Olivia Beckwith¹. Steven J. Miller². and Karen Shen³

¹Harvey Mudd College ²Williams College ³Stanford University

Young Mathematicians Conference 2011 Ohio State University

What is a random matrix?

Intro •oooooo Intro

•000000

A matrix where the entries are chosen randomly according to some probability distribution p, i.e.:

A matrix where the entries are chosen randomly according to some probability distribution p, i.e.:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1N} & a_{2N} & a_{3N} & \cdots & a_{NN} \end{pmatrix}$$

Intro

A matrix where the entries are chosen randomly according to some probability distribution p, i.e.:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1N} & a_{2N} & a_{3N} & \cdots & a_{NN} \end{pmatrix}$$

$$\mathbb{P}(A) = \prod_{1 \leq i,j \leq N} p(a_{ij})$$

5

Intro

Intro

000000

A matrix where the entries are chosen randomly according to some probability distribution p, i.e.:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1N} & a_{2N} & a_{3N} & \cdots & a_{NN} \end{pmatrix}$$

$$\mathbb{P}(A) = \prod_{1 \leq i, i \leq N} p(a_{ij})$$

$$\mathbb{P}(A) = \prod_{1 \leq i,j \leq N} p(a_{ij})$$

Generally, we normalize p so that:

Intro

000000

A matrix where the entries are chosen randomly according to some probability distribution p, i.e.:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1N} & a_{2N} & a_{3N} & \cdots & a_{NN} \end{pmatrix}$$

$$\mathbb{P}(A) = \prod_{1 \leq i,j \leq N} p(a_{ij})$$

Generally, we normalize p so that:

$$\mathbb{E}\left(a_{ij}\right)=0$$
 and $Var\left(a_{ij}\right)=1$

Limiting Spectral Measure

Interested in the distribution of eigenvalues of A as $N \to \infty$

Intro

Interested in the distribution of eigenvalues of A as $N \to \infty$

Applications:

Intro

Results

Limiting Spectral Measure

Interested in the distribution of eigenvalues of *A* as $N \to \infty$

Applications:

Nuclear Physics

Interested in the distribution of eigenvalues of *A* as $N \to \infty$

Applications:

- Nuclear Physics
- Number Theory

Intro

Random Matrix Ensembles

Question: What happens when we impose structure on the entries of a matrix?

Intro

Conclusion

Random Matrix Ensembles

Question: What happens when we impose structure on the entries of a matrix?

To answer, study "families" or "ensembles" of random matrices:

Intro

Question: What happens when we impose structure on the entries of a matrix?

To answer, study "families" or "ensembles" of random matrices:

Real Symmetric

Intro

Random Matrix Ensembles

Question: What happens when we impose structure on the entries of a matrix?

To answer, study "families" or "ensembles" of random matrices:

- Real Symmetric
- Real Symmetric Toeplitz:

Question: What happens when we impose structure on the entries of a matrix?

To answer, study "families" or "ensembles" of random matrices:

- Real Symmetric
- Real Symmetric Toeplitz:

Real Symmetric Palindromic Toeplitz

Intro

Question: What happens when we impose structure on the entries of a matrix?

To answer, study "families" or "ensembles" of random matrices:

- Real Symmetric
- Real Symmetric Toeplitz:

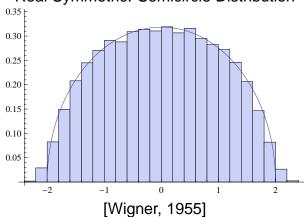
$$egin{pmatrix} b_0 & b_1 & b_2 & \cdots & b_{N-1} \ b_1 & b_0 & b_1 & \cdots & b_{N-2} \ b_2 & b_1 & b_0 & \cdots & b_{N-3} \ dots & dots & dots & \ddots & dots \ b_{N-1} & b_{N-2} & b_{N-3} & \cdots & b_0 \ \end{pmatrix} a_{ij} = b_{|i-j|}$$

- Real Symmetric Palindromic Toeplitz
- etc.

