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A matrix where the entries are chosen randomly
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A matrix where the entries are chosen randomly
according to some probability distribution p, i.e.:

dij; aipx aiz - AN
djp dpy dpz - don
A = . . . .
aiN Ay asn v ann
P(A) = ][] p(a)
1<ij<N

Generally, we normalize p so that:

E(a;) =0and Var (a;) =1
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Random Matrix Ensembles

Question: What happens when we impose structure on
the entries of a matrix?

To answer, study "families” or "ensembles" of random
matrices:

@ Real Symmetric
@ Real Symmetric Toeplitz:

bp by by - byo:
by by by .-+ by
b2 by bo - bnos aj = b“f”
bn-1 bn-2 bn_z - bo
@ Real Symmetric Palindromic Toeplitz

@ eftc.
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Previous Work

Real Symmetric Toeplitz: Almost Gaussian
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Previous Work

Real Symmetric Palindromic Toeplitz: Gaussian
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Our Ensemble: Signed Toeplitz and Palindromic Toeplitz Mat rices

For each entry, assign a randomly chosen ¢; = {1, -1}
such that €ij = €ji-

Letp = ]P)(Eij = l)

Varying p allows us to continuously interpolate between:
@ Real Symmetric at p = % (less structured)

@ Unsigned Toeplitz/Palindromic Toeplitz at p = 1 (more
structured)

What is the eigenvalue distribution of these signed
ensembles?
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Markov's Method of Moments

@ The k™ moment M, of a probability distribution f (x)
defined on an interval [a, b] is f; xkf (x) dx.

@ Show a typical eigenvalue measure pan (X)
converges to a probability distribution P by controlling
convergence of average moments of the measures as
N — oo to the moments of P.
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Moments of the Eigenvalue Distribution

d(X — Xp) is a unit point mass at Xo:
JE(X)d(x — Xo)dx = f(xo).

To each A, we can thus write the eigenvalue distribution

as: \
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Moments of the Eigenvalue Distribution

Then the k™ moment of pan (X) is:

Mk (A) — /xkuA,N(x)dx
SRRl iR)e
i A (A)

= (2\/N)k
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For any non-negative integer k, if Ais an N x N matrix
with eigenvalues \; (A), then

N
Trace (A*) = >\ (A).
i=1 )
Thus,
N,k B kN 5L N kN 5L

so the average k™ moment, My (N) = E [My x (Ay)] is:
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Evaluating the Moments

My (N) = ; Z E (€iyi, Bjiy—iy | Einis Djip—is] - - - Eiciy Pjic—iz|)

1<y, ik <N

o NX terms

@ We look at groups of these terms, "configurations,”
that all have the same contribution.
@ What is their contribution?
@ How many terms have this configuration?
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Which configurations contribute in the limit?

M (N) = N ;+1 Z E (€131, Dy i) i Dlip—ia] - - - iy Dy iy )
1<iq,..,ik <N
What configurations have nonzero contributions?
@ The b’s must be matched in at least pairs since
E (bj) = 0.
What configurations have at least order of magnitude
N3+1 terms?
@ The b’s must be matched in at most pairs since there
are exactly g + 1 degrees of freedom when they are
matched in exactly pairs.

A
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Thus:
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Thus:
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Thus:
@ Odd moments vanish.

@ For the even moments My, we can represent each
contributing term as a pairing of 2k vertices on a
circle as follows:

lis—ig| lig—i1l

|i4—i5| |i1_i2|

liz—igl lio—ig]
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Circle Configurations

Pairings that are the same up to relabelling
(configurations ) have the same contribution:

For example:
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lig=isf lig—ial lia=is| liz—ial lig=isf fig—ial
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Preliminaries
oooe

Circle Configurations

Pairings that are the same up to relabelling
(configurations ) have the same contribution:

For example:
lis=iel lig=ial lis—il lig=ial lis=iel lig=ial
lig=isf lig—ial lia=is| liz—ial lig=isf fig—ial
liz—=ial liz—i] liz=ial iz liz—=ial lio—is]

Semicircle: Only non-crossing configurations contribute 1
Gaussian: All configurations contribute 1
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another edge.
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Each configuration weighted by (2p — 1)?™, where 2m is
the number of points on the circle whose edge crosses

another edge.

