History o	The Fibonacci Quilt Sequence	The Game	Game Length	Future Work

The Fibonacci Quilt Game

Alexandra Newlon Colgate University anewlon@colgate.edu

Mentored by Steven J. Miller, Williams College, at the SMALL REU 2019.

Undergraduate Mathematics Symposium University of Illinois, Chicago, November 2, 2019

History o	The Fibonacci Quilt Sequence	The Game	Game Length	Future Work
Outline				

History ●	The Fibonacci Quilt Sequence	The Game 00000000	Game Length	Future Work
The Fibor	nacci Sequence			

1, 1, 2, 3, 5, 8, 13, 21, 34, 55...

History ●	The Fibonacci Quilt Sequence	The Game	Game Length 00000	Future Work
The Fibo	nacci Sequence			

1, 1, 2, 3, 5, 8, 13, 21, 34, 55...

Let $F_0 = F_1 = 1$, and for n >= 2

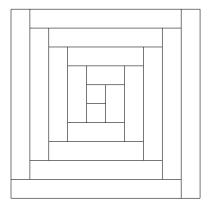
 $F_n = F_{n-1} + F_{n-2}$

History ●	The Fibonacci Quilt Sequence	The Game	Game Length	Future Work
The Fibo	onacci Sequence			

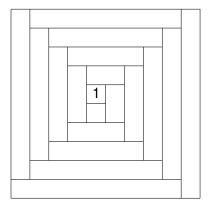
1, 1, 2, 3, 5, 8, 13, 21, 34, 55...

Let $F_0 = F_1 = 1$, and for n >= 2

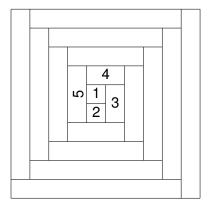
$$F_n = F_{n-1} + F_{n-2}$$

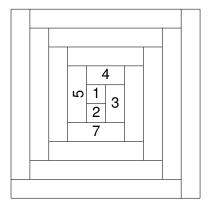

Theorem (Zeckendorf)

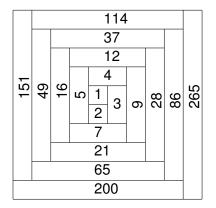
Every positive integer can be written uniquely as the sum of non-consecutive Fibonacci numbers where


$$F_n = F_{n-1} + F_{n-2}$$

and $F_1 = 1$, $F_2 = 2$.


History o	The Fibonacci Quilt Sequence ●○○	The Game 00000000	Game Length	Future Work


History o	The Fibonacci Quilt Sequence ●○○	The Game 00000000	Game Length	Future Work


History o	The Fibonacci Quilt Sequence ●○○	The Game	Game Length	Future Work

History o	The Fibonacci Quilt Sequence ●○○	The Game	Game Length ೦೦೦೦೦	Future Work

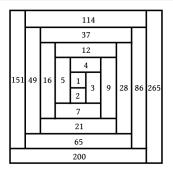
History	The Fibonacci Quilt Sequence	The Game	Game Length	Future Work
o	●○○	00000000	00000	

History o	The Fibonacci Quilt Sequence ○●○	The Game	Game Length ০০০০০	Future Work

FQ-legal Decomposition

Definition (Catral, Ford, Harris, Miller, Nelson)

Let an increasing sequence of positive integers $q_{i=1}^{\infty}$ be given. We declare a decomposition of an integer


$$m = q_{l_1} + q_{l_2} + \cdots + q_{l_t}$$

(where $q_{l_i} > q_{l_{i+1}}$) to be an FQ-legal decomposition if for all *i*, *j*, $|l_i - l_j| \neq 0, 1, 3, 4$ and $\{1, 3\} \notin \{l_1, l_2, \dots, l_t\}$.

History o	The Fibonacci Quilt Sequence ○○●	The Game	Game Length	Future Work

Definition (Catral, Ford, Harris, Miller, Nelson)

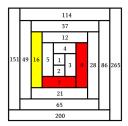
The Fibonacci Quilt sequence is an increasing sequence of positive integers $\{q_i\}_{i=1}^{\infty}$, where every q_i ($i \ge 1$) is the smallest positive integer that does not have an FQ-legal decomposition using the elements $\{q_1, \ldots, q_{i-1}\}$.

