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Erdős distinct distances problem

Question [Erdős, 1946]

Given n points in a plane, what is the minimum number of distinct
distances f (n) that they determine?

Some Examples:
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First Estimates

Theorem (Erdős, 1946)

Let [Pn] be the class of subsets of the plane with n points, and let f (n)
be the minimum number of distinct distances determined by an element
Pn ∈ [Pn]. Then,

(n − 3/4)1/2 − 1/2 ≤ f (n) ≤ cn/
√

log n.

Upper Bound: Upper bound for distinct distances of the
√
n ×
√
n

integer lattice.

Lower Bound (the hard part): Work with the convex hull of an arbitrary
point set Pn.
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Erdős Distinct Distances Problem: Bounds

Upper bounds (unimproved since Erdős!):

∆(n) = O( n√
log n

) (Erdős, 1946)

Lower bounds:

∆(n) = Ω(n1/2) (Erdős, 1946)

∆(n) = Ω(n4/5/ log n) (Chung, Szemeredi Trotter, 1992)

∆(n) = Ω(n4/5) (Szekely, 1993)

∆(n) = Ω( n
log n ) (Guth + Katz, 2015)

A set with O( n√
log n

) distinct distances is near-optimal. The integer

lattice is a near-optimal set.
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Lattice Distance Distribution

Figure: Distance distribution for 200× 200 integer lattice
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Repeating Distances

How often do distances on the integer lattice repeat?

4 points at a distance 1 from the origin.

4 points at a distance
√

2 =
√

12 + 12 from the origin.

8 points at a distance
√

5 =
√

22 + 12 =
√

12 + 22.
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Calculating Distance Frequency

What is the frequency of a distance
√
d on a N × N lattice?

Find all the decompositions of d into d = a2 + b2, where
N − 1 ≥ a ≥ b ≥ 0. If there are m ordered pairs (a, b) with
a2 + b2 = d ,

√
d is on the m-th curve!

If b = 0 or a = b, then the frequency of that particular
decomposition is 2(N − a)(N − b). If a > b then the frequency of
that particular decomposition is 4(N − a)(N − b).

Add all the frequencies together.
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More Facts About the Distance Distribution

Theorem (Fermat)

Suppose d has prime factorization d = 2f pg11 · · · p
gm
m qh11 · · · qhnn , where

pi ≡ 1 (mod 4), qi ≡ 3 (mod 4). Then there exist r(d) ordered pairs
(a, b) ∈ Z2 with a2 + b2 = d, where

r(d) =

{
4 (g1 + 1) · · · (gm + 1) hi is even for all i ,

0 else.

The number of integers in the set {1, . . . , 2n} which can be written
as the sum of two squares is of order cn√

log n
. (Source of Erdos’s

Upper Bound!)
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What is the most common distance on the lattice?

The first (left-most) distance on each curve has the highest
frequency on that curve.

Define nk as the least positive integer such that there are k ordered
pairs (a, b) with a2 + b2 = nk , so that

√
nk is the first distance on

the k-th curve. Then the sequence n1, n2, . . . will be a list of
potential candidates for the most common distance on the lattice!
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What is the most common distance on the lattice?

The first distance on each curve has the highest frequency on that
curve.

Define nk as the least positive integer such that there are k ordered
pairs (a, b) with a2 + b2 = nk , so that

√
nk is the left-most distance

on the k-th curve. Then the sequence n1, n2, . . . will be a list of
potential candidates for the most common integer on the lattice!

Lemma (SMALL 2020)

Let k = qα1
1 qα2

2 · · · qαn
n be arbitrary, where q1 > q2 > . . . > qn, and let

5 = p1 < p2 < · · · be the primes ≡ 1 (mod 4), in increasing order. Then,

nk =

p1 · · · pα1︸ ︷︷ ︸
α1 primes


q1−1pα1+1 · · · pα1+α2︸ ︷︷ ︸

α2 primes


q2−1

· · ·

pα1+···+αn−1+1 · · · pα1+···+pα1+···+αn︸ ︷︷ ︸
αn primes


qn−1
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What is the most common distance on the lattice?