Example:
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For ¢; to be matched with ¢ (we know that € = ¢y), it
must be true that eitheri =k andj=1ori=1andj=Kk.
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Proof of Weighted Contributions Theorem

For ¢; to be matched with ¢ (we know that € = ¢y), it
must be true that eitheri =k andj=1ori=1andj=Kk.

If ¢; is matched with some ¢4, then E (ejeq) = 1.
If ¢; is not matched with any ¢, then E () = (2p — 1).

Want to prove that two €’s are matched if and only if their
b’s are not in a crossing.
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Assume by _; | and b|ip7ip+1| are a non-crossing pair.

|ir_ir+1|
o
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched es:

Assume by _; | and b|ip7ip+1| are a non-crossing pair.
|ir_+1| _ ZE:I, (lk — |k+l) - O
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched es:

Assume by _; | and b|ip7ip+1| are a non-crossing pair.

|ir_+1| _ ZE:r (Ik - Ik+l) = O
, * =k —li1+li1- -+l —lpt1 =l —lpta
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A non-crossing pair of b’s must have matched es:

Assume by _; | and b|ip7ip+1| are a non-crossing pair.

|ir_+1| _ ZE:r (Ik - Ik+l) = O
, * =k —li1+li1- -+l —lpt1 =l —lpta

This implies that i; = ip1.
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Assume by _; | and b|ip7ip+1| are a non-crossing pair.

|ir_+1| _ ZE:r (Ik - Ik+l) = O
, * =k —li1+li1- -+l —lpt1 =l —lpta

This implies that i; = ip1.
Similarly, iry1 = ip
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Proof of Weighted Contributions Theorem

A non-crossing pair of b’s must have matched es:

Assume by _; | and b|ip7ip+1| are a non-crossing pair.

|ir_+1| _ ZE:r (Ik - Ik+l) = O
, * =k —li1+li1- -+l —lpt1 =l —lpta

This implies that i; = ip1.
Similarly, iry1 = ip

Thus, €iriprq — Eipi

p+1°
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Proof of Weighted Contributions Theorem

A matched pair of es must not be in a crossing:

Suppose ¢, ., with a < b.

= Cipipy1)
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Proof of Weighted Contributions Theorem

A matched pair of es must not be in a crossing:

Suppose ¢, ., with a < b.

= Cipipy1)

Z(ik — ik+1) =lia—lpt1 =0

= S0 Oclik — ks

where & = 0 if and only if the vertex k is paired with is
between a and b.
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Proof of Weighted Contributions Theorem

A matched pair of es must not be in a crossing:

Suppose ¢, ., with a < b.

= €ipip1)

Z(ik —iky1)  =ia—lpp1 =0

= S0 Oclik — ks

where & = 0 if and only if the vertex k is paired with is
between a and b.

Need Nk*! degrees of freedom, so 6, = 0 for all k.
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Proof of Weighted Contributions Theorem

A matched pair of es must not be in a crossing:

Suppose e€i,i, ., = 6yi,.,» With @ < b.

Z(ik —iky1)  =ia—lpp1 =0

= S0 Oclik — ks

where & = 0 if and only if the vertex k is paired with is
between a and b.

Need Nk*! degrees of freedom, so 6, = 0 for all k.
Thus, €,,,, and €., are not in a crossing.

y
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Counting Crossing Configurations

Problem: Out of the (2k — 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Crossai om)?

Example: Crossg, = 28
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Crossyi 0 = Cx, the k' Catalan number.
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Counting Crossing Configurations

y

Problem: Out of the (2k — 1)!! ways to pair 2k vertices,
how many will have 2m vertices crossing (Crossai om)?