Intro

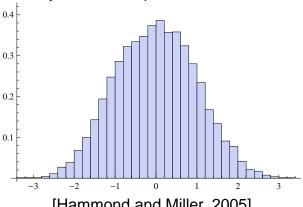
Previous Work

Intro



Previous Work

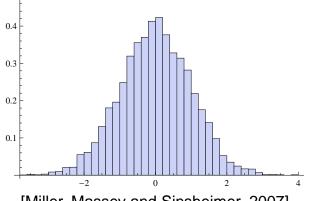
Real Symmetric Toeplitz: Almost Gaussian



[Hammond and Miller, 2005]

Previous Work

Real Symmetric Palindromic Toeplitz: Gaussian



[Miller, Massey and Sinsheimer, 2007]

For each entry, assign a randomly chosen $\epsilon_{ii} = \{1, -1\}$ such that $\epsilon_{ij} = \epsilon_{ji}$.

Intro

Results

Our Ensemble: Signed Toeplitz and Palindromic Toeplitz Matrices

For each entry, assign a randomly chosen $\epsilon_{ii} = \{1, -1\}$ such that $\epsilon_{ii} = \epsilon_{ii}$.

Let
$$p = \mathbb{P}(\epsilon_{ij} = 1)$$
.

Our Ensemble: Signed Toeplitz and Palindromic Toeplitz Matrices

For each entry, assign a randomly chosen $\epsilon_{ii} = \{1, -1\}$ such that $\epsilon_{ii} = \epsilon_{ii}$.

Let
$$p = \mathbb{P}(\epsilon_{ij} = 1)$$
.

Varying *p* allows us to *continuously* interpolate between:

Intro

Results

Our Ensemble: Signed Toeplitz and Palindromic Toeplitz Matrices

For each entry, assign a randomly chosen $\epsilon_{ii} = \{1, -1\}$ such that $\epsilon_{ii} = \epsilon_{ii}$.

Let
$$p = \mathbb{P}(\epsilon_{ii} = 1)$$
.

Varying p allows us to *continuously* interpolate between:

• Real Symmetric at $p = \frac{1}{2}$ (less structured)

For each entry, assign a randomly chosen $\epsilon_{ii} = \{1, -1\}$ such that $\epsilon_{ii} = \epsilon_{ii}$.

Let
$$p = \mathbb{P}(\epsilon_{ij} = 1)$$
.

Varying p allows us to *continuously* interpolate between:

- Real Symmetric at $p = \frac{1}{2}$ (less structured)
- Unsigned Toeplitz/Palindromic Toeplitz at p = 1 (more structured)

Intro

For each entry, assign a randomly chosen $\epsilon_{ii} = \{1, -1\}$ such that $\epsilon_{ii} = \epsilon_{ii}$.

Let
$$p = \mathbb{P}(\epsilon_{ij} = 1)$$
.

Varying p allows us to *continuously* interpolate between:

- Real Symmetric at $p = \frac{1}{2}$ (less structured)
- Unsigned Toeplitz/Palindromic Toeplitz at p = 1 (more structured)

What is the eigenvalue distribution of these signed ensembles?

Intro

Markov's Method of Moments

• The k^{th} moment M_k of a probability distribution f(x) defined on an interval [a, b] is $\int_a^b x^k f(x) dx$.

- The k^{th} moment M_k of a probability distribution f(x)defined on an interval [a, b] is $\int_a^b x^k f(x) dx$.
- Show a typical eigenvalue measure $\mu_{A,N}(x)$ converges to a probability distribution P by controlling convergence of average moments of the measures as $N \to \infty$ to the moments of P.

Preliminaries

$$\delta(x - x_0)$$
 is a unit point mass at x_0 : $\int f(x)\delta(x - x_0)dx = f(x_0)$.

$$\delta(x - x_0)$$
 is a unit point mass at x_0 : $\int f(x)\delta(x - x_0)dx = f(x_0)$.

