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Background Irreducible Sets

Set Addition

De�nition

Given two sets A,B ⊆ Z, we say that A + B = {a + b | a ∈ A, b ∈ B}.

Example

{0, 1, 2}+ {0, 1, 2, 4} = {0, 1, 2, 3, 4, 5, 6}

0 1 2

0 0 1 2
1 1 2 3
2 2 3 4
4 4 5 6

2



Background Irreducible Sets

Set Addition

De�nition

Given two sets A,B ⊆ Z, we say that A + B = {a + b | a ∈ A, b ∈ B}.

Example

{0, 1, 2}+ {0, 1, 2, 4} = {0, 1, 2, 3, 4, 5, 6}

0 1 2

0 0 1 2
1 1 2 3
2 2 3 4
4 4 5 6

2



Background Irreducible Sets

Set Addition

De�nition

Given two sets A,B ⊆ Z, we say that A + B = {a + b | a ∈ A, b ∈ B}.

Example

{0, 1, 2}+ {0, 1, 2, 4} = {0, 1, 2, 3, 4, 5, 6}

0 1 2

0 0 1 2
1 1 2 3
2 2 3 4
4 4 5 6

2



Background Irreducible Sets

Irreducibility

De�nition

A set S ⊆ Z is reducible if S = A + B for two sets A,B such that

|A|, |B| ≥ 2. Otherwise, S is irreducible.

Example

The set {0, 1, 2} = {0, 1}+ {0, 1} is reducible. In contrast, {0, 1, 3} is
irreducible.
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Higher Dimensional Irreducible Sets Large Irreducible Sets

Higher Dimensional Irreducibility

De�nition

Let S ⊂ Zd. S is reducible i� S = A + B for A,B ⊂ Zd with

|A|, |B| ≥ 2.

Let S = {(0, 0), (1, 1), (2, 2)}. Then,

S = {(0, 0), (1, 1)}+ {(0, 0), (1, 1)}

so S is reducible.

+ =
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Higher Dimensional Irreducible Sets Large Irreducible Sets

What is the largest size of an irreducible subset of [n]d?

De�nition

Let [n]d = {0, 1, . . . , n} × {0, 1, . . . , n} · · · {0, 1, . . . , n}︸ ︷︷ ︸
d copies

.

Lemma (BDGGPV 2021)

Fix S ⊂ Zd such that |S| ≥ 3 and 0 ∈ S. Let A = {0, r} for r ∈ Zd \ {0}.
S = A + B for some B ⊂ S i� for all s ∈ S, s− r ∈ S or s + r ∈ S.

• We consider the minimum size of the complement of an irreducible
subset of [n]d.

• The above lemma shows that if |[nd] \ S| is too small then
S = A + B for some A = {0, r}.
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Higher Dimensional Irreducible Sets Large Irreducible Sets

The Largest Irreducible Subset of [n]d

Theorem (SMALL 2021)

Let S ⊆ [n]d. Let k =
∣∣[n]d \ S

∣∣. Then, S is reducible if

k

d
ln 2 + Hd kde + Hd(k2)/de

< Hn−1

where Hn is the nth Harmonic number (Hn ≈ log(n)).

• This tells us that the size of the complements of irreducible subsets
of [n]d are Ω(d log n).
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Higher Dimensional Irreducible Sets Local Irreducibility

How do you easily show a set is irreducible?

Proposition (Local Irreducibility)

Suppose S ⊂ Zd
≥0 with 0 ∈ S satis�es the following.

1 (MS + MS) ∩ S = ∅, for MS the set of minimal norm elements.

2 For each s ∈ S \MS there is some t ∈ S with |t| < |s| and s+ t /∈ S.

Then, S is irreducible.

• Local irreducibility is de�ned to be easily computer veri�able.

• Irreducibility follows by an iterative contradiction argument.

• In 1-dimension, the minimum size of the complement is Θ(log(n)).
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Higher Dimensional Irreducible Sets Local Irreducibility

Local Irreducibility Example

Proposition (Local Irreducibility)

Suppose a set S ⊂ Zd
≥0 with 0 ∈ S satis�es the following.

1 (MS + MS) ∩ S = ∅, for MS the set of minimal norm elements.

2 For each s ∈ S \MS there is some t ∈ S with |t| < |s| and s+ t /∈ S.

Then, S is irreducible.

Suppose S = {0, 1, 3} = A + B.

• WLOG, 0 ∈ A,B and A,B ⊂ S by shifting the sets.

• 1 must be in A or B. Suppose 1 ∈ B.

• Then, since 1 + 1 6∈ S, 1 6∈ A.

• Since 1 + 3 6∈ S, we know 3 6∈ A.

• So, A = {0} and S is irreducible.

A = {} B = {}
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Higher Dimensional Irreducible Sets Local Irreducibility

Local Irreducibility Example

Proposition (Local Irreducibility)

Suppose a set S ⊂ Zd
≥0 with 0 ∈ S satis�es the following.

1 (MS + MS) ∩ S = ∅, for MS the set of minimal norm elements.
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Higher Dimensional Irreducible Sets Local Irreducibility

Constructive upper bound of O(
√
n)

00

Z2
≥0 with ◦ denoting belonging to the set complement.
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Lunar Numbers

Lunar Numbers

• In 2011, David Applegate, Marc LeBrun, and Neil Sloane
introduced Lunar arithmetic (originally called Dismal arithmetic),
a system for arithmetic without carries.

• To perform �lunar addition� on single digits, take the larger digit:

2⊕ 6 = 6.

• To perform �lunar multiplication� on single digits, take the smaller
digit:

2⊗ 6 = 2.
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Lunar Numbers

Arithmetic Without Carries

When we lunar add or multiply numbers with several digits, we will not
have to perform any carries.