Although nk is difficult to deal with, the extremal cases are simple:

For k prime, nk = 5k−1.

For k = 2m, nk = p1 · · · pm where p1 < . . . < pm are the first m
primes such that pi ≡ 1 (mod 4).

Adapting previous asymptotic results on the product of the first k
primes,

nk ≈ e
1
2
(1+c) log2 2k log log2 2k .

We arrive at the following upper bound for the frequency of
√
nk :

2kN
(
N − e

1
4
(1+c) log2 2k log log2 2k

)
.
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Error introduction

We want to compare the distance distribution of the integer lattice with
those of its subsets.

Why do we care about this?

The integer lattice is a near-optimal set, however its subsets can have
distance distributions with a wide range of behavior.

Basically, we are trying to solve the Erdős distance problem on subsets of
the lattice.
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Calculating error

How do we compare the distance distributions of subsets of the lattice
with the distance distribution of the lattice?

The N ×N lattice has N2(N2−1)
2 ≈ N4

2 total distances. A subset with

p points has p(p−1)
2 ≈ p2

2 total distances.

So we scale the distance distribution of the subset up by N4

p2
.

Then, for each unique distance we find the absolute difference
between the scaled subset frequency and the lattice frequency.

We then average these difference to find the error.
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Configurations

What configuration of p points maximizes error?
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What configuration of p points maximizes error?

Figure: p = 9
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Configurations

What configuration of p points maximizes error?

Figure: p = 4(N − 1)
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Configurations

What configuration of p points maximizes error?

Figure: p = 4(N − 1) + 4(N − 3)
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Configurations

What configuration of p points maximizes error?

Figure: p =
⌈
N2

2

⌉
45
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Error Calculations

How do we calculate the error for one of these configurations?

Ex: for p =
⌈
N2

2

⌉
we have a checkerboard lattice.

We simplify by looking at
√
a2 + b2 instead of

√
d .

√
a2 + b2 only appears if a and b are both even or both odd.
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Error Calculations

The error is:

4

N + 2

[
3

4

(
4

(
N(5N − 1)

6

)
− N(5N − 1)

6

)
+

1

4

(
N(5N − 1)

6

)]
+

N − 2

N + 2

[
1

2

(
4

(
N(3N − 1)

3

)
− N(3N − 1)

3

)
+

1

2

N(3N − 1)

3

]

= 2N2 − 25N

6
− 121

21(N + 2)
+

188

21(3N − 1)
+

71

6
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Error Calculations

The error is:
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+
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+
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+
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Lower Bounds

How do you calculate a lower bound for the error?

Scale frequency down by p2

N4 and round frequency to nearest whole
number

We call this the optimal distance distribution for p points

Figure: data for N = 100
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Lower Bounds

How do you calculate a lower bound for the error?

Scale frequency down by p2

N4 and round frequency to nearest whole
number

We call this the optimal distance distribution for p points

Figure: data for N = 100
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Lower Bounds

How do you calculate a lower bound for the error?

Scale frequency down by p2

N4 and round frequency to nearest whole
number

We call this the optimal distance distribution for p points

Figure: data for N = 100
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Lower Bounds

How do you calculate a lower bound for the error?

Scale frequency down by p2

N4 and round frequency to nearest whole
number

We call this the optimal distance distribution for p points

Figure: data for N = 100
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Calculating Lower Bound

Error ≥

{
N3

N+2 + N2

N+2 −
10N

3(N+2) if p ≤ log5(N)
5

(
11− 2

√
10
)
,

N4

8p2
if p sufficiently large.

Figure: N = 100
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Calculating Lower Bound

Error ≥

{
N3

N+2 + N2

N+2 −
10N

3(N+2) if p ≤ log5(N)
5

(
11− 2

√
10
)
,

N4

8p2
if p sufficiently large.