To each A, we can thus write the eigenvalue distribution as:

$$\mu_{A,N}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(x - \frac{\lambda_i(A)}{2\sqrt{N}}\right).$$

Then the k^{th} moment of $\mu_{A,N}(x)$ is:

Then the k^{th} moment of $\mu_{AN}(x)$ is:

$$M_{N,k}(A) = \int x^k \mu_{A,N}(x) dx$$

Then the k^{th} moment of $\mu_{AN}(x)$ is:

$$M_{N,k}(A) = \int x^k \mu_{A,N}(x) dx$$
$$= \frac{1}{N} \sum_{i=1}^{N} \int_{-\infty}^{\infty} x^k \delta\left(x - \frac{\lambda_i(A)}{2\sqrt{N}}\right) dx$$

Then the k^{th} moment of $\mu_{A,N}(x)$ is:

$$M_{N,k}(A) = \int x^{k} \mu_{A,N}(x) dx$$

$$= \frac{1}{N} \sum_{i=1}^{N} \int_{-\infty}^{\infty} x^{k} \delta\left(x - \frac{\lambda_{i}(A)}{2\sqrt{N}}\right) dx$$

$$= \frac{1}{N} \sum_{i=1}^{N} \frac{\lambda_{i}(A)^{k}}{\left(2\sqrt{N}\right)^{k}}$$

For any non-negative integer k, if A is an $N \times N$ matrix with eigenvalues $\lambda_i(A)$, then

Trace
$$(A^k) = \sum_{i=1}^N \lambda_i (A)^k$$
.

For any non-negative integer k, if A is an $N \times N$ matrix with eigenvalues $\lambda_i(A)$, then

Trace
$$(A^k) = \sum_{i=1}^N \lambda_i (A)^k$$
.

Thus,

$$M_{N,k}(A) = \frac{\operatorname{Trace}(A^{k})}{2^{k}N^{\frac{k}{2}+1}} = \frac{\sum_{1 \leq i_{1}, \dots, i_{k} \leq N} a_{i_{1}i_{2}} a_{i_{2}i_{3}} \cdots a_{i_{k}i_{1}}}{2^{k}N^{\frac{k}{2}+1}}$$

For any non-negative integer k, if A is an $N \times N$ matrix with eigenvalues $\lambda_i(A)$, then

Trace
$$(A^k) = \sum_{i=1}^N \lambda_i (A)^k$$
.

Thus,

$$M_{N,k}(A) = \frac{\operatorname{Trace}(A^{k})}{2^{k}N^{\frac{k}{2}+1}} = \frac{\sum_{1 \leq i_{1}, \dots, i_{k} \leq N} a_{i_{1}i_{2}} a_{i_{2}i_{3}} \cdots a_{i_{k}i_{1}}}{2^{k}N^{\frac{k}{2}+1}}$$

so the average k^{th} moment, $M_k(N) = \mathbb{E}[M_{N,k}(A_N)]$ is:

For any non-negative integer k, if A is an $N \times N$ matrix with eigenvalues $\lambda_i(A)$, then

Trace
$$(A^k) = \sum_{i=1}^N \lambda_i (A)^k$$
.

Thus,

$$M_{N,k}(A) = \frac{\operatorname{Trace}(A^{k})}{2^{k}N^{\frac{k}{2}+1}} = \frac{\sum_{1 \leq i_{1},...,i_{k} \leq N} a_{i_{1}i_{2}}a_{i_{2}i_{3}}\cdots a_{i_{k}i_{1}}}{2^{k}N^{\frac{k}{2}+1}}$$

so the average k^{th} moment, $M_k(N) = \mathbb{E}[M_{N,k}(A_N)]$ is:

$$\frac{1}{N^{\frac{k}{2}+1}} \sum_{1 < i_1, \dots, i_k < N} \mathbb{E} \left(\epsilon_{i_1 i_2} b_{|i_1 - i_2|} \epsilon_{i_2 i_3} b_{|i_2 - i_3|} \dots \epsilon_{i_k i_1} b_{|i_k - i_1|} \right)$$

$$M_{k}(N) = \frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq i_{1}, \dots, i_{k} \leq N} \mathbb{E} \left(\epsilon_{i_{1}i_{2}} b_{|i_{1}-i_{2}|} \epsilon_{i_{2}i_{3}} b_{|i_{2}-i_{3}|} \dots \epsilon_{i_{k}i_{1}} b_{|i_{k}-i_{1}|} \right)$$

$$M_{k}(N) = \frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq i_{1}, \dots, i_{k} \leq N} \mathbb{E} \left(\epsilon_{i_{1}i_{2}} b_{|i_{1}-i_{2}|} \epsilon_{i_{2}i_{3}} b_{|i_{2}-i_{3}|} \dots \epsilon_{i_{k}i_{1}} b_{|i_{k}-i_{1}|} \right)$$

