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What is a random matrix?

A matrix where the entries are chosen randomly
according to some probability distribution p, i.e.:

A =









a11 a12 a13 · · · a1N

a12 a22 a23 · · · a2N
...

...
...

. . .
...

a1N a2N a3N · · · aNN









P (A) =
∏

1≤i ,j≤N

p (aij)

Generally, we normalize p so that:

E (aij) = 0 and Var (aij) = 1
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Limiting Spectral Measure

Interested in the distribution of eigenvalues of A as
N → ∞

Applications:
Nuclear Physics
Number Theory
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Question: What happens when we impose structure on
the entries of a matrix?

To answer, study "families" or "ensembles" of random
matrices:

Real Symmetric
Real Symmetric Toeplitz:












b0 b1 b2 · · · bN−1

b1 b0 b1 · · · bN−2

b2 b1 b0 · · · bN−3
...

...
...

. . .
...

bN−1 bN−2 bN−3 · · · b0













aij = b|i−j |
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Question: What happens when we impose structure on
the entries of a matrix?

To answer, study "families" or "ensembles" of random
matrices:

Real Symmetric
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b0 b1 b2 · · · bN−1

b1 b0 b1 · · · bN−2
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. . .
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bN−1 bN−2 bN−3 · · · b0
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
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aij = b|i−j |

Real Symmetric Palindromic Toeplitz
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Random Matrix Ensembles

Question: What happens when we impose structure on
the entries of a matrix?

To answer, study "families" or "ensembles" of random
matrices:

Real Symmetric
Real Symmetric Toeplitz:












b0 b1 b2 · · · bN−1

b1 b0 b1 · · · bN−2

b2 b1 b0 · · · bN−3
...

...
...

. . .
...

bN−1 bN−2 bN−3 · · · b0













aij = b|i−j |

Real Symmetric Palindromic Toeplitz
etc.

17



Intro Methods Preliminaries Results Conclusion

Previous Work

Real Symmetric: Semicircle Distribution
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Previous Work

Real Symmetric Toeplitz: Almost Gaussian
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Previous Work

Real Symmetric Palindromic Toeplitz: Gaussian
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such that ǫij = ǫji .
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Our Ensemble: Signed Toeplitz and Palindromic Toeplitz Mat rices

For each entry, assign a randomly chosen ǫij = {1,−1}
such that ǫij = ǫji .

Let p = P (ǫij = 1).

Varying p allows us to continuously interpolate between:
Real Symmetric at p = 1

2 (less structured)
Unsigned Toeplitz/Palindromic Toeplitz at p = 1 (more
structured)

What is the eigenvalue distribution of these signed
ensembles?
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Markov’s Method of Moments

The k th moment Mk of a probability distribution f (x)
defined on an interval [a, b] is

∫ b
a xk f (x) dx .
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Markov’s Method of Moments

The k th moment Mk of a probability distribution f (x)
defined on an interval [a, b] is

∫ b
a xk f (x) dx .

Show a typical eigenvalue measure µA,N (x)
converges to a probability distribution P by controlling
convergence of average moments of the measures as
N → ∞ to the moments of P.
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δ(x − x0) is a unit point mass at x0:
∫

f (x)δ(x − x0)dx = f (x0).
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Moments of the Eigenvalue Distribution

δ(x − x0) is a unit point mass at x0:
∫

f (x)δ(x − x0)dx = f (x0).

To each A, we can thus write the eigenvalue distribution
as:

µA,N(x) =
1
N

N
∑

i=1

δ

(

x − λi(A)

2
√

N

)

.
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Then the k th moment of µA,N (x) is:
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Moments of the Eigenvalue Distribution

Then the k th moment of µA,N (x) is:

MN,k (A) =

∫

xkµA,N (x)dx
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Moments of the Eigenvalue Distribution

Then the k th moment of µA,N (x) is:

MN,k (A) =

∫

xkµA,N (x)dx

=
1
N

N
∑

i=1

∫ ∞

−∞

xkδ

(

x − λi (A)

2
√

N

)

dx
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Moments of the Eigenvalue Distribution

Then the k th moment of µA,N (x) is:

MN,k (A) =

∫

xkµA,N (x)dx

=
1
N

N
∑

i=1

∫ ∞

−∞

xkδ

(

x − λi (A)

2
√

N

)

dx

=
1
N

N
∑

i=1

λi (A)
k

(

2
√

N
)k
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Eigenvalue Trace Lemma

For any non-negative integer k , if A is an N × N matrix
with eigenvalues λi (A), then

Trace
(

Ak
)

=

N
∑

i=1

λi (A)
k
.
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For any non-negative integer k , if A is an N × N matrix
with eigenvalues λi (A), then

Trace
(

Ak
)

=

N
∑

i=1

λi (A)
k
.

