Qnia AGns: VN+2+v/n—-5-2,/n<0
@ gn A\ Qn+3 — Qnt+4a A Qn-5:

Vn+4+vn-5-/n-v/n+3<0
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Other Results
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Other Results

There is more than one possible game for any n > 3.
There are games of even and odd length for any n > 5.
The game is fair.
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Lower Bound on Game Length

Let L(n) denote the maximum number of terms in an FQ-legal
decomposition of n. Let /(n) denote the minimum number of
terms in an FQ-legal decomposition of n.

Examples:
20=16+4=12+7 + 1
L(20) =3, /(20) =2
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Lower Bound on Game Length

Let L(n) denote the maximum number of terms in an FQ-legal
decomposition of n. Let /(n) denote the minimum number of
terms in an FQ-legal decomposition of n.

Examples:
20=16+4=12+7 + 1
L(20) =3, /(20) =2
50=49+1=28+16+4+2
L(50) =4, /(50) =2
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Lower Bound on Game Length

The shortest possible game on n is completed in n — L(n)
moves.

Proof Sketch: Strong induction on n.
If nis in the Fibonacci Quilt Sequence, denoted q;

Qi-3 + Qi—2 = Qi
If nis not in the sequence
nN=qy +qp+- =+ iy
Number of moves:
(@, =1+ (@ —-1)++ (g, 1)
=(qi +Qp + -+ Qi) — L(N)

'™’
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Distribution of Game Lengths

The distribution of a random game length approaches
Gaussian as n increases.

Probability

a1sf 71

b
%

=

o-0a- — - == Gamelength

Figure: Distribution of 1000 games on n=60
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Future Work

@ Is there a deterministic game that always results in the
lower bound?

@ What patterns emerge from the winner of certain
deterministic games as nincreases?

@ Does either player have a winning strategy?

@ Analogous result on the Zeckendorf Game shows that for
n > 2, player 2 has a winning strategy
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