Preliminaries

•000

N^k terms

$$M_{k}(N) = \frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq i_{k} = i_{k} \leq N} \mathbb{E} \left(\epsilon_{i_{1}i_{2}} b_{|i_{1}-i_{2}|} \epsilon_{i_{2}i_{3}} b_{|i_{2}-i_{3}|} \dots \epsilon_{i_{k}i_{1}} b_{|i_{k}-i_{1}|} \right)$$

- \bullet N^k terms
- We look at groups of these terms, "configurations," that all have the same contribution.

$$M_{k}(N) = \frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq i_{1}, \dots, i_{k} \leq N} \mathbb{E} \left(\epsilon_{i_{1}i_{2}} b_{|i_{1}-i_{2}|} \epsilon_{i_{2}i_{3}} b_{|i_{2}-i_{3}|} \dots \epsilon_{i_{k}i_{1}} b_{|i_{k}-i_{1}|} \right)$$

- N^k terms
- We look at groups of these terms, "configurations," that all have the same contribution.
 - What is their contribution?

$$M_{k}(N) = \frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq i_{1}, \dots, i_{k} \leq N} \mathbb{E} \left(\epsilon_{i_{1}i_{2}} b_{|i_{1}-i_{2}|} \epsilon_{i_{2}i_{3}} b_{|i_{2}-i_{3}|} \dots \epsilon_{i_{k}i_{1}} b_{|i_{k}-i_{1}|} \right)$$

- \bullet N^k terms
- We look at groups of these terms, "configurations," that all have the same contribution.
 - What is their contribution?
 - How many terms have this configuration?

Which configurations contribute in the limit?

$$M_{k}(N) = \frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq i_{1}, \dots, i_{k} \leq N} \mathbb{E} \left(\epsilon_{i_{1}i_{2}} b_{|i_{1}-i_{2}|} \epsilon_{i_{2}i_{3}} b_{|i_{2}-i_{3}|} \dots \epsilon_{i_{k}i_{1}} b_{|i_{k}-i_{1}|} \right)$$

$$M_{k}(N) = \frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq i_{1}, \dots, i_{k} \leq N} \mathbb{E} \left(\epsilon_{i_{1}i_{2}} b_{|i_{1}-i_{2}|} \epsilon_{i_{2}i_{3}} b_{|i_{2}-i_{3}|} \dots \epsilon_{i_{k}i_{1}} b_{|i_{k}-i_{1}|} \right)$$

$$M_{k}(N) = \frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq i_{1}, \dots, i_{k} \leq N} \mathbb{E} \left(\epsilon_{i_{1}i_{2}} b_{|i_{1}-i_{2}|} \epsilon_{i_{2}i_{3}} b_{|i_{2}-i_{3}|} \dots \epsilon_{i_{k}i_{1}} b_{|i_{k}-i_{1}|} \right)$$

• The b's must be matched in at least pairs since $\mathbb{E}\left(b_{ii}\right)=0.$

$$M_{k}(N) = \frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq i_{1}, \dots, i_{k} \leq N} \mathbb{E} \left(\epsilon_{i_{1}i_{2}} b_{|i_{1}-i_{2}|} \epsilon_{i_{2}i_{3}} b_{|i_{2}-i_{3}|} \dots \epsilon_{i_{k}i_{1}} b_{|i_{k}-i_{1}|} \right)$$

• The b's must be matched in at least pairs since $\mathbb{E}\left(b_{ii}\right)=0.$

What configurations have at least order of magnitude $N^{\frac{k}{2}+1}$ terms?

$$M_{k}(N) = \frac{1}{N^{\frac{k}{2}+1}} \sum_{1 \leq i_{1}, \dots, i_{k} \leq N} \mathbb{E} \left(\epsilon_{i_{1} i_{2}} b_{|i_{1}-i_{2}|} \epsilon_{i_{2} i_{3}} b_{|i_{2}-i_{3}|} \dots \epsilon_{i_{k} i_{1}} b_{|i_{k}-i_{1}|} \right)$$

• The b's must be matched in at least pairs since $\mathbb{E}\left(b_{ii}\right)=0.$

What configurations have at least order of magnitude $N^{\frac{k}{2}+1}$ terms?

