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Background
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Riemann Zeta Function

ζ(s) =
∞∑

n=1

1
ns =

∏
p prime

(
1 − 1

ps

)−1

, Re(s) > 1.

Functional Equation:

ξ(s) = Γ
(s

2

)
π− s

2 ζ(s) = ξ(1 − s).

Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A

T
= A.
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General L-functions

L(s, f ) =
∞∑

n=1

af (n)
ns =

∏
p prime

Lp (s, f )
−1 , Re(s) > 1.

Functional Equation:

Λ(s, f ) = Λ∞(s, f )L(s, f ) = Λ(1 − s, f ).

Generalized Riemann Hypothesis (RH):

All non-trivial zeros have Re(s) =
1
2
; can write zeros as

1
2
+iγ.

Observation: Spacings b/w zeros appear same as b/w
eigenvalues of Complex Hermitian matrices A

T
= A.
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Zeros of ζ(s) vs GUE

70 million spacings b/w adjacent zeros of ζ(s), starting at
the 1020th zero (from Odlyzko).
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Explicit Formula (Contour Integration)

−ζ ′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1 − p−s)−1

=
d
ds

∑
p

log
(
1 − p−s)

=
∑

p

log p · p−s

1 − p−s =
∑

p

log p
ps + Good(s).

Contour Integration:∫
− ζ ′(s)

ζ(s)
ϕ(s)ds vs

∑
p

log p
∫

ϕ(s)p−sds.

Knowledge of Zeros ⇔ Knowledge of Coefficients.6
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Explicit Formula (Contour Integration)

−ζ ′(s)
ζ(s)

= − d
ds

log ζ(s) = − d
ds

log
∏

p

(
1 − p−s)−1

=
d
ds

∑
p

log
(
1 − p−s)

=
∑

p

log p · p−s

1 − p−s =
∑

p

log p
ps + Good(s).

Contour Integration (see Fourier Transform arising):∫
− ζ ′(s)

ζ(s)
ϕ(s)ds vs

∑
p

log p
∫

ϕ(s)e−σ log pe−it log pds.

Knowledge of Zeros ⇔ Knowledge of Coefficients.
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence, box B ⊂ Rn−1.

n-level correlation

lim
N→∞

#

{
(
αj1 − αj2 , . . . , αjn−1 − αjn

)
∈ B, ji ̸= jk

}
N

(Instead of using a box, can use a smooth test function.)
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Measures of Spacings: n-Level Correlations

{αj} increasing sequence, box B ⊂ Rn−1.
1 Normalized spacings of ζ(s) starting at 1020

(Odlyzko).
2 2 and 3-correlations of ζ(s) (Montgomery, Hejhal).
3 n-level correlations for all automorphic cupsidal

L-functions (Rudnick-Sarnak).
4 n-level correlations for the classical compact groups

(Katz-Sarnak).
5 Insensitive to any finite set of zeros.
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Measures of Spacings: n-Level Density and Families

ϕ(x) :=
∏

i ϕi(xi), ϕi even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dn,f (ϕ) =
∑

j1,...,jn
distinct

ϕ1

(
Lfγ

(j1)
f

)
· · ·ϕn

(
Lfγ

(jn)
f

)

1 Individual zeros contribute in limit.
2 Most of contribution is from low zeros.
3 Average over similar curves (family).

Katz-Sarnak Conjecture
For a ‘nice’ family of L-functions, the n-level density
depends only on a symmetry group attached to the family.
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Normalization of Zeros

Local (hard, use Cf ) vs Global (easier, use logC =
|FN |−1∑

f∈FN
logCf ). Hope: ϕ a good even test function

with compact support, as |F| → ∞,

1
|FN |

∑
f∈FN

Dn,f (ϕ) =
1

|FN |
∑
f∈FN

∑
j1,...,jn
ji ̸=±jk

∏
i

ϕi

(
logCf

2π
γ
(ji )
E

)

→
∫

· · ·
∫

ϕ(x)Wn,G(F)(x)dx .

