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Previous Results
Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf Decomposition
Every positive integer can be written in a
unique way as a sum of non-consecutive Fi-
bonacci numbers.

A simple jump path is a path on the lattice
grid where each movement (referred to as
step) on the lattice grid consists of at least
one unit movement to the left and one unit
movement downward.
84 · · · · · · · · · · · · · · · · · · · · ·
50 82 · · · · · · · · · · · · · · · · · ·
28 48 74 · · · · · · · · · · · · · · ·
14 24 40 66 · · · · · · · · · · · ·
7 12 20 33 59 · · · · · · · · ·
3 5 9 17 30 56 · · · · · ·
1 2 4 8 16 29 54 · · ·

Notation
sa,b: # simple jump paths (a, b)→ (0, 0).
ta,b(k): # simple jump paths (a, b) → (0, 0)
with k steps.
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Gaussianity of Summands
The distribution of the number of sum-
mands among all simple jump paths with
starting point (i, j) where 1 ≤ i, j ≤ n con-
verges to a Gaussian as n→∞.

Figure 1: Distribution
of the number of sim-
ple jump paths starting at
(10, 10) versus the best fit
Gaussian.

New Results

Figure 2: Distribution of gap sums starting at (10, 10)
versus f(k) = (k − 1)/2k .

Figure 3: Distribution of gap vectors
starting at (10, 10).

A gap vector of a step from (xm,1, xm,2) to (xm+1,1, xm+1,2) is the difference vector (xm,1 −
xm+1,1, xm,2 − xm+1,2), and a gap sum is the sum of components of a gap vector.
ga,b: # gaps of simple jump paths (a, b)→ (0, 0); P(i, j): probability that a gap vector is (i, j).

Theorem 1 (1-dimensional Gap Distribution)
Let n be a positive integer, consider the distribution of gap vectors on the 1-dimensional
lattice among all simple jump paths with starting point n. The distribution converges to a
geometric decay as n→∞.
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Theorem 2 (2-dimensional Gap Vector Distribution)
Let n be a positive integer, consider the distribution of gap vectors among all simple jump
paths on the 2-dimensional lattice grid with starting point (n, n). The distribution converges
to a bivariate geometric decay as n→∞.
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A nice binomial identity
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miraculously allows us to simplify S(v1, v2) to a closed form and evaluate the limit
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Theorem 3 (Gap Sum Distribution)
Let n be a positive integer, the probability
Ps(k) that a gap sum equals k on the 2-
dimensional lattice grid with starting point
(n, n) converges to (k − 1)/2k as n→∞.

Figure 4: Illustration
of proof for 2-dimensional
gap vector distribution.

Future Work
We hope to generalize the results to d-
dimensional lattices. The main difficulty is
that combinatorial miracles like (1) gener-
ally do not have analogues in higher dimen-
sions, thus the expression of the probability
becomes much more involved.

Conj (d-dimensional Gap Vector)
As n → ∞, the distribution of the gap vec-
tors in the Zeckendorf decompositions from
d-dimensional lattice grid approaches mul-
tivariate geometric decay.
We proved that
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We showed the first term goes to zero as
n → ∞, and it remains to prove conver-
gence for the second term.

Conj (d-dimensional Gap Sum)
As n→∞, the distribution of the gap sums
in the Zeckendorf decompositions from d-
dimensional lattice grid approaches geo-
metric decay.

Generalization to
Euclidean Distances
Our method can potentially be generalized
to study the distribution of the Euclidean
distances between summands. The analysis
involves counting the number of diophan-
tine equations that have solutions within the
range of {1, 2, . . . , n}.

Figure 5: Distribution
of Euclidean distances be-
tween summands starting
at (10, 10).
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