Thus,

MN,k (A) =
Trace

(

Ak
)

2k N
k
2+1

=

∑

1≤i1,...,ik≤N ai1i2ai2i3 · · ·aik i1

2k N
k
2+1
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For any non-negative integer k , if A is an N × N matrix
with eigenvalues λi (A), then

Trace
(

Ak
)

=

N
∑

i=1

λi (A)
k
.

Thus,

MN,k (A) =
Trace

(

Ak
)

2k N
k
2+1

=

∑

1≤i1,...,ik≤N ai1i2ai2i3 · · ·aik i1

2k N
k
2+1

so the average k th moment, Mk (N) = E [MN,k (AN)] is:

1

N
k
2+1

∑

1≤i1,...,ik≤N

E
(

ǫi1i2b|i1−i2|ǫi2i3b|i2−i3| . . . ǫik i1b|ik−i1|

)
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N
k
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E
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Evaluating the Moments

Mk (N) =
1

N
k
2+1

∑

1≤i1,...,ik≤N

E
(

ǫi1i2b|i1−i2|ǫi2i3b|i2−i3| . . . ǫik i1b|ik−i1|

)

Nk terms
We look at groups of these terms, "configurations,"
that all have the same contribution.

What is their contribution?
How many terms have this configuration?
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Which configurations contribute in the limit?

Mk (N) =
1

N
k
2+1

∑

1≤i1,...,ik≤N

E
(

ǫi1i2b|i1−i2|ǫi2i3b|i2−i3| . . . ǫik i1b|ik−i1|

)
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E (bij) = 0.
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2+1 terms?
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Which configurations contribute in the limit?

Mk (N) =
1

N
k
2+1

∑

1≤i1,...,ik≤N

E
(

ǫi1i2b|i1−i2|ǫi2i3b|i2−i3| . . . ǫik i1b|ik−i1|

)

What configurations have nonzero contributions?
The b’s must be matched in at least pairs since
E (bij) = 0.

What configurations have at least order of magnitude
N

k
2+1 terms?

The b’s must be matched in at most pairs since there
are exactly k

2 + 1 degrees of freedom when they are
matched in exactly pairs.
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Thus:
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Thus:
Odd moments vanish.
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Thus:
Odd moments vanish.
For the even moments M2k we can represent each
contributing term as a pairing of 2k vertices on a
circle as follows:

Èi1-i2È

Èi2-i3ÈÈi3-i4È

Èi4-i5È

Èi5-i6È Èi6-i1È
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Circle Configurations

Pairings that are the same up to relabelling
(configurations ) have the same contribution:

For example:

Èi1-i2È

Èi2-i3ÈÈi3-i4È

Èi4-i5È

Èi5-i6È Èi6-i1È

Èi1-i2È

Èi2-i3ÈÈi3-i4È

Èi4-i5È

Èi5-i6È Èi6-i1È

Èi1-i2È

Èi2-i3ÈÈi3-i4È

Èi4-i5È

Èi5-i6È Èi6-i1È
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Circle Configurations

Pairings that are the same up to relabelling
(configurations ) have the same contribution:

For example:

Èi1-i2È

Èi2-i3ÈÈi3-i4È

Èi4-i5È

Èi5-i6È Èi6-i1È

Èi1-i2È

Èi2-i3ÈÈi3-i4È

Èi4-i5È

Èi5-i6È Èi6-i1È

Èi1-i2È

Èi2-i3ÈÈi3-i4È

Èi4-i5È

Èi5-i6È Èi6-i1È

Semicircle: Only non-crossing configurations contribute 1
Gaussian: All configurations contribute 1
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Weighted Contributions

Theorem:

Each configuration weighted by (2p − 1)2m, where 2m is
the number of points on the circle whose edge crosses
another edge.
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Weighted Contributions

Theorem:

Each configuration weighted by (2p − 1)2m, where 2m is
the number of points on the circle whose edge crosses
another edge.