History o	The Fibonacci Quilt Sequence	The Game ●○○○○○○○	Game Length	Future Work
Recurren	ce Relations			

Theorem (Catral, Ford, Harris, Miller, Nelson)

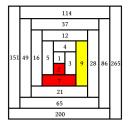
Let q_n denote the n^{th} term in the Fibonacci Quilt, then

for
$$n \ge 5$$
, $q_{n+1} = q_{n-1} + q_{n-2}$,

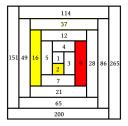

for
$$n \ge 6$$
, $q_{n+1} = q_n + q_{n-4}$.

History o	The Fibonacci Quilt Sequence	The Game ○●○○○○○○	Game Length	Future Work
General	Rules			

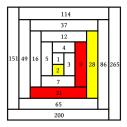
- Inspired by the Two Player Zeckendorf Game
- Two players alternate turns, the last person to move wins
- Start the game with n 1's (q_1 's)
- A turn consists of one of 5 rules, which preserve that $\sum q_i = n$ by exchanging a pair q_i, q_j such that *i*, *j* are an illegal distance apart for a single term or legal pair.


History o	The Fibonacci Quilt Sequence	The Game ○○●○○○○○	Game Length 00000	Future Work

For
$$n \geq 2$$
, $q_n + q_{n+1} \rightarrow q_{n+3}$


History o	The Fibonacci Quilt Sequence	The Game ○○○●○○○○	Game Length	Future Work
General I	Rules			

For $n \geq 2$, $q_n + q_{n+4} \rightarrow q_{n+5}$


History o	The Fibonacci Quilt Sequence	The Game ○○○○●○○○	Game Length	Future Work
General F	Rules			

For $n \geq 7$, $2q_n \rightarrow q_{n+2} + q_{n-5}$

History o	The Fibonacci Quilt Sequence	The Game ○○○○○●○○	Game Length	Future Work
General	Rules			

For $n \geq 7$, $q_n + q_{n+3} \rightarrow q_{n-5} + q_{n+4}$

History o	The Fibonacci Quilt Sequence	The Game ○○○○○●○	Game Length	Future Work
General F	Rules			

$$q_1 + q_3
ightarrow q_4$$

History o	The Fibonacci Quilt Sequence	The Game ○○○○○○●○	Game Length	Future Work
General F	Rules			

$$q_1 + q_3
ightarrow q_4$$

To handle base cases, we added additional base rules that

• preserves
$$\sum q_i = n$$

does not produce violation of legality

History o	The Fibonacci Quilt Sequence	The Game ○○○○○○●○	Game Length	Future Work
General	Rules			

$$q_1+q_3
ightarrow q_4$$

To handle base cases, we added additional base rules that

• preserves
$$\sum q_i = n$$

does not produce violation of legality

Special Rule

$$1+5 \ \rightarrow \ 2+4$$

Note: This rule can only be applied when nothing else can be done.

History o	The Fibonacci Quilt Sequence	The Game ○○○○○○●	Game Length	Future Work
Examp	le Game			

 $1,\,2,\,3,\,4,\,5,\,7,\,9,\,12,\,16,\,21,\,28...$

1 10	2	3	4	5	7	9
10	0	0	0	0	0	0

History o	The Fibonacci Quilt Sequence	The Game ○○○○○○●	Game Length	Future Work
Exampl	le Game			
1, 2	, 3, 4, 5, 7, 9, 12, 16, 21	, 28		
n =	10 = 9 + 1			
1	234579			

 1
 2
 3
 4
 5
 7
 9

 10
 0
 0
 0
 0
 0
 0

 8
 1
 0
 0
 0
 0
 0
 Rule 3: $q_1^2 \rightarrow q_2$

History o	The Fibonacci Quilt Sequence	The Game ○○○○○○●	Game Length	Future Work
Examp	le Game			

					7		
10	0	0	0	0	0	0	
8	1	0	0	0	0	0	Rule 3: $q_1^2 ightarrow q_2$
10 8 7	0	1	0	0	0	0	Rule 1: $q_1 + q_2 ightarrow q_3$

History o	The Fibonacci Quilt Sequence	The Game ○○○○○○●	Game Length	Future Work
Examp	le Game			

1	2	3	4	5	7	9	
10	0	0	0	0	0	0	
8	1	0	0	0	0	0	Rule 3: $q_1^2 ightarrow q_2$
7	0	1	0	0	0	0	Rule 1: $q_1 + q_2 ightarrow q_3$
8 7 5	1	1	0	0	0	0	Rule 3: $q_1^2 ightarrow q_2$

History o	The Fibonacci Quilt Sequence	The Game ○○○○○○●	Game Length	Future Work
Examp	le Game			

