Erdős Distinct Angle Problems

Henry Fleischmann¹, Hongyi Hu², and Ethan Pesikoff³

University of Michigan¹, Carnegie Mellon University², Yale University³

August 20-22, 2021

1

Erdős Distinct Distance Problems

- Erdős 1946:
 - What are the asymptotic bounds on the minimum number of distinct distances among point sets with n points?
- The integer lattice provides upper bound $O(n/\sqrt{\log n})$.
 - The number of positive integers smaller than n that are the sum of two squares is $\Theta(n/\sqrt{\log n})$ (Landau-Ramanujan).
- Only finally resolved in 2015 by Guth and Katz with a lower bound of $\Omega(n/\log(n))$.

Variants of the Distance Problem

- What is the minimal number of distinct distances among sets of *n* points with no three on a line or both no three on a line and no four on a circle?
- 2 What do "optimal" low distance configurations look like?
- **3** What is the maximal size of a k-distance set?
- I For a fixed n points, what is the largest subset with all distinct distances? In restricted settings?
- **6** What about point sets in higher dimensions?

There are many, many more. See Adam Sheffer's survey.

The Erdős Distinct Angle Problem

- Erdős and Purdy, 1995:
 - What is the minimum number of distinct angles, A(n), in $(0, \pi)$ formed by n non-collinear points in the plane?
- They conjectured that regular *n*-gons are optimal (n-2 distinct angles):

General Lower Bound on the Erdős Angle Problem

Conjecture (Weak Dirac Conjecture)

Every set \mathcal{P} of n non-collinear points in the plane contains a point incident to at least $\lceil n/2 \rceil$ lines between points in \mathcal{P} .

The best current bound of $\left\lceil \frac{n}{3} \right\rceil + 1$ was proven by Han in 2017.

Corollary

 $A(n) \ge \frac{n}{6}, \ A_{no3l}(n) \ge \frac{n-2}{2}.$

Projected Polygon

What is the optimal configuration for $A_{no4c}(n)$, the minimum number of distinct angles among n points with no 4 cocircular?

Theorem

 $A_{gen}(n) = O(n^{\log_2(7)}).$

Proof sketch:

Theorem

 $A_{gen}(n) = O(n^{\log_2(7)}).$

Proof sketch:

• Project the points of a *d*-dimensional hypercube onto a plane chosen such that the orthogonal projection is injective and the projected points are in general position. Call the projection *T*.

Theorem

 $A_{gen}(n) = O(n^{\log_2(7)}).$

Proof sketch:

• Project the points of a d-dimensional hypercube onto a plane chosen such that the orthogonal projection is injective and the projected points are in general position. Call the projection T.

• Note that
$$p_1 - p_2 = p_3 - p_4 \implies |T(p_1) - T(p_2)| = |T(p_3) - T(p_4)|.$$

Theorem

 $A_{gen}(n) = O(n^{\log_2(7)}).$

Proof sketch:

- Project the points of a d-dimensional hypercube onto a plane chosen such that the orthogonal projection is injective and the projected points are in general position. Call the projection T.
- Note that $p_1 p_2 = p_3 p_4 \implies |T(p_1) T(p_2)| = |T(p_3) T(p_4)|.$
- This means triangles congruent up to edge translation are congruent under the projection.

Theorem

 $A_{gen}(n) = O(n^{\log_2(7)}).$

Proof sketch:

- Project the points of a d-dimensional hypercube onto a plane chosen such that the orthogonal projection is injective and the projected points are in general position. Call the projection T.
- Note that $p_1 p_2 = p_3 p_4 \implies |T(p_1) T(p_2)| = |T(p_3) T(p_4)|.$
- This means triangles congruent up to edge translation are congruent under the projection.
- The number of equivalence classes of edge translation equivalent triangles in a *d*-dimensional cube is

$$\frac{7^d - 3^{d+1} + 2}{12}$$

How much can an optimal configuration be perturbed while remaining "near-optimal?"

Theorem

The maximum number of distinct angles in configurations of a regular (n-k)-gon with k points placed on the same circle is $\Theta(nk)$.

Theorem

The maximum number of distinct angles in configurations of a projected (n-k)-gon with k points placed on the same projected line is $\Theta(nk)$.

Low Angle Constructions

Definition

Let P(k) be the maximum number of points in a planar point configuration admitting at most k distinct angles.

Lemma

 $k+2 \le P(k) \le 6k.$

- P(2) = 5. The unique optimal configuration is A.
- P(3) = 5. There are 5 unique optimal configurations.

What is the minimum maximum size of a subset of n points with no repeated angles, R(n)?

Lemma

Let $\mathcal{P} \subseteq \mathbb{R}^2$ such that $|\mathcal{P}| = n$ and \mathcal{P} contains no 3 collinear points. $R(n) \leq (2A(\mathcal{P}))^{\frac{1}{3}}.$

- $S \subseteq \mathcal{P}$ admits at most $A(\mathcal{P})$ distinct angles.
- Moreover, if $3\binom{|S|}{3} > A(\mathcal{P})$, there are repeated angles in S.