Example:

2m = 4 2m=6 2m=8
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Proof of Weighted Contributions Theorem

For ǫij to be matched with ǫkl (we know that ǫij = ǫkl ), it
must be true that either i = k and j = l or i = l and j = k .
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Proof of Weighted Contributions Theorem

For ǫij to be matched with ǫkl (we know that ǫij = ǫkl ), it
must be true that either i = k and j = l or i = l and j = k .

If ǫij is matched with some ǫkl , then E (ǫijǫkl) = 1.
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Proof of Weighted Contributions Theorem

For ǫij to be matched with ǫkl (we know that ǫij = ǫkl ), it
must be true that either i = k and j = l or i = l and j = k .

If ǫij is matched with some ǫkl , then E (ǫijǫkl) = 1.

If ǫij is not matched with any ǫkl , then E (ǫij) = (2p − 1).
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Proof of Weighted Contributions Theorem

For ǫij to be matched with ǫkl (we know that ǫij = ǫkl ), it
must be true that either i = k and j = l or i = l and j = k .

If ǫij is matched with some ǫkl , then E (ǫijǫkl) = 1.

If ǫij is not matched with any ǫkl , then E (ǫij) = (2p − 1).

Want to prove that two ǫ’s are matched if and only if their
b’s are not in a crossing.
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched ǫs:
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched ǫs:

Assume b|ir−ir+1| and b|ip−ip+1| are a non-crossing pair.
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched ǫs:

Assume b|ir−ir+1| and b|ip−ip+1| are a non-crossing pair.
Èir-ir+1È

Èip-ip+1È
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched ǫs:

Assume b|ir−ir+1| and b|ip−ip+1| are a non-crossing pair.
Èir-ir+1È

Èip-ip+1È

∑p
k=r (ik − ik+1) = 0
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched ǫs:

Assume b|ir−ir+1| and b|ip−ip+1| are a non-crossing pair.
Èir-ir+1È

Èip-ip+1È

∑p
k=r (ik − ik+1) = 0

= ir − ir+1 + ir+1 · · ·+ ip − ip+1 = ir − ip+1
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched ǫs:

Assume b|ir−ir+1| and b|ip−ip+1| are a non-crossing pair.
Èir-ir+1È

Èip-ip+1È

∑p
k=r (ik − ik+1) = 0

= ir − ir+1 + ir+1 · · ·+ ip − ip+1 = ir − ip+1

This implies that ir = ip+1.
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched ǫs:

Assume b|ir−ir+1| and b|ip−ip+1| are a non-crossing pair.
Èir-ir+1È

Èip-ip+1È

∑p
k=r (ik − ik+1) = 0

= ir − ir+1 + ir+1 · · ·+ ip − ip+1 = ir − ip+1

This implies that ir = ip+1.
Similarly, ir+1 = ip
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched ǫs:

Assume b|ir−ir+1| and b|ip−ip+1| are a non-crossing pair.
Èir-ir+1È

Èip-ip+1È

∑p
k=r (ik − ik+1) = 0

= ir − ir+1 + ir+1 · · ·+ ip − ip+1 = ir − ip+1

This implies that ir = ip+1.
Similarly, ir+1 = ip

Thus, ǫir ir+1 = ǫip ip+1.
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Proof of Weighted Contributions Theorem

A matched pair of ǫs must not be in a crossing:

Suppose ǫiaia+1 = ǫib ib+1, with a < b.
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Proof of Weighted Contributions Theorem

A matched pair of ǫs must not be in a crossing:

Suppose ǫiaia+1 = ǫib ib+1, with a < b.

b
∑

k=a

(ik − ik+1) = ia − ib+1 = 0

=
∑d

k=b δk |ik − ik+1|

where δk = 0 if and only if the vertex k is paired with is
between a and b.
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Proof of Weighted Contributions Theorem

A matched pair of ǫs must not be in a crossing:

Suppose ǫiaia+1 = ǫib ib+1, with a < b.

b
∑

k=a

(ik − ik+1) = ia − ib+1 = 0

=
∑d

k=b δk |ik − ik+1|

where δk = 0 if and only if the vertex k is paired with is
between a and b.

Need Nk+1 degrees of freedom, so δk = 0 for all k .
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Proof of Weighted Contributions Theorem

A matched pair of ǫs must not be in a crossing:

Suppose ǫiaia+1 = ǫib ib+1, with a < b.

b
∑

k=a

(ik − ik+1) = ia − ib+1 = 0

=
∑d

k=b δk |ik − ik+1|

where δk = 0 if and only if the vertex k is paired with is
between a and b.