Example

6 2 4
⊕ 3 8 1

= 6 8 4

6 2 4
⊗ 3 8 1

= 1 1 1
6 2 4

3 2 3

= 3 6 3 4 1

11



Lunar Numbers

Arithmetic Without Carries

When we lunar add or multiply numbers with several digits, we will not
have to perform any carries.

Example

6 2 4
⊕ 3 8 1

= 6 8 4

6 2 4
⊗ 3 8 1

= 1 1 1
6 2 4

3 2 3

= 3 6 3 4 1

11



Lunar Numbers

Arithmetic Without Carries

When we lunar add or multiply numbers with several digits, we will not
have to perform any carries.

Example

6 2 4
⊕ 3 8 1

= 6 8 4

6 2 4
⊗ 3 8 1

= 1 1 1
6 2 4

3 2 3

= 3 6 3 4 1

11



Lunar Numbers

Arithmetic Without Carries

When we lunar add or multiply numbers with several digits, we will not
have to perform any carries.

Example

6 2 4
⊕ 3 8 1

= 6 8 4

6 2 4
⊗ 3 8 1

= 1 1 1
6 2 4

3 2 3

= 3 6 3 4 1

11



Lunar Numbers

Arithmetic Without Carries

When we lunar add or multiply numbers with several digits, we will not
have to perform any carries.

Example

6 2 4
⊕ 3 8 1

= 6 8 4

6 2 4
⊗ 3 8 1

= 1 1 1

6 2 4
3 2 3

= 3 6 3 4 1

11



Lunar Numbers

Arithmetic Without Carries

When we lunar add or multiply numbers with several digits, we will not
have to perform any carries.

Example

6 2 4
⊕ 3 8 1

= 6 8 4

6 2 4
⊗ 3 8 1

= 1 1 1
6 2 4

3 2 3

= 3 6 3 4 1

11



Lunar Numbers

Arithmetic Without Carries

When we lunar add or multiply numbers with several digits, we will not
have to perform any carries.

Example

6 2 4
⊕ 3 8 1

= 6 8 4

6 2 4
⊗ 3 8 1

= 1 1 1
6 2 4

3 2 3

= 3 6 3 4 1

11



Lunar Numbers

Arithmetic Without Carries

When we lunar add or multiply numbers with several digits, we will not
have to perform any carries.

Example

6 2 4
⊕ 3 8 1

= 6 8 4

6 2 4
⊗ 3 8 1

= 1 1 1
6 2 4

3 2 3

= 3 6 3 4 1

11



Lunar Numbers

Why study Lunar Numbers?

Base 2 numbers correspond to subsets of the natural numbers, with
lunar multiplication corresponding to set addition (Gal Gross, 2019).

Example

The set {0, 1, 3} corresponds to the base 2 number 1101, and {0, 2}
corresponds to 101. Their lunar product is

1 1 0 1
⊗ 1 0 1

= 1 1 1 1 0 1

This corresponds to the set {0, 1, 2, 3, 5}, which is {0, 1, 3}+ {0, 2}.

Lunar multiplication in arbitrary base can thus be thought of as a
generalization of set addition.
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Lunar Numbers

Lunar Primes

• We say that a lunar number n is irreducible if all of its possible
(lunar) factorizations include a number containing only one
non-zero digit.
• In the base 2 case, n is irreducible if and only if its corresponding

set is irreducible.

• If n is base b lunar number, we say that n is prime if its only
possible factorization is (b− 1)⊗b n.
• (b− 1) is the unit for lunar multiplication.

• A base b lunar number is prime if and only if it is irreducible,
contains the digit b− 1, and has non-zero �nal digit.
• We call lunar numbers which contain the digit b− 1 and have a

non-zero �nal digit candidates for primality.
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Lunar Numbers

How many Lunar Primes are there?

Theorem (SMALL 2021)

The proportion of base b, length k candidates for primality which are

irreducible (and thus prime) tends to 1 as k →∞.

• Conjectured by Applegate et al. in their paper on lunar arithmetic.

• The base 2 case was proven in 2014 by Yaroslav Shitov.

• The b = 2 case implies that the proportion of subsets of
{0, 1, . . . , k} containing 0 and k which are irreducible tends to 1 as
k →∞.
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Lunar Numbers

Lunar Digit Strings

• It is useful to extend our de�nition of lunar numbers to include
possibly in�nitely long strings of digits equipped with lunar
operations.

• We call these (possibly in�nitely long) strings of digits lunar digit
strings.

• In the base 2 case, lunar digit strings correspond to sets with a
(possibly in�nite) number of elements.

Example

The set of even natural numbers corresponds to the string 101010101....
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Lunar Numbers

Asymptotic Irreducibility

De�nition

A set S ⊆ N is asymptotically irreducible if adding and removing

any �nite number of elements of S results in an irreducible set.

De�nition

A lunar digit string n is asymptotically irreducible if changing any

�nite number of the digits of n results in an irreducible lunar digit

string.

These de�nitions correspond in the base 2 case.
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Lunar Numbers

Wirsing's Result and our Generalization

Theorem (Eduard Wirsing, 1953)

The proportion of subsets of N which are asymptotically irreducible is 1.

• Implies that the proportion of base 2 lunar strings which are
asymptotically irreducible is 1.

• Although Wirsing's result far predates lunar numbers, his proof
actually relies heavily on the correspondence between sets and base
2 digit strings.

Theorem (SMALL 2021)

For b ≥ 2, the proportion of base b lunar digit strings which are

asymptotically irreducible is 1.
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