• The b's must be matched in at most pairs since there are exactly $\frac{k}{2} + 1$ degrees of freedom when they are matched in exactly pairs.

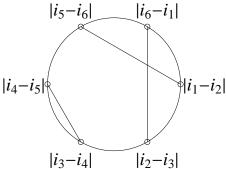
Thus:

Thus:

Odd moments vanish.

Thus:

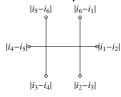
- Odd moments vanish.
- For the even moments M_{2k} we can represent each contributing term as a pairing of 2k vertices on a circle as follows:

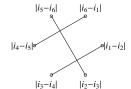


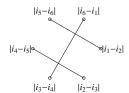
Circle Configurations

Pairings that are the same up to relabelling (configurations) have the same contribution:

For example:

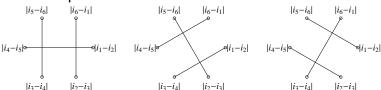






Pairings that are the same up to relabelling (**configurations**) have the same contribution:

For example:



Semicircle: Only non-crossing configurations contribute 1 Gaussian: All configurations contribute 1

Theorem:

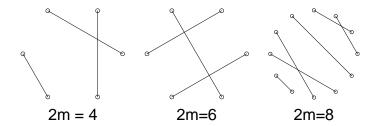
Each configuration weighted by $(2p-1)^{2m}$, where 2m is the number of points on the circle whose edge crosses another edge.

Weighted Contributions

Theorem:

Each configuration weighted by $(2p-1)^{2m}$, where 2m is the number of points on the circle whose edge crosses another edge.

Example:



55

For ϵ_{ij} to be matched with ϵ_{kl} (we know that $\epsilon_{ij} = \epsilon_{kl}$), it must be true that either i = k and j = l or i = l and j = k.

For ϵ_{ii} to be matched with ϵ_{kl} (we know that $\epsilon_{ii} = \epsilon_{kl}$), it must be true that either i = k and j = l or i = l and j = k.

If ϵ_{ii} is matched with some ϵ_{kl} , then $\mathbb{E}\left(\epsilon_{ii}\epsilon_{kl}\right)=1$.

For ϵ_{ii} to be matched with ϵ_{kl} (we know that $\epsilon_{ii} = \epsilon_{kl}$), it must be true that either i = k and i = l or i = l and i = k.

If ϵ_{ii} is matched with some ϵ_{kl} , then $\mathbb{E}\left(\epsilon_{ii}\epsilon_{kl}\right)=1$.

If ϵ_{ii} is not matched with any ϵ_{kl} , then $\mathbb{E}(\epsilon_{ii}) = (2p-1)$.

For ϵ_{ij} to be matched with ϵ_{kl} (we know that $\epsilon_{ij} = \epsilon_{kl}$), it must be true that either i = k and j = l or i = l and j = k.

If ϵ_{ij} is matched with some ϵ_{kl} , then $\mathbb{E}\left(\epsilon_{ij}\epsilon_{kl}\right)=1$.

If ϵ_{ij} is not matched with any ϵ_{kl} , then $\mathbb{E}\left(\epsilon_{ij}\right)=(2p-1)$.

Want to prove that two ϵ 's are matched if and only if their b's are not in a crossing.

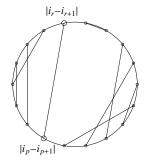
A non-crossing pair of *b*'s must have matched ϵ s:

A non-crossing pair of b's must have matched ϵ s:

Assume $b_{|i_r-i_{r+1}|}$ and $b_{|i_p-i_{p+1}|}$ are a non-crossing pair.