Example: Crossg, = 28

SN

Crossyi 0 = Cx, the k' Catalan number.

What about for higher m?
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Non-Crossing Regions

Suppose 2m vertices are already paired in some
configuration. The number of ways to pair and place the
remaining 2k — 2m vertices such that none of them are

involved in a crossing is ().

Example: There are (2) = 28 pairings with 4 vertices
arranged in a crossing.

SN
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Proof of Non-Crossing Regions Theorem

We showed the following equivalence:
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Proof of Non-Crossing Regions Theorem

We showed the following equivalence:

2k
> Cs,Cs,++ Cs, = (k - m).

S1+So++Som=2k—2m

y
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To calculate Crossyk »m, We write it as the following sum:

Crossyk om = Z Pok 2m,p-
p-1

where P omp is the number of configurations of 2k
vertices with 2m vertices crossing in p partitions.
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Counting Crossing Configurations

To calculate Crossyk »m, We write it as the following sum:

Crossyk om = Z Pok 2m,p-
p-1

where P omp is the number of configurations of 2k
vertices with 2m vertices crossing in p partitions.

For example:
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We then apply our theorem to get formulas for Poy om p.
For example:

2k
P2k 2m1 = Crosssm am '

k —m
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For:

@ 2m = 4, there are (kzl‘z) such pairings.

@ 2m = 6, there are 4(,%,) such pairings.

o 2m = 8, there are 31(%,) + 3 S50 (%) (2k — 2i)

2k\2m | 0 4 6 8 10 | Total
2 1 1
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8 14 28 32 31 105
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Counting Crossing Configurations

For:

@ 2m = 4, there are (kzl‘z) such pairings.

@ 2m = 6, there are 4(,%,) such pairings.
o 2m = 8, there are 31(%,) + 3 S50 (%) (2k — 2i)
@ 2m = 10, there are 288(, %) + 4 317 (%) (2k — 2i)

2k\2m | 0 4 6 8 10 | Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 32 31 105
42 120 180 315 288 | 945
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Counting Crossing Configurations

For:

@ 2m = 4, there are (kzl‘z) such pairings.

@ 2m = 6, there are 4(,%,) such pairings.
o 2m = 8, there are 31(%,) + 3 S50 (%) (2k — 2i)
@ 2m = 10, there are 288(, %) + 4 317 (%) (2k — 2i)

2k\2m | 0 4 6 8 10 | Total
2 1 1
4 2 1 3
6 5 6 4 15
8 14 28 32 31 105

10

42 120 180 315 288

945

QQ




Conclusion
[ ]

Summary of Results




Conclusion
[ ]

Summary of Results

: Semicircle Distribution (Bounded Support)
: Unbounded Support

NIFRNI(-




Conclusion
[ ]

Summary of Results

@ p = 3: Semicircle Distribution (Bounded Support)
p # 5: Unbounded Support
@ A method to calculate the moments of the eigenvalue

distribution, from which we can recover the
distribution

NIFRNI(-




Conclusion
[ ]

Summary of Results

op= %: Semicircle Distribution (Bounded Support)
p # 3: Unbounded Support
@ A method to calculate the moments of the eigenvalue

distribution, from which we can recover the
distribution

@ Weight of each configuration as a function of p and the
number of vertices in a crossing (2m): (2p — 1)2m




Conclusion
[ ]

Summary of Results

@ p = 3: Semicircle Distribution (Bounded Support)
p # 5: Unbounded Support

@ A method to calculate the moments of the eigenvalue
distribution, from which we can recover the
distribution
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@ A method to calculate the moments of the eigenvalue
distribution, from which we can recover the
distribution
@ Weight of each configuration as a function of p and the
number of vertices in a crossing (2m): (2p — 1)*"
@ A way to count the number of configurations with 2m
vertices crossing for all m
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