•
$$\implies$$
 $R(n), R_{\text{no3l}}(n) = O(n^{1/3})$

• Moreover, $R_{no4c}(n), R_{gen}(n) = O(n^{\log_2(7)/3}).$

Theorem

 $R_{gen}(n) = \Omega(n^{1/5}).$

• Let \mathcal{P} be a point configuration in general position with n points.

Theorem

- Let \mathcal{P} be a point configuration in general position with n points.
- Let $\mathcal{Q} \subseteq \mathcal{P}$ with each element chosen with probability p.

Theorem

- Let \mathcal{P} be a point configuration in general position with n points.
- Let $\mathcal{Q} \subseteq \mathcal{P}$ with each element chosen with probability p.
- Let $q_i(n)$ be the number of pairs of equal angles on *i* total points.

Theorem

- Let \mathcal{P} be a point configuration in general position with n points.
- Let $\mathcal{Q} \subseteq \mathcal{P}$ with each element chosen with probability p.
- Let $q_i(n)$ be the number of pairs of equal angles on *i* total points.
- Remove an element from \mathcal{Q} in each of the pairs in the q_i -sets to form \mathcal{Q}' .

Theorem

- Let \mathcal{P} be a point configuration in general position with n points.
- Let $\mathcal{Q} \subseteq \mathcal{P}$ with each element chosen with probability p.
- Let $q_i(n)$ be the number of pairs of equal angles on *i* total points.
- Remove an element from \mathcal{Q} in each of the pairs in the q_i -sets to form \mathcal{Q}' .

•
$$\mathbb{E}[|\mathcal{Q}'|] \ge pn - \sum_{i=3}^{6} p^i q_i(n).$$

•
$$\mathbb{E}[|\mathcal{Q}'|] \ge pn - \sum_{i=3}^{6} p^i q_i(n).$$

•
$$\mathbb{E}[|\mathcal{Q}'|] \ge pn - \sum_{i=3}^{6} p^i q_i(n).$$

• $q_3(n) = O(n^{7/3}), q_4(n) = O(n^3), q_5(n) = O(n^4), q_6(n) = O(n^5).$

Example configurations of $q_3(n), q_4(n), q_5(n), q_6(n)$.

•
$$\mathbb{E}[|\mathcal{Q}'|] \ge pn - \sum_{i=3}^{6} p^i q_i(n).$$

• $q_3(n) = O(n^{7/3}), q_4(n) = O(n^3), q_5(n) = O(n^4), q_6(n) = O(n^5).$

Example configurations of $q_3(n), q_4(n), q_5(n), q_6(n)$.

•
$$\mathbb{E}[|\mathcal{Q}'|] \ge pn - \sum_{i=3}^{6} p^i q_i(n).$$

• $q_3(n) = O(n^{7/3}), q_4(n) = O(n^3), q_5(n) = O(n^4), q_6(n) = O(n^5).$

Example configurations of $q_3(n), q_4(n), q_5(n), q_6(n)$.

• Let $p = cn^{-4/5}$ for some carefully chosen constant c, and conclude the result!

Higher Dimensions: Lenz's Construction

Theorem

For $d \ge 6$, the smallest number of angles that may be defined by n points is at most $2\left\lceil \frac{n}{\lfloor d/2 \rfloor} \right\rceil - 2$, achieved by Lenz's Construction.

- Lenz's Construction consists of unit circles centered at the origin, arranged in disjoint pairs of dimensions.
- We divide the points evenly among the circles, and on each they form a regular polygon.
- $(\cos(i\pi/n), \sin(i\pi/n), 0, 0, \dots), (0, 0, \cos(j\pi/n), \sin(j\pi/n), \dots), \dots$

Acknowledgements

This research was done as part of the SMALL REU program and was funded by NSF grant number 1947438.

Special thanks to our co-researcher Faye Jackson and Professors Charles Wolf, Eyvindur A. Palsson, and Steven J. Miller for their mentorship.

References

P. Brass, W. Moser, and J. Pach, *Research problems in discrete geometry*, Springer Science & Business Media, 2006.

P. Erdős, D. Hickerson, and J. Pach, A problem of Leo Moser about repeated distances on the sphere, *American Mathematical Monthly* **96** (1989), 569-575.

- P. Erdős, Some unsolved problems, *Magyar Tud. Akad. Mat. Kut. Int. Közl.*, **6** (1961), 221-254.
- P. Erdős, G. Purdy, Extremal problems in combinatorial geometry, Handbook of Combinatorics, Vol. 1, R.L. Graham et al., eds., Elsevier (1995), 809-874.

L. Guth and N. Katz, On the Erdős distinct distances problem in the plane, Annals of Mathematics 181(1) (2015), 155-190.

Z. Han, A Note on the Weak Dirac Conjecture, *Electronic Journal of Combinatorics* **24(1)** (2017), P1.63.

J. Pach and M. Sharir, Repeated angles in the plane and related problems, *Journal of Combinatorial Theory*, Series A **59(1)** (1992), 12-22.

A. Sheffer, Distinct Distances: Open Problems and Current Bounds, preprint (2018). https://arxiv.org/abs/1406.1949.