1	2	3	4	5	7	9	
10	0	0	0	0	0	0	
					0		Rule 3: $q_1^2 ightarrow q_2$
					0		Rule 1: $q_1 + q_2 ightarrow q_3$
5	1	1	0	0	0	0	Rule 3: $q_1^2 ightarrow q_2$
4	0	2	0	0	0	0	Rule 1: $q_1 + q_2 ightarrow q_3$

History o	The Fibonacci Quilt Sequence	The Game ○○○○○○●	Game Length 00000	Future Work
Examp	le Game			

1	2	3	4	5	7	9	
10	0	0	0	0	0	0	
8	1	0	0	0	0	0	Rule 3: $q_1^2 ightarrow q_2$
7	0	1	0	0	0	0	Rule 1: $q_1 + q_2 ightarrow q_3$
5	1	1	0	0	0	0	Rule 3: $q_1^2 ightarrow q_2$
4	0	2	0	0	0	0	Rule 1: $q_1 + q_2 ightarrow q_3$
3	0	1	1	0	0	0	Rule 5: $q_1+q_3 ightarrow q_4$

History ○	The Fibonacci Quilt Sequence	The Game ○○○○○○●	Game Length	Future Work
Examp	le Game			
1, 2	2, 3, 4, 5, 7, 9, 12, 16, 21,	, 28		

	1	2	3	4	5	7	9	
-	10	0	0	0	0	0	0	
	8	1	0	0	0	0	0	Rule 3: $q_1^2 ightarrow q_2$
	7	0	1	0	0	0	0	Rule 1: $q_1 + q_2 ightarrow q_3$
	5	1	1	0	0	0	0	Rule 3: $q_1^2 ightarrow q_2$
	4	0	2	0	0	0	0	Rule 1: $q_1 + q_2 ightarrow q_3$
	3	0	1	1	0	0	0	Rule 5: $q_1+q_3 ightarrow q_4$
	2	0	1	0	1	0	0	Rule 2: $q_1 + q_4 o q_5$

History ○	The Fibonacci Quilt Sequence	The Game ○○○○○○●	Game Length 00000	Future Work
Examp	le Game			
1, 2	2, 3, 4, 5, 7, 9, 12, 16, 21,	, 28		

1	2	3	4	5	7	9	
10	0	0	0	0	0	0	
8	1	0	0	0	0	0	Rule 3: $q_1^2 ightarrow q_2$
7	0	1	0	0	0	0	Rule 1: $q_1 + q_2 ightarrow q_3$
5	1	1	0	0	0	0	Rule 3: $q_1^2 ightarrow q_2$
4	0	2	0	0	0	0	Rule 1: $q_1 + q_2 ightarrow q_3$
3	0	1	1	0	0	0	Rule 5: $q_1+q_3 ightarrow q_4$
2	0	1	0	1	0	0	Rule 2: $q_1+q_4 ightarrow q_5$
0	1	1	0	1	0	0	Rule 3: $q_1^2 ightarrow q_2$

History ○	The Fibonacci Quilt Sequence	The Game ○○○○○○●	Game Length 00000	Future Work
Examp	le Game			
1, 2	2, 3, 4, 5, 7, 9, 12, 16, 21,	, 28		

1	2	3	4	5	7	9	
10	0	0	0	0	0	0	
8	1	0	0	0	0	0	Rule 3: $q_1^2 ightarrow q_2$
7	0	1	0	0	0	0	Rule 1: $q_1 + q_2 ightarrow q_3$
5	1	1	0	0	0	0	Rule 3: $q_1^2 ightarrow q_2$
4	0	2	0	0	0	0	Rule 1: $q_1 + q_2 ightarrow q_3$
3	0	1	1	0	0	0	Rule 5: $q_1+q_3 ightarrow q_4$
2	0	1	0	1	0	0	Rule 2: $q_1+q_4 ightarrow q_5$
0	1	1	0	1	0	0	Rule 3: $q_1^2 ightarrow q_2$
0	0	1	0	0	1	0	Rule 4: $q_2 + q_5 \rightarrow q_6$

History ☉	The Fibonacci Quilt Sequence	The Game ○○○○○○●	Game Length	Future Work
Exampl	e Game			
-	, 3, 4, 5, 7, 9, 12, 16, 21 10 = 9 + 1	, 28		