Need Nk+1 degrees of freedom, so δk = 0 for all k .
Thus, ǫiaia+1 and ǫib ib+1 are not in a crossing.
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Counting Crossing Configurations

Problem: Out of the (2k − 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Cross2k ,2m)?
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Counting Crossing Configurations

Problem: Out of the (2k − 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Cross2k ,2m)?

Example: Cross8,4 = 28

x 8 x 4 x 8 x 8
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Counting Crossing Configurations

Problem: Out of the (2k − 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Cross2k ,2m)?

Example: Cross8,4 = 28

x 8 x 4 x 8 x 8

Fact:

Cross2k ,0 = Ck , the k th Catalan number.

74



Intro Methods Preliminaries Results Conclusion

Counting Crossing Configurations

Problem: Out of the (2k − 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Cross2k ,2m)?

Example: Cross8,4 = 28

x 8 x 4 x 8 x 8

Fact:

Cross2k ,0 = Ck , the k th Catalan number.

What about for higher m?
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Non-Crossing Regions

Theorem:
Suppose 2m vertices are already paired in some
configuration. The number of ways to pair and place the
remaining 2k − 2m vertices such that none of them are
involved in a crossing is

( 2k
k−m

)

.

Example: There are
(8

2

)

= 28 pairings with 4 vertices
arranged in a crossing.

x 8 x 4 x 8 x 8
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Proof of Non-Crossing Regions Theorem

We showed the following equivalence:
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Proof of Non-Crossing Regions Theorem

We showed the following equivalence:

∑

s1+s2+···+s2m=2k−2m

Cs1Cs2 · · ·Cs2m =

(

2k
k − m

)

.

s1

s2

s3

s4

s5

s6
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Counting Crossing Configurations
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Counting Crossing Configurations

To calculate Cross2k ,2m, we write it as the following sum:

Cross2k ,2m =

⌊m
4 ⌋

∑

p=1

P2k ,2m,p.

where P2k ,2m,p is the number of configurations of 2k
vertices with 2m vertices crossing in p partitions.
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Counting Crossing Configurations

To calculate Cross2k ,2m, we write it as the following sum:

Cross2k ,2m =

⌊m
4 ⌋

∑

p=1

P2k ,2m,p.

where P2k ,2m,p is the number of configurations of 2k
vertices with 2m vertices crossing in p partitions.

For example:

p = 1 p = 2
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We then apply our theorem to get formulas for P2k ,2m,p.
For example:
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We then apply our theorem to get formulas for P2k ,2m,p.
For example:

P2k ,2m,1 = .
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We then apply our theorem to get formulas for P2k ,2m,p.
For example:

P2k ,2m,1 = Cross2m,2m .
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We then apply our theorem to get formulas for P2k ,2m,p.
For example:

P2k ,2m,1 = Cross2m,2m

(

2k
k − m

)

.
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Counting Crossing Configurations

For:

2k \ 2m 0 4 6 8 10 Total
2 1
4 3
6 15
8 105

10 945
...
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Counting Crossing Configurations

For:

2k \ 2m 0 4 6 8 10 Total
2 1 1
4 2 3
6 5 15
8 14 105

10 42 945
...
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Counting Crossing Configurations

For:

2k \ 2m 0 4 6 8 10 Total
2 1 1
4 2 1 3
6 5 15
8 14 105

10 42 945
...
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Counting Crossing Configurations

For:
2m = 4, there are

( 2k
k−2

)

such pairings.

2k \ 2m 0 4 6 8 10 Total
2 1 1
4 2 1 3
6 5 15
8 14 105

10 42 945
...
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Counting Crossing Configurations

For:
2m = 4, there are

( 2k
k−2

)

such pairings.

2k \ 2m 0 4 6 8 10 Total
2 1 1
4 2 1 3
6 5 6 15
8 14 28 105

10 42 120 945
...
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Counting Crossing Configurations

For:
2m = 4, there are

( 2k
k−2

)

such pairings.

2k \ 2m 0 4 6 8 10 Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 105

10 42 120 945
...
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Counting Crossing Configurations

For:
2m = 4, there are

( 2k
k−2

)

such pairings.

2m = 6, there are 4
( 2k

k−3

)

such pairings.

2k \ 2m 0 4 6 8 10 Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 105

10 42 120 945
...
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Counting Crossing Configurations

For:
2m = 4, there are

( 2k
k−2

)

such pairings.