Katz-Sarnak Conjecture
As Cf → ∞ the behavior of zeros near 1/2 agrees with
N → ∞ limit of eigenvalues of a classical compact group.
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1-Level Densities

The Fourier Transforms for the 1-level densities are

̂W1,SO(even)(u) = δ0(u) +
1
2
η(u)

Ŵ1,SO(u) = δ0(u) +
1
2

̂W1,SO(odd)(u) = δ0(u)−
1
2
η(u) + 1

Ŵ1,Sp(u) = δ0(u)−
1
2
η(u)

Ŵ1,U(u) = δ0(u)

where δ0(u) is the Dirac Delta functional and

η(u) =

{ 1 if |u| < 1
1
2 if |u| = 1
0 if |u| > 1
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Main Tools

1 Control of conductors: Usually monotone, gives scale
to study low-lying zeros.

2 Explicit Formula: Relates sums over zeros to sums
over primes.

3 Averaging Formulas: Petersson formula in
Iwaniec-Luo-Sarnak, Orthogonality of characters in
Fiorilli-Miller, Gao, Hughes-Rudnick, Levinson-Miller,
Rubinstein.
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Applications of n-level density

One application: bounding the order of vanishing at the
central point.
Average rank · ϕ(0) ≤

∫
ϕ(x)WG(F)(x)dx if ϕ non-negative.

Can also use to bound the percentage that vanish to
order r for any r .

Theorem (Miller, Hughes-Miller)
Using n-level arguments, for the family of cuspidal
newforms of prime level N → ∞ (split or not split by sign),
for any r there is a cr such that probability of at least r
zeros at the central point is at most cnr−n.

Better results using 2-level than Iwaniec-Luo-Sarnak
using the 1-level for r ≥ 5.
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n-Level Density / Moments for Cuspidal Newform: Cohen et. al.

Let n ≥ 2 and supp(ϕ) ⊂ (− 2
n ,

2
n ). Define

σ2
ϕ := 2

∫ ∞

−∞
|y |ϕ̂(y)2dy

R(m, i;ϕ) := 2m−1(−1)m+1
i−1∑
l=0

(−1)l

(
m
l

)
(
−1

2
ϕm(0) +

∫ ∞

−∞
· · ·
∫ ∞

−∞
ϕ̂(x2) · · · ϕ̂(xl+1)∫ ∞

−∞
ϕm−l(x1)

sin(2πx1(1 + |x2|+ · · ·+ |xl+1|))
2πx1

dx1 · · · dxl+1

)

S(n, a, ϕ) :=

⌊ a−1
2 ⌋∑

l=0

n!
(n − 2l)!l!

R(n − 2l, a − 2l, ϕ)

(
σ2
ϕ

2

)l

then

lim
prime N→∞

〈(
D(f ;ϕ)− ⟨D(f ;ϕ)⟩±

)n
〉
±

= (n − 1)!!σn
ϕ1n even ± S(n, a;ϕ).

19
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Results

20
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Previous Results

Question
Assuming the GRH, how far up must we go on the critical
line before we are assured that we will see the first zero?

Previous work mostly on first (lowest) zero of an
L-function. Assume GRH, zeros of the form 1

2 + iγ.
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Previous Results

Question
Assuming the GRH, how far up must we go on the critical
line before we are assured that we will see the first zero?

Previous work mostly on first (lowest) zero of an
L-function. Assume GRH, zeros of the form 1

2 + iγ.

S. D. Miller: L-functions of real archimedian type has
γ < 14.13.

J. Bober, J. B. Conrey, D. W. Farmer, A. Fujii, S.
Koutsoliotas, S. Lemurell, M. Rubinstein, H. Yoshida:
General L-function has γ < 22.661.
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Previous Results

Question
Assuming the GRH, how far up must we go on the critical
line before we are assured that we will see the first zero?

Previous work mostly on first (lowest) zero of an
L-function. Assume GRH, zeros of the form 1

2 + iγ.

