Distribution of Missing Sums in Correlated Sumsets

Thomas Martinez (Harvey Mudd College, tmartinez@hmc.edu), Dylan King (Wake Forest University, kingda16@wfu.edu)

Joint research with Chenyang Sun. Advised by Steven J. Miller.

SMALL 2019 REU, Williams College

Introduction

Considering a set \(A \subseteq \{0,1,\ldots,n-1\} \), we define a **sumset** as

\[
A + A = \{i + j \mid i,j \in A\}.
\]

We look at random sets \(A \) where \(\Pr(i \in A) = p \).

Notation: \(q = 1 - p \),

\[
M_{n_{r-1}} := \left\lfloor \frac{2^n - 2}{(A + A)} \right\rfloor = 2^n - 1 - |A + A|,
\]

Uniform Distribution: Most previous work focused on \(p = 1/2 \). This implies every subset \(A \) has an equal probability of occurring.

Previous Results

Let \(p = \frac{1}{2} \). Martinez and O’Bryant found

\[
\mathbb{E}[|A + A|] = 2n - 10 + 10(3/4)^{n/2}.
\]

Let \(n > 5k \). Lazarev, Miller and O’Bryant found

\[
2^{-k/2} \leq m_n(k) \leq (\phi/2)^k,
\]

where the implied constants are independent of \(k \) and \(n \), and \(\phi \) is the golden ratio.

Expected Value Generalization

We generalize previous results for any \(p \). The explicit formula for \(\mathbb{E}[|A + A|] \) is stated below.

Expected Value Formula

For \(p \in [0,1) \), \(\mathbb{E}[|A + A|] \) is

\[
\sum_{i=0}^{n-1} p^{i+1}q^{n-i-1} \left(\frac{1}{i+1} \left(1 - \frac{f(k)}{i+1} \right) - \frac{f(n-1)}{i+1} \right),
\]

where

\[
f(k) = \begin{cases}
\frac{\sqrt{n-k+1}}{\sqrt{k+1}}, & \text{for } k \text{ odd} \\
\frac{\sqrt{n-k+1}}{\sqrt{k}}, & \text{for } k \text{ even}
\end{cases}
\]

We also find bounds for the Expected Value.

Expected Value Bounds

For \(p \in [0,1) \),

\[
\mathbb{E}[|A + A|] < 2n - 1 - \sqrt{n}.
\]

For \(p \in (0,5,1) \),

\[
2n - 1 - \frac{\sqrt{n}}{1 - \sqrt{n}} \leq \mathbb{E}[|A + A|].
\]

Figure 1: Above is a plot for \(n = 35 \).

Approach

Previously, every subset had an equal chance of occurring, which allowed for a simpler calculation. Now, we must take into account the probability that \(|A| = r \), where \(r \in [0,n] \). Using similar techniques, we found

\[
\mathbb{E}[|A + A|] = \sum_{i=0}^{n-1} p^{i+1}q^{n-i-1}(1 - \Pr(k \notin A + A \mid |A| = r)).
\]

We compute \(\Pr(k \notin A + A \mid |A| = r) \) using graph theory. We define \(G = (V,E) \) with vertices representing elements in \([0,n-1]\) and an edge is present if \(v_1 + v_2 = k \). We are interested in finding a **vertex cover** with \(n - r \) vertices.

\[
f(k) = \begin{cases}
\frac{\sqrt{n-k+1}}{\sqrt{k+1}}, & \text{for } k \text{ odd} \\
\frac{\sqrt{n-k+1}}{\sqrt{k}}, & \text{for } k \text{ even}
\end{cases}
\]

From this, we can derive \(f(k) \) from the Expected Value formula.

\[
m_n(k) \text{ Generalization}
\]

We generalize previous results of \(m_n(k) \) for any \(p \), and show a plot for \(k = 10 \).

\[
\mathbb{E}[n_{n_r}] < \left(\frac{1 - p + \phi(p)}{2} \right)^k.
\]

The lower bound is achieved by finding the probability that the first \(k/2 \) elements are not in \(A \), and showing that the probability that the rest of the elements in \(A \) is a subset \(A' \) such that \(A' + A' \) has no missing elements (which is much more likely that the first condition). We get

\[
m_n(k) \geq (A = k/2 + A' \text{ and } M_{n-k/2}(A') = 0) = q^{k/2} \Pr(M_{n-k/2}(A') = 0) \gg q^{k/2}.
\]

The upper bound is achieved from noting that missing an element at least \(k/2 \) elements away from the ends of \([0,2n-2]\) is very unlikely. For an upper bound, notice that missing \(k \) elements implies that missing an element at least \(k/2 \) elements away from the ends of \([0,2n-2]\). This event is unlikely, because there are so many pairs of numbers that add up to an element in the middle of \(A + A \), so we look at the probability of this event as our upper bound.

After some manipulation, we find

\[
m_n(k) \leq \Pr(A + A \text{ misses } 2 \text{ elements greater than } k - 3) = \sum_{k-3 < j < k} \Pr(i, j \notin A + A) \leq \left(\frac{1 - p + \phi(p)}{2} \right)^k.
\]

Where the last term comes from a generalization of graph theory introduced by Lazarev, Miller and O’Bryant. We seek to find \(\Pr(i, j \notin A + A) \) using a similar definition of a graph as earlier, this is the same as finding a vertex cover of missing elements on a path, as below.

\[
\begin{align*}
&v_1 \quad v_2 \quad v_3 \quad \cdots \quad v_k \\
&v_1 \quad v_2 \quad v_3 \quad \cdots \quad v_k \\
&v_1 \quad v_2 \quad v_3 \quad \cdots \quad v_k
\end{align*}
\]

Letting \(n \) denote the number of paths and \(\alpha \) denoting the probability of a vertex cover, we derive \(\alpha = q^{a_{n-1}} + pq^{a_{n-2}} \) and get a closed form

\[
\alpha_n = \frac{(\phi(p) - 1) - \phi(p)(1 - p - \phi(p))^n}{2^n + n + 1 \phi(p)}.
\]

References

- G. Martin, K. O’Bryant, Many sets have more sums than differences, in Additive Combinatorics. CRM Proceedings and Lecture Notes, vol. 43 (American Mathematical Society, Providence, 2007), pp. 287-305
- https://arxiv.org/abs/1109.4700

Acknowledgements

We would like to thank our mentor Dr. Steven J. Miller, the rest of the Number Theory & Probability Group and the SMALL REU Program. This project was funded by NSF Grants DMS1561945 and DMS1659037, Williams College and Wake Forest University.