1	2	3	4	5	7	9	
10	0	0	0	0	0	0	
8	1	0	0	0	0	0	Rule 3: $q_1^2 ightarrow q_2$
7	0	1	0	0	0	0	Rule 1: $q_1 + q_2 ightarrow q_3$
5	1	1	0	0	0	0	Rule 3: $q_1^2 ightarrow q_2$
4	0	2	0	0	0	0	Rule 1: $q_1 + q_2 ightarrow q_3$
3	0	1	1	0	0	0	Rule 5: $q_1+q_3 ightarrow q_4$
2	0	1	0	1	0	0	Rule 2: $q_1 + q_4 ightarrow q_5$
0	1	1	0	1	0	0	Rule 3: $q_1^2 ightarrow q_2$
0	0	1	0	0	1	0	Rule 4: $q_2 + q_5 ightarrow q_6$
1	0	0	0	0	0	1	Rule 4: $q_3+q_6 ightarrow q_1+q_7$

History ○	The Fibonacci Quilt Sequence	The Game	Game Length ●○○○○	Future Work
The Gam	e is Plavable			

Every game terminates in a finite number of moves at an FQ-legal decomposition.

History ○	The Fibonacci Quilt Sequence	The Game	Game Length ●○○○○	Future Work

The Game is Playable

Theorem

Every game terminates in a finite number of moves at an FQ-legal decomposition.

History ○	The Fibonacci Quilt Sequence	The Game 00000000	Game Length ●○○○○	Future Work
The Gam	ne is Playable			

Every game terminates in a finite number of moves at an FQ-legal decomposition.

•
$$q_n \wedge q_{n+1} \longrightarrow q_{n+3}$$
: $\sqrt{n+3} - \sqrt{n} - \sqrt{n+1} < 0$

History o	The Fibonacci Quilt Sequence	The Game 00000000	Game Length ●○○○○	Future Work
The Gam	e is Playable			

Every game terminates in a finite number of moves at an FQ-legal decomposition.

•
$$q_n \wedge q_{n+1} \longrightarrow q_{n+3}$$
: $\sqrt{n+3} - \sqrt{n} - \sqrt{n+1} < 0$

•
$$q_n \wedge q_{n+4} \longrightarrow q_{n+5}$$
: $\sqrt{n+5} - \sqrt{n} - \sqrt{n+4} < 0$

History o	The Fibonacci Quilt Sequence	The Game 00000000	Game Length ●○○○○	Future Work
The Gam	e is Playable			

Every game terminates in a finite number of moves at an FQ-legal decomposition.

•
$$q_n \wedge q_{n+1} \longrightarrow q_{n+3}$$
: $\sqrt{n+3} - \sqrt{n} - \sqrt{n+1} < 0$

•
$$q_n \wedge q_{n+4} \longrightarrow q_{n+5}$$
: $\sqrt{n+5} - \sqrt{n} - \sqrt{n+4} < 0$

•
$$2q_n \longrightarrow q_{n+2} \land q_{n-5}$$
: $\sqrt{n+2} + \sqrt{n-5} - 2\sqrt{n} < 0$

History o	The Fibonacci Quilt Sequence	The Game ০০০০০০০০	Game Length ●○○○○	Future Work

The Game is Playable

Every game terminates in a finite number of moves at an FQ-legal decomposition.

Proof Sketch: The sum of the square roots of the indices of the terms is a strict monovarient.

•
$$q_n \wedge q_{n+1} \longrightarrow q_{n+3}$$
: $\sqrt{n+3} - \sqrt{n} - \sqrt{n+1} < 0$

•
$$q_n \wedge q_{n+4} \longrightarrow q_{n+5}$$
: $\sqrt{n+5} - \sqrt{n} - \sqrt{n+4} < 0$

•
$$2q_n \longrightarrow q_{n+2} \land q_{n-5}$$
: $\sqrt{n+2} + \sqrt{n-5} - 2\sqrt{n} < 0$

•
$$q_n \wedge q_{n+3} \longrightarrow q_{n+4} \wedge q_{n-5}$$
:
 $\sqrt{n+4} + \sqrt{n-5} - \sqrt{n} - \sqrt{n+3} < 0$

History o	The Fibonacci Quilt Sequence	The Game 00000000	Game Length ○●○○○	Future Work
Other Res	sults			

There is more than one possible game for any n > 3.

History ○	The Fibonacci Quilt Sequence	The Game 00000000	Game Length ○●○○○	Future Work
Other Re	esults			

There is more than one possible game for any n > 3.

Theorem

There are games of even and odd length for any n > 5.

History ○	The Fibonacci Quilt Sequence	The Game 00000000	Game Length ○●○○○	Future Work
Other Re	sults			

There is more than one possible game for any n > 3.