J. Mestre: Elliptic curves: first zero occurs by
O(1/ log logNE), where NE is the conductor (expect
order 1/ logNE ).

J. Goes and S. J. Miller: One-Parameter Family of
Elliptic Curves of rank r : r + 1

2 normalized zeros on
average within the band ≈ (−0.551329

σ
, 0.551329

σ
).
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New Results: S. J. Miller and Tang

Theorem: Upper Bound Lowest First Zero in Even
Cuspidal Families
For an odd n = 2m + 1, whenever ω satisfies this following inequality

−

(
ϕ̂ω(0) +

1
2

∫ σ/n

−σ/n
ϕ̂ω(y)dy

)n

< 1n even(n − 1)!!σn
ϕω

+ S(n, a;ϕω),

at least one form with at least one normalized zero in (−ω, ω). Can take

ωmin(σ, h) >

−
σ
∫ 1

0 h(u)2 du + σ2

4

∫ 1
−1

∫ 2/σ
0 h(u)h(v − u) dv du

1
σ

∫ 1
0 h(u)h′′(u) du + 1

4

∫ 1
−1

∫ 2/σ
0 h(u)h′′(v − u) dv du

− 1
2

1
π
.

Only know for σ < 2 (under GRH).
Get ωmin(2,h) ≈ 0.25 for h = cos(πy/2).
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New Results: S. J. Miller and Tang

Theorem: Normalized Zeros Near the Central Point
Pr ,ρ(F): percent of forms with at least r normalized zeros
in (−ρ, ρ).

For even n and r ≥ µ(ϕ,F)/ϕ(ρ):

Pr ,ρ(F) ≤
1n even(n − 1)!!σn

ϕ + S(n,a;ϕ)
(rϕ(ρ)− µ(ϕ,F))n .
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Explicit Bounds

Number of zeros 2-level 4-level 6-level
6 N/A 10.849910 48.154279

16 N/A 0.004235 2.83230·10−4

26 N/A 3.541901·10−4 6.716802·10−6

28 420.045063 2.486819·10−4 3.943864·10−6

30 20.991406 1.796948·10−4 2.418466·10−6

32 6.651738 1.330555·10−4 1.538761·10−6

34 3.220871 1.006126·10−4 1.010576·10−6

Table: Upper bound on probability of forms with at least r normalized
zeros within 0.8 average spacing from central point, using naive test
function with support 2/n.
“N/A” means restriction in our theorem not met.
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Constructions
and Proofs
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Preliminaries

Convolution:

(A ∗ B)(x) =

∫ ∞

−∞
A(t)B(x − t)dt .

Fourier Transform:

Â(y) =

∫ ∞

−∞
A(x)e−2πixydx

Â′′(y) = −(2πy)2Â(y).

Lemma: ̂(A ∗ B)(y) = Â(y) · B̂(y);
in particular, ̂(A ∗ A)(y) = Â(y)2 ≥ 0 if A is even.

28



Background Results Constructions/Proofs Future Works Refs

Construction of Test Function

Create compactly supported ϕ̂(y).
Choose h(y) even, twice continuously differentiable, supported on (−1, 1),
monotonically decreasing.

f (y) := h
(

2y
σ/n

)
.

g(y) := (f ∗ f )(y), ĝ(x) = f̂ (x)2 ≥ 0.
ϕ̂ω(y) := g(y) + (2πω)−2g′′(y) thus ϕω(x) = ĝ(x) · (1 − (x/ω)2).

- 3 - 2 - 1 1 2 3

0.5

1.0

1.5

Plot of ϕω(x) = ĝ(x) · (1 − (x/ω)2), for h = cos
(πy

2

)
, σ = 2, ω = .5, and n = 1.
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Sketch of Proof: Key Expansion

Replace mean from finite N with the limit:

lim
N→∞

N prime

1
|FN |

∑
f∈FN

∑
j

ϕ (γf ,jcn)− µ(ϕ,F)

n

= 1n even(n − 1)!!σn
ϕ ± S(n,a;ϕ),

and main term of the mean of the 1-level density of FN is

µ(ϕ,F) := ϕ̂(0) +
1
2

∫ 1

−1
ϕ̂(y)dy .
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Key Observation

lim
N→∞
Nprime

1
|FN |

∑
f∈FN

∑
j

ϕ(γ̃f ,jcn)− µ(ϕ,F)

n

= 1n even(n − 1)!!σn
ϕ ± S(n,a;ϕ).

ϕω(x) = ĝ(x) · (1 − (x/ω)2).

ϕω(x) ≥ 0 when |x | ≤ ω, and ϕω(x) ≤ 0 when |x | > ω.

