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Introduction

Erd�os Distinct Distance Problems

• Erd�os 1946:
• What are the asymptotic bounds on the minimum number of distinct

distances among point sets with n points?

• The integer lattice provides upper bound O(n/
√

log n).
• The number of positive integers smaller than n that are the sum of

two squares is Θ(n/
√

log n) (Landau-Ramanujan).

• Only �nally resolved in 2015 by Guth and Katz with a lower bound

of Ω(n/ log(n)).
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Introduction

Variants of the Distance Problem

1 What is the minimal number of distinct distances among sets of n
points with no three on a line or both no three on a line and no

four on a circle?

2 What do �optimal� low distance con�gurations look like?

3 What is the maximal size of a k-distance set?

4 For a �xed n points, what is the largest subset with all distinct

distances? In restricted settings?

5 What about point sets in higher dimensions?

There are many, many more. See Adam She�er's survey.
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Introduction

The Erd�os Distinct Angle Problem

• Erd�os and Purdy, 1995:
• What is the minimum number of distinct angles, A(n), in (0, π)

formed by n non-collinear points in the plane?

• They conjectured that regular n-gons are optimal (n− 2 distinct

angles):
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Minimum Distinct Angles

General Lower Bound on the Erd�os Angle Problem

Conjecture (Weak Dirac Conjecture)

Every set P of n non-collinear points in the plane contains a point

incident to at least dn/2e lines between points in P.

The best current bound of
⌈
n
3

⌉
+ 1 was proven by Han in 2017.

Corollary

A(n) ≥ n
6 , Ano3l(n) ≥ n−2

2 .

θ
θ
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Minimum Distinct Angles

Projected Polygon

What is the optimal con�guration for Ano4c(n), the minimum number of

distinct angles among n points with no 4 cocircular?

p
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Minimum Distinct Angles

General Position Bounds

Theorem

Agen(n) = O(nlog2(7)).

Proof sketch:

• Project the points of a d-dimensional hypercube onto a plane

chosen such that the orthogonal projection is injective and the

projected points are in general position. Call the projection T .

• Note that p1− p2 = p3− p4 =⇒ |T (p1)−T (p2)| = |T (p3)−T (p4)|.
• This means triangles congruent up to edge translation are

congruent under the projection.

• The number of equivalence classes of edge translation equivalent

triangles in a d-dimensional cube is

7d − 3d+1 + 2

12
.
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Perturbing Near-Optimal Point Con�gurations

How much can an optimal con�guration be perturbed

while remaining �near-optimal?�

Theorem

The maximum number of distinct angles in con�gurations of a regular

(n− k)-gon with k points placed on the same circle is Θ(nk).

Theorem

The maximum number of distinct angles in con�gurations of a projected

(n− k)-gon with k points placed on the same projected line is Θ(nk).
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Low Angle Constructions

Low Angle Constructions

De�nition

Let P (k) be the maximum number of points in a planar point

con�guration admitting at most k distinct angles.

Lemma

k + 2 ≤ P (k) ≤ 6k.

• P (2) = 5. The unique optimal con�guration is A.

• P (3) = 5. There are 5 unique optimal con�gurations.

A B C D E
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Distinct Angle Subsets

What is the minimum maximum size of a subset of n
points with no repeated angles, R(n)?

Lemma

Let P ⊆ R2 such that |P| = n and P contains no 3 collinear points.

R(n) ≤ (2A(P))
1
3 .

• S ⊆ P admits at most A(P) distinct angles.

• Moreover, if 3
(|S|

3

)
> A(P), there are repeated angles in S.

• =⇒ R(n), Rno3l(n) = O(n1/3)

• Moreover, Rno4c(n), Rgen(n) = O(nlog2(7)/3).
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Distinct Angle Subsets

Lower bound in general position #1

Theorem

Rgen(n) = Ω(n1/5).

• Let P be a point con�guration in general position with n points.

• Let Q ⊆ P with each element chosen with probability p.

• Let qi(n) be the number of pairs of equal angles on i total points.

• Remove an element from Q in each of the pairs in the qi-sets to
form Q′.

• E[|Q′|] ≥ pn−
∑6

i=3 p
iqi(n).
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Distinct Angle Subsets

Lower bound in general position #2

• E[|Q′|] ≥ pn−
∑6

i=3 p
iqi(n).

• q3(n) = O(n7/3), q4(n) = O(n3), q5(n) = O(n4), q6(n) = O(n5).

q3 q6q5q4

Example con�gurations of q3(n), q4(n), q5(n), q6(n).

• Let p = cn−4/5 for some carefully chosen constant c, and conclude

the result!
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Higher Dimensions

Higher Dimensions: Lenz's Construction

Theorem

For d ≥ 6, the smallest number of angles that may be de�ned by n points

is at most 2
⌈

n
bd/2c

⌉
− 2, achieved by Lenz's Construction.

• Lenz's Construction consists of unit circles centered at the origin,

arranged in disjoint pairs of dimensions.

• We divide the points evenly among the circles, and on each they

form a regular polygon.

• (cos(iπ/n), sin(iπ/n), 0, 0, . . . ), (0, 0, cos(jπ/n), sin(jπ/n), . . . ), . . .
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