Optimal distance distribution is actually the empty distance distribution.

So error is the average frequency in the full lattice.

If the most frequent distance on the lattice is F , then p small enough
that N4/p2 > 2F will be sufficient. (Error contribution for adding any
distance will result in strict increase in absolute difference).

p ≤ log5(N)(11− 2
√

10)/5 ensures N4/p2 > 2F .
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Calculating Lower Bound

Error ≥

{
N3

N+2 + N2

N+2 −
10N

3(N+2) if p ≤ log5(N)
5

(
11− 2

√
10
)
,

N4

8p2
if p sufficiently large.

Optimal distance distribution is actually the empty distance distribution.

So error is the average frequency in the full lattice.

If the most frequent distance on the lattice is F , then p small enough
that N4/p2 > 2F will be sufficient. (Error contribution for adding any
distance will result in strict increase in absolute difference).

p ≤ log5(N)(11− 2
√

10)/5 ensures N4/p2 > 2F .
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Calculating Lower Bound

Error ≥

{
N3

N+2 + N2

N+2 −
10N

3(N+2) if p ≤ log5(N)
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(
11− 2

√
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)
,

N4

8p2
if p sufficiently large.

Optimal distance distribution is actually the empty distance distribution.

So error is the average frequency in the full lattice.

If the most frequent distance on the lattice is F , then p small enough
that N4/p2 > 2F will be sufficient. (Error contribution for adding any
distance will result in strict increase in absolute difference).

p ≤ log5(N)(11− 2
√

10)/5 ensures N4/p2 > 2F .
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Calculating Lower Bound

Error ≥

{
N3

N+2 + N2

N+2 −
10N

3(N+2) if p ≤ log5(N)
5

(
11− 2

√
10
)
,

N4

8p2
if p sufficiently large.

Optimal distance distribution is actually the empty distance distribution.

So error is the average frequency in the full lattice.

If the most frequent distance on the lattice is F , then p small enough
that N4/p2 > 2F will be sufficient. (Error contribution for adding any
distance will result in strict increase in absolute difference).

p ≤ log5(N)(11− 2
√

10)/5 ensures N4/p2 > 2F .
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Calculating Lower Bound

Error ≥

{
N3

N+2 + N2

N+2 −
10N

3(N+2) if p ≤ log5(N)
5

(
11− 2

√
10
)
,

N4

8p2
if p sufficiently large.

Optimal distance distribution is actually the empty distance distribution.

So error is the average frequency in the full lattice.

If the most frequent distance on the lattice is F , then p small enough
that N4/p2 > 2F will be sufficient. (Error contribution for adding any
distance will result in strict increase in absolute difference).

p ≤ log5(N)(11− 2
√

10)/5 ensures N4/p2 > 2F .
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Lower Bound Formula

Error ≥

{
N3

N+2 + N2

N+2 −
10N

3(N+2) if p ≤ log5(N)
5

(
11− 2

√
10
)
,

N4

8p2
if p sufficiently large.

Some intuition: the average error should be around p2

4N4

However, for small p, many original frequencies are very close to 0,
so average is smaller than N4

4p2
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Lower Bound Formula

Error ≥

{
N3

N+2 + N2

N+2 −
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√
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,

N4

8p2
if p sufficiently large.

Some intuition: the average error should be around p2

4N4

However, for small p, many original frequencies are very close to 0,
so average is smaller than N4

4p2
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Lower Bound Formula

Error ≥

{
N3

N+2 + N2

N+2 −
10N

3(N+2) if p ≤ log5(N)
5

(
11− 2

√
10
)
,

N4

8p2
if p sufficiently large.

Some intuition: the average error should be around p2

4N4

However, for small p, many original frequencies are very close to 0,
so average is smaller than N4

4p2
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Further work

Characterizing sets of maximum error.

Characterizing sets of minimum error.

Extending results to other lattice structures.
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