A non-crossing pair of b's must have matched ϵ s:

Assume $b_{|i_r-i_{r+1}|}$ and $b_{|i_p-i_{p+1}|}$ are a non-crossing pair.



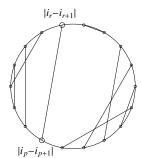
A non-crossing pair of *b*'s must have matched ϵ s:

Assume $b_{|i_r-i_{r+1}|}$ and $b_{|i_p-i_{p+1}|}$ are a non-crossing pair. $\sum_{k=r}^p (i_k-i_{k+1})=0$

$$|i_r-i_{r+1}|$$
 $|i_p-i_{p+1}|$

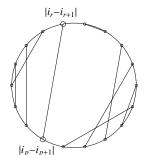
$$\sum_{k=r}^{p} (i_k - i_{k+1}) = 0$$

A non-crossing pair of b's must have matched ϵ s:



Assume
$$b_{|i_r-i_{r+1}|}$$
 and $b_{|i_p-i_{p+1}|}$ are a non-crossing pair.
$$\sum_{k=r}^{p} (i_k-i_{k+1}) = 0$$
$$= i_r-i_{r+1}+i_{r+1}\cdots+i_p-i_{p+1}=i_r-i_{p+1}$$

A non-crossing pair of *b*'s must have matched ϵ s:

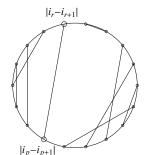


Assume
$$b_{|i_r-i_{r+1}|}$$
 and $b_{|i_p-i_{p+1}|}$ are a non-crossing pair.
$$\sum_{k=r}^{p} (i_k-i_{k+1}) = 0$$
$$= i_r-i_{r+1}+i_{r+1}\cdots+i_p-i_{p+1}=i_r-i_{p+1}$$

This implies that $i_r = i_{p+1}$.

A non-crossing pair of *b*'s must have matched ϵ s:

Assume $b_{|i_r-i_{r+1}|}$ and $b_{|i_p-i_{p+1}|}$ are a non-crossing pair.



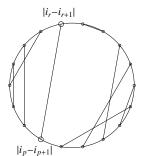
$$\sum_{k=r}^{p} (i_k - i_{k+1}) = 0$$

= $i_r - i_{r+1} + i_{r+1} + \cdots + i_p - i_{p+1} = i_r - i_{p+1}$

This implies that $i_r = i_{p+1}$. Similarly, $i_{r+1} = i_p$

A non-crossing pair of *b*'s must have matched ϵ s:

Assume $b_{|i_r-i_{r+1}|}$ and $b_{|i_p-i_{p+1}|}$ are a non-crossing pair.



$$\sum_{k=r}^{p} (i_k - i_{k+1}) = 0$$

= $i_r - i_{r+1} + i_{r+1} + \cdots + i_p - i_{p+1} = i_r - i_{p+1}$

This implies that $i_r = i_{p+1}$. Similarly, $i_{r+1} = i_p$

Thus, $\epsilon_{i_r i_{r+1}} = \epsilon_{i_p i_{p+1}}$.

A matched pair of ϵ s must not be in a crossing:

Preliminaries

Suppose $\epsilon_{i_a i_{a+1}} = \epsilon_{i_b i_{b+1}}$, with a < b.

A matched pair of ϵ s must not be in a crossing:

Suppose $\epsilon_{i_a i_{a+1}} = \epsilon_{i_b i_{b+1}}$, with a < b.

$$\sum_{k=a}^{b} (i_k - i_{k+1}) = i_a - i_{b+1} = 0$$
$$= \sum_{k=b}^{d} \delta_k |i_k - i_{k+1}|$$

where $\delta_k = 0$ if and only if the vertex k is paired with is between a and b.

A matched pair of ϵ s must not be in a crossing:

Suppose $\epsilon_{i_a i_{a+1}} = \epsilon_{i_b i_{b+1}}$, with a < b.

$$\sum_{k=a}^{b} (i_k - i_{k+1}) = i_a - i_{b+1} = 0$$
$$= \sum_{k=b}^{d} \delta_k |i_k - i_{k+1}|$$

where $\delta_k = 0$ if and only if the vertex k is paired with is between a and b.