Theorem

There are games of even and odd length for any n > 5.

Conjecture

The game is fair.

History	The Fibonacci Quilt Sequence	The Game	Game Length	Future Work
			00000	

Notation

Let L(n) denote the maximum number of terms in an FQ-legal decomposition of *n*. Let I(n) denote the minimum number of terms in an FQ-legal decomposition of *n*.

Examples: 20 = 16 + 4 = 12 + 7 + 1L(20) = 3, I(20) = 2

History	The Fibonacci Quilt Sequence	The Game	Game Length	Future Work
			0000	

Notation

Let L(n) denote the maximum number of terms in an FQ-legal decomposition of *n*. Let I(n) denote the minimum number of terms in an FQ-legal decomposition of *n*.

Examples: 20 = 16 + 4 = 12 + 7 + 1 L(20) = 3, l(20) = 2 50 = 49 + 1 = 28 + 16 + 4 + 2L(50) = 4, l(50) = 2

History o	The Fibonacci Quilt Sequence	The Game 00000000	Game Length ○○○●○	Future Work

Theorem

The shortest possible game on *n* is completed in n - L(n) moves.

History o	The Fibonacci Quilt Sequence	The Game 00000000	Game Length	Future Work

Theorem

The shortest possible game on *n* is completed in n - L(n) moves.

Proof Sketch: Strong induction on *n*.

History o	The Fibonacci Quilt Sequence	The Game 00000000	Game Length ○○○●○	Future Work

Theorem

The shortest possible game on *n* is completed in n - L(n) moves.

Proof Sketch: Strong induction on *n*. If *n* is in the Fibonacci Quilt Sequence, denoted q_i

 $q_{i-3} + q_{i-2} = q_i$

History ○	The Fibonacci Quilt Sequence	The Game 00000000	Game Length	Future Work

Theorem

The shortest possible game on *n* is completed in n - L(n) moves.

Proof Sketch: Strong induction on *n*. If *n* is in the Fibonacci Quilt Sequence, denoted q_i

$$q_{i-3}+q_{i-2}=q_i$$

If *n* is not in the sequence

$$n=q_{i_1}+q_{i_2}+\cdots+q_{i_{L(n)}}$$

Number of moves:

$$(q_{i_1} - 1) + (q_{i_2} - 1) + \dots + (q_{i_{L(n)}} - 1)$$

= $(q_{i_1} + q_{i_2} + \dots + q_{i_{L(n)}}) - L(n)$

History o	The Fibonacci Quilt Sequence	The Game	Game Length	Future Work

Distribution of Game Lengths

Conjecture

The distribution of a random game length approaches Gaussian as *n* increases.

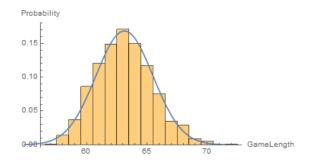


Figure: Distribution of 1000 games on n=60

History o	The Fibonacci Quilt Sequence	The Game	Game Length	Future Work ●oo
Future Wo	ork			

 Is there a deterministic game that always results in the lower bound?

• What patterns emerge from the winner of certain deterministic games as *n* increases?

- Does either player have a winning strategy?
 - Analogous result on the Zeckendorf Game shows that for n > 2, player 2 has a winning strategy

History o	The Fibonacci Quilt Sequence	The Game 00000000	Game Length	Future Work ○●○
Referen	ces			

- M. Catral, P.L. Ford, P.E. Harris, S.J. Miller, D. Nelson, Legal Decomposition Arising From Non-Positive Linear Recurrences. Fibonacci Quarterly (54 (2016), no. 4, 348-365). https://arxiv.org/abs/1606.09312.
- P. Baird-Smith, A. Epstein, K. Flint, S.J. Miller, *The Zeckendorf Game*. (2018). https://arxiv.org/abs/1809.04881.
- *The Fibonacci Quilt Game* (with S.J. Miller), submitted September 2019 to the Fibonacci Quarterly. https://arxiv.org/abs/1909.01938
- P. Baird-Smith, A. Epstein, K. Flint, S.J. Miller, *The Generalized Zeckendorf Game*, the Fibonacci Quarterly (Proceedings of the 18th Conference) 57 (2019), no. 55, 1–15. https://arxiv.org/abs/1809.04883

History o	The Fibonacci Quilt Sequence	The Game	Game Length	Future Work	
Thank You					

Thank you to Dr. Miller (NSF Grant DMS1561945), the SMALL program (NSF Grant DMS1659037) and Williams College.