Contribution of zeroes for |x | ≥ ω is non-positive.

As n odd, doesn’t decrease if drop these non-positive
contributions: why we restrict to odd n.
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Sketch of Proof: Proof by Contradiction

Dropping negative contributions:

lim
N→∞
Nprime

1
|FN |

∑
f∈FN

 ∑
|γf ,j |≤ω

ϕω(γf ,jcn)− µ(ϕω,F)

n

≥ S(n,a;ϕω).

Assume no forms have a zero on the interval (−ω, ω):

lim
N→∞
Nprime

1
|FN |

∑
f∈FN

(−µ(ϕω,F))n ≥ S(n,a;ϕω),

(−µ(ϕω,F))n lim
N→∞
Nprime

1
|FN |

∑
f∈FN

1 ≥ S(n,a;ϕω).

As limN→∞
Nprime

1
|FN |

∑
f∈FN

1 = 1, get

(−µ(ϕω,F))n ≥ S(n,a;ϕω).
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Sketch of Proof: Continued

Because of the compact support of ϕ̂ω,

−

(
ϕ̂ω(0) +

1
2

∫ σ/n

−σ/n
ϕ̂ω(y)dy

)n

≥ S(n,a;ϕω).

Thus, if ω satisfies the following inequality

−

(
ϕ̂ω(0) +

1
2

∫ σ/n

−σ/n
ϕ̂ω(y)dy

)n

< S(n,a;ϕω),

we get a contradiction, so at least one form has a
normalized zero in (−ω, ω).
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Explicit Bound from 1-Level Density

First Zero from 1-Level

The first zero of the family of cuspidal newforms exists on the interval
(−ωmin, ωmin), where

ωmin(σ, h) >

−
σ
∫ 1

0 h(u)2 du + σ2

4

∫ 1
−1

∫ 2/σ
0 h(u)h(v − u) dv du

1
σ

∫ 1
0 h(u)h′′(u) du + 1

4

∫ 1
−1

∫ 2/σ
0 h(u)h′′(v − u) dv du

− 1
2

1
π
.

Number theory known only for σ < 2 (under GRH).

Get ωmin(2, h) ≈ 0.25 for h = cos(πy/2).
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Remarks on Computation and Support σ

Restrictions with higher level computation.

Riemann Sum approximation.

Currently worse bounds with σ = 2 for larger n.

Higher level yields better bounds if support large.

Larger n better if σ larger.
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Main Theorem 2

Theorem: Normalized Zeros Near the Central Point

Pr,ρ(F): percent of forms with at least r normalized zeros in (−ρ, ρ).
For even n and r ≥ µ(ϕ,F)/ϕ(ρ):

Pr,ρ(F) ≤
1n even(n − 1)!!σn

ϕ + S(n, a;ϕ)
(rϕ(ρ)− µ(ϕ,F))n .

Naive Test Function

The naive test functions are the Fourier pair

ϕnaive(x) =

(
sin(πvnx)
(πvnx)

)2

, ϕ̂naive(y) =
1
vn

(
y − |y |

vn

)
for |y | < vn where vn is the support.
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Sketch of Proof

Even n, dropping all with less than r zeros in (−ρ, ρ) drops a non-negative
sum:

lim
N→∞
Nprime

1
|FN |

∑
f∈F(ρ)

N,r

 ∑
|γf ,j |≤ρ

ϕ(γf ,jcn) + Tf (ϕ)− µ(ϕ,F)

n

≤ . . . .

Replace the summation of ϕ(γf ,jcn) with rϕ(ρ); can drop Tf (ϕ) and not
increase LHS if r ≥ µ(ϕ,F)/ϕ(ρ):

lim
N→∞
Nprime

1
|FN |

∑
f∈F(ρ)

N,r

(rϕ(ρ)− µ(ϕ,F))n ≤ . . . .

Pr,ρ(F) ≤
1n even(n − 1)!!σn

ϕ + S(n, a;ϕ)
(rϕ(ρ)− µ(ϕ,F))n .
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Explicit Bounds

Figure: Percentage vs. number of zeros (for a fixed ρ = .4).