Need N^{k+1} degrees of freedom, so $\delta_k = 0$ for all k.

A matched pair of ϵ s must not be in a crossing:

Suppose $\epsilon_{i_a i_{a+1}} = \epsilon_{i_b i_{b+1}}$, with a < b.

$$\sum_{k=a}^{b} (i_k - i_{k+1}) = i_a - i_{b+1} = 0$$
$$= \sum_{k=b}^{d} \delta_k |i_k - i_{k+1}|$$

where $\delta_k = 0$ if and only if the vertex k is paired with is between a and b.

Need N^{k+1} degrees of freedom, so $\delta_k = 0$ for all k. Thus, $\epsilon_{i_a i_{a+1}}$ and $\epsilon_{i_b i_{b+1}}$ are not in a crossing.

Counting Crossing Configurations

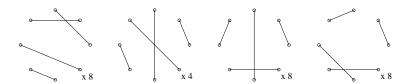
Problem: Out of the (2k-1)!! ways to pair 2k vertices, how many will have 2m vertices crossing ($Cross_{2k,2m}$)?

Problem: Out of the (2k-1)!! ways to pair 2k vertices, how many will have 2m vertices crossing ($Cross_{2k}$ $_{2m}$)?

Example: $Cross_{8.4} = 28$

Problem: Out of the (2k-1)!! ways to pair 2k vertices, how many will have 2m vertices crossing ($Cross_{2k}$ $_{2m}$)?

Example: $Cross_{8.4} = 28$

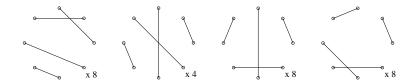


Fact:

 $Cross_{2k,0} = C_k$, the k^{th} Catalan number.

Problem: Out of the (2k-1)!! ways to pair 2k vertices, how many will have 2m vertices crossing $(Cross_{2k,2m})$?

Example: $Cross_{8,4} = 28$



Fact:

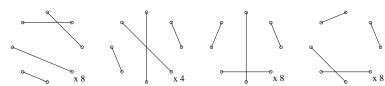
 $Cross_{2k,0} = C_k$, the k^{th} Catalan number.

What about for higher *m*?

Theorem:

Suppose 2m vertices are already paired in some configuration. The number of ways to pair and place the remaining 2k - 2m vertices such that none of them are involved in a crossing is $\binom{2k}{k}$.

Example: There are $\binom{8}{2} = 28$ pairings with 4 vertices arranged in a crossing.



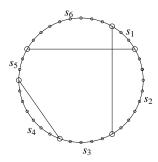
Conclusion

Proof of Non-Crossing Regions Theorem

We showed the following equivalence:

We showed the following equivalence:

$$\sum_{s_1+s_2+\cdots+s_{2m}=2k-2m} C_{s_1} C_{s_2} \cdots C_{s_{2m}} = \binom{2k}{k-m}.$$



To calculate $Cross_{2k,2m}$, we write it as the following sum:

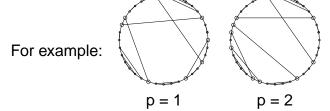
$$Cross_{2k,2m} = \sum_{p=1}^{\lfloor \frac{m}{4} \rfloor} P_{2k,2m,p}.$$

where $P_{2k,2m,p}$ is the number of configurations of 2k vertices with 2m vertices crossing in p partitions.

To calculate $Cross_{2k,2m}$, we write it as the following sum:

$$Cross_{2k,2m} = \sum_{p=1}^{\lfloor \frac{m}{4} \rfloor} P_{2k,2m,p}.$$

where $P_{2k,2m,p}$ is the number of configurations of 2k vertices with 2m vertices crossing in p partitions.