2m = 6, there are 4
( 2k

k−3

)

such pairings.

2k \ 2m 0 4 6 8 10 Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 32 105

10 42 120 180 945
...
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Counting Crossing Configurations

For:
2m = 4, there are

( 2k
k−2

)

such pairings.

2m = 6, there are 4
( 2k

k−3

)

such pairings.

2k \ 2m 0 4 6 8 10 Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 32 31 105

10 42 120 180 945
...
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Counting Crossing Configurations

For:
2m = 4, there are

( 2k
k−2

)

such pairings.

2m = 6, there are 4
( 2k

k−3

)

such pairings.

2m = 8, there are 31
( 2k

k−4

)

+ 1
2

∑k−5
i=0

(2k
i

)

(2k − 2i)

2k \ 2m 0 4 6 8 10 Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 32 31 105

10 42 120 180 945
...
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Counting Crossing Configurations

For:
2m = 4, there are

( 2k
k−2

)

such pairings.

2m = 6, there are 4
( 2k

k−3

)

such pairings.

2m = 8, there are 31
( 2k

k−4

)

+ 1
2

∑k−5
i=0

(2k
i

)

(2k − 2i)

2k \ 2m 0 4 6 8 10 Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 32 31 105

10 42 120 180 315 945
...
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Counting Crossing Configurations

For:
2m = 4, there are

( 2k
k−2

)

such pairings.

2m = 6, there are 4
( 2k

k−3

)

such pairings.

2m = 8, there are 31
( 2k

k−4

)

+ 1
2

∑k−5
i=0

(2k
i

)

(2k − 2i)

2k \ 2m 0 4 6 8 10 Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 32 31 105

10 42 120 180 315 288 945
...
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Counting Crossing Configurations

For:
2m = 4, there are

( 2k
k−2

)

such pairings.

2m = 6, there are 4
( 2k

k−3

)

such pairings.

2m = 8, there are 31
( 2k

k−4

)

+ 1
2

∑k−5
i=0

(2k
i

)

(2k − 2i)

2m = 10, there are 288
( 2k

k−5

)

+ 4
∑k−6

i=0

(2k
i

)

(2k − 2i)

2k \ 2m 0 4 6 8 10 Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 32 31 105

10 42 120 180 315 288 945
...
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Counting Crossing Configurations

For:
2m = 4, there are

( 2k
k−2

)

such pairings.

2m = 6, there are 4
( 2k

k−3

)

such pairings.

2m = 8, there are 31
( 2k

k−4

)

+ 1
2

∑k−5
i=0

(2k
i

)

(2k − 2i)

2m = 10, there are 288
( 2k

k−5

)

+ 4
∑k−6

i=0

(2k
i

)

(2k − 2i)

2k \ 2m 0 4 6 8 10 Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 32 31 105

10 42 120 180 315 288 945
...

...
...

...
...

...
...
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Summary of Results
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Summary of Results

p = 1
2 : Semicircle Distribution (Bounded Support)

p 6= 1
2 : Unbounded Support
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Summary of Results

p = 1
2 : Semicircle Distribution (Bounded Support)

p 6= 1
2 : Unbounded Support

A method to calculate the moments of the eigenvalue
distribution, from which we can recover the
distribution
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Summary of Results

p = 1
2 : Semicircle Distribution (Bounded Support)

p 6= 1
2 : Unbounded Support

A method to calculate the moments of the eigenvalue
distribution, from which we can recover the
distribution

Weight of each configuration as a function of p and the
number of vertices in a crossing (2m): (2p − 1)2m
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Summary of Results

p = 1
2 : Semicircle Distribution (Bounded Support)

p 6= 1
2 : Unbounded Support

A method to calculate the moments of the eigenvalue
distribution, from which we can recover the
distribution

Weight of each configuration as a function of p and the
number of vertices in a crossing (2m): (2p − 1)2m

A way to count the number of configurations with 2m
vertices crossing for all m
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Summary of Results

p = 1
2 : Semicircle Distribution (Bounded Support)

p 6= 1
2 : Unbounded Support

A method to calculate the moments of the eigenvalue
distribution, from which we can recover the
distribution

Weight of each configuration as a function of p and the
number of vertices in a crossing (2m): (2p − 1)2m

A way to count the number of configurations with 2m
vertices crossing for all m

Limiting behavior of the mean and variance of the
moments, giving bounds for the moments
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