Higher levels starts above lower when r small, decrease faster and eventually
gives better results as r grows.
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Explicit Bounds

Number of zeros 2-level 4-level 6-level
6 N/A 10.849910 48.154279

16 N/A 0.004235 2.83230·10−4

26 N/A 3.541901·10−4 6.716802·10−6

28 420.045063 2.486819·10−4 3.943864·10−6

30 20.991406 1.796948·10−4 2.418466·10−6

32 6.651738 1.330555·10−4 1.538761·10−6

34 3.220871 1.006126·10−4 1.010576·10−6

Table: Upper bound on the probability of forms having at least r
normalized zeros within 0.8 average spacing from central point, using
naive test function with support 2/n. “N/A” means restriction in our
theorem not met.
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Future Works
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Improving Bounds

Optimize test function.

Increase support of test function.

Recent studies increased the support to 4 (Baluyot,
Chandee, and Li) for a certain group of L-functions....

43



Background Results Constructions/Proofs Future Works Refs

Reference

44



Background Results Constructions/Proofs Future Works Refs

References

J. Bober, J. B. Conrey, D. W. Farmer, A. Fujii, S. Koutsoliotas, S. Lemurell, M. Rubinstein, H. Yoshida, The
highest lowest zero of general L-functions, Journal of Number Theory, 147 (2015) 364-373.
https://arxiv.org/abs/1211.5996.

P. Cohen, J. Dell, O. E. Gonzalez, G. Iyer, S. Khunger, C. Kwan, S. J. Miller, A. Shashkov, A. Reina, C.
Sprunger, N. Triantafillou, N. Truong, R. V. Peski, S. Willis, and Y. Yang, Extending Support for the Centered
Moments of the Low-Lying Zeroes Of Cuspidal Newforms, preprint (2022),
https://arxiv.org/pdf/2208.02625.

D. Bernard, Small first zeros of L-functions, Monatsh Math 176 (2015), 359–411.
https://arxiv.org/abs/1404.6429.

L. Devin, D. Fiorilli, A. Södergren, Extending the unconditional support in an Iwaniec-Luo-Sarnak family,
preprint (2022), https://arxiv.org/abs/2210.15782.

S. Dutta, S. J. Miller, Bounding excess rank of cupisdal newforms via centered moments, preprint (2022),
https://arxiv.org/pdf/2211.04945.

J. Goes and S. J. Miller, Towards an ’average’ version of the Birch and Swinnerton-Dyer conjecture, Journal
of Number Theory 147 (2015) 2341-2358. https://arxiv.org/pdf/0911.2871.

C. P. Hughes and S. J. Miller, Low-lying zeros of L-functions with orthogonal symmetry, Duke Math. J. 136
(2007), no. 1, 115–172. https://arxiv.org/pdf/math/0507450.

C. P. Hughes and Z. Rudnick, Linear Statistics of Low-Lying Zeros of L-functions, Quart. J. Math. Oxford 54
(2003), 309–333. https://arxiv.org/abs/math/0208230.

H. Iwaniec, W. Luo, and P. Sarnak, Low lying zeros of families of L-functions, Inst. Hautes Études Sci. Publ.
Math. 91 (2000), 55-131. https://arxiv.org/abs/math/9901141.

N. M. Katz and P. Sarnak, Zeros of zeta functions and symmetries, Bull. American Mathematical Society 36
(1999), 1–26.

S. D. Miller, The highest-lowest zero and other applications of positivity, Duke Math. J. 112 (2002), no. 1,
83–116. https://arxiv.org/abs/math/0112196.

45

https://arxiv.org/abs/1211.5996
https://arxiv.org/pdf/2208.02625
https://arxiv.org/abs/1404.6429
https://arxiv.org/abs/2210.15782
https://arxiv.org/pdf/2211.04945
https://arxiv.org/pdf/0911.2871
https://arxiv.org/pdf/math/0507450
https://arxiv.org/abs/math/0208230
https://arxiv.org/abs/math/9901141
https://arxiv.org/abs/math/0112196

	Background
	
	
	
	
	
	
	

	Results
	
	
	
	

	Constructions/Proofs
	
	
	
	
	
	
	
	
	
	
	
	

	Future Works
	

	Refs
	