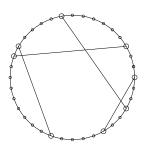
Ω1

We then apply our theorem to get formulas for $P_{2k,2m,p}$. For example:

$$P_{2k,2m,1} =$$

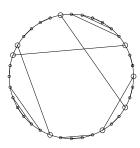
We then apply our theorem to get formulas for $P_{2k,2m,p}$. For example:

$$P_{2k,2m,1} = Cross_{2m,2m}$$



Preliminaries

$$P_{2k,2m,1} = Cross_{2m,2m} \binom{2k}{k-m}.$$



$2k \setminus 2m$	0	4	6	8	10	Total
2						1
4						3
6						15
8						105
10						945
:						

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2					3
6	5					15
8	14					105
10	42					945
÷						

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5					15
8	14					105
10	42					945
÷						

For:

• 2m = 4, there are $\binom{2k}{k-2}$ such pairings.

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5					15
8	14					105
10	42					945
:						
•						

For:

• 2m = 4, there are $\binom{2k}{k-2}$ such pairings.

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6				15
8	14	28				105
10	42	120				945
:						

For:

• 2m = 4, there are $\binom{2k}{k-2}$ such pairings.

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28				105
10	42	120				945
÷						

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28				105
10	42	120				945
:						
•						l

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28	32			105
10	42	120	180			945
:						
•						

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28	32	31		105
10	42	120	180			945
:						
•						l

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.
- 2m = 8, there are $31\binom{2k}{k-4} + \frac{1}{2}\sum_{i=0}^{k-5}\binom{2k}{i}(2k-2i)$

2k \ 2m	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28	32	31		105
10	42	120	180			945
÷						

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.
- 2m = 8, there are $31\binom{2k}{k-4} + \frac{1}{2}\sum_{i=0}^{k-5}\binom{2k}{i}(2k-2i)$

$2k \setminus 2m$	0	4	6	8	10	Iotal
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28	32	31		105
10	42	120	180	315		945
:						

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.
- 2m = 8, there are $31\binom{2k}{k-4} + \frac{1}{2}\sum_{i=0}^{k-5}\binom{2k}{i}(2k-2i)$

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28	32	31		105
10	42	120	180	315	288	945
:						
•						

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.
- 2m = 8, there are $31\binom{2k}{k-4} + \frac{1}{2}\sum_{i=0}^{k-5}\binom{2k}{i}(2k-2i)$
- 2m = 10, there are $288\binom{2k}{k-5} + 4\sum_{i=0}^{k-6} \binom{2k}{i} (2k-2i)$

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28	32	31		105
10	42	120	180	315	288	945
:						
•						

- 2m = 4, there are $\binom{2k}{k-2}$ such pairings.
- 2m = 6, there are $4\binom{2k}{k-3}$ such pairings.
- 2m = 8, there are $31\binom{2k}{k-4} + \frac{1}{2}\sum_{i=0}^{k-5}\binom{2k}{i}(2k-2i)$
- 2m = 10, there are $288\binom{2k}{k-5} + 4\sum_{i=0}^{k-6} \binom{2k}{i} (2k-2i)$

$2k \setminus 2m$	0	4	6	8	10	Total
2	1					1
4	2	1				3
6	5	6	4			15
8	14	28	32	31		105
10	42	120	180	315	288	945
:	:	:	:	:	:	:

• $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support

- $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support
- A method to calculate the moments of the eigenvalue distribution, from which we can recover the distribution

- $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support
- A method to calculate the moments of the eigenvalue distribution, from which we can recover the distribution
 - Weight of each configuration as a function of p and the number of vertices in a crossing (2m): $(2p-1)^{2m}$

- $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support
- A method to calculate the moments of the eigenvalue distribution, from which we can recover the distribution
 - Weight of each configuration as a function of p and the number of vertices in a crossing (2m): $(2p-1)^{2m}$
 - A way to count the number of configurations with 2m vertices crossing for all m

- $p = \frac{1}{2}$: Semicircle Distribution (Bounded Support) $p \neq \frac{1}{2}$: Unbounded Support
- A method to calculate the moments of the eigenvalue distribution, from which we can recover the distribution
 - Weight of each configuration as a function of p and the number of vertices in a crossing (2m): $(2p-1)^{2m}$
 - A way to count the number of configurations with 2m vertices crossing for all m
- Limiting behavior of the mean and variance of the moments, giving bounds for the moments

Many thanks to:

- YMC, Ohio State University
- Williams College, SMALL 2011
- National Science Foundation
- Professor Steven J Miller