Generalized Ramanujan Primes

Nadine Amersi, Olivia Beckwith, Ryan Ronan

Advisor: Steven J. Miller

http://web.williams.edu/Mathematics/sjmiller/

Young Mathematicians Conference Ohio State, August 2011

Prime Numbers

Introduction

 Any integer can be written as a unique product of prime numbers (Fundamental Theorem of Arithmetic).

Prime Numbers

Introduction

- Any integer can be written as a unique product of prime numbers (Fundamental Theorem of Arithmetic).
- Exact spacing of primes unknown but roughly growing logarithmically (Prime Number Theorem).

Prime Numbers

- Any integer can be written as a unique product of prime numbers (Fundamental Theorem of Arithmetic).
- Exact spacing of primes unknown but roughly growing logarithmically (Prime Number Theorem).
- We expect linearly increasing intervals to contain an increasing amount of primes.

Historical Introduction

Introduction

Bertrand's Postulate (1845)

For all integers x > 2, there exists at least one prime in (x/2, x].

Definition

The *n*-th Ramanujan prime R_n : smallest integer such that for any $x > R_n$, at least *n* primes in any (x/2, x].

Introduction

Definition

The *n*-th Ramanujan prime R_n : smallest integer such that for any $x > R_n$, at least *n* primes in any (x/2, x].

Theorem

• Ramanujan: For each integer n, R_n exists.

Ramanujan Primes

Definition

The *n*-th Ramanujan prime R_n : smallest integer such that for any $x \ge R_n$, at least *n* primes in any (x/2, x].

Theorem

- Ramanujan: For each integer *n*, *R*_n exists.
- Sondow: $R_n \sim p_{2n}$.

Definition

The *n*-th Ramanujan prime R_n : smallest integer such that for any $x > R_n$, at least *n* primes in any (x/2, x].

Theorem

- Ramanujan: For each integer n, R_n exists.
- Sondow: $R_n \sim p_{2n}$.
- Sondow: As $n \to \infty$, 50% of primes are Ramanujan.

Definition

Introduction

The *n*-th *c*-Ramanujan prime $R_{c,n}$: smallest integer such that for any $x \ge R_{c,n}$ have at least *n* primes in (cx, x].

Definition

The *n*-th *c*-Ramanujan prime $R_{c,n}$: smallest integer such that for any $x \ge R_{c,n}$ have at least *n* primes in (cx, x].

• For each c and integer n, does $R_{c,n}$ exist?

Definition

The *n*-th *c*-Ramanujan prime $R_{c,n}$: smallest integer such that for any $x \ge R_{c,n}$ have at least *n* primes in (cx, x].

• For each *c* and integer *n*, does $R_{c,n}$ exist? Yes!

Definition

The *n*-th *c*-Ramanujan prime $R_{c,n}$: smallest integer such that for any $x \ge R_{c,n}$ have at least *n* primes in (cx, x].

Does R_{c,n} exhibit asymptotic behavior?

Definition

The *n*-th *c*-Ramanujan prime $R_{c,n}$: smallest integer such that for any $x \ge R_{c,n}$ have at least *n* primes in (cx, x].

• Does $R_{c,n}$ exhibit asymptotic behavior?

For $c \to 0$, the interval is (0, x] and $R_{c,n} = p_n$.

Definition

The *n*-th *c*-Ramanujan prime $R_{c,n}$: smallest integer such that for any $x \ge R_{c,n}$ have at least n primes in (cx, x].

Does R_{c,n} exhibit asymptotic behavior?

For $c \to 0$, the interval is (0, x] and $R_{c,n} = p_n$. For $c \to 1$, the interval would be (x, x] so $R_{c,n}$ does not exist.

Definition

The *n*-th *c*-Ramanujan prime $R_{c,n}$: smallest integer such that for any $x \ge R_{c,n}$ have at least *n* primes in (cx, x].

• Does $R_{c,n}$ exhibit asymptotic behavior?

For $c \to 0$, the interval is (0, x] and $R_{c,n} = p_n$. For $c \to 1$, the interval would be (x, x] so $R_{c,n}$ does not exist.

$$R_{c,n} \sim p_{\frac{n}{1-c}}$$

Definition

Introduction

The *n*-th *c*-Ramanujan prime $R_{c,n}$: smallest integer such that for any $x \ge R_{c,n}$ have at least n primes in (cx, x].

• What percent of primes are c-Ramanujan?

Definition

Introduction

The *n*-th *c*-Ramanujan prime $R_{c,n}$: smallest integer such that for any $x \ge R_{c,n}$ have at least *n* primes in (cx, x].

What percent of primes are c-Ramanujan?

Given $R_{c,n} \sim p_{\frac{n}{1-c}}$, it follows $R_{c,N(1-c)} \sim p_N$.

Definition

The *n*-th *c*-Ramanujan prime $R_{c,n}$: smallest integer such that for any $x \ge R_{c,n}$ have at least *n* primes in (cx, x].

• What percent of primes are c-Ramanujan?

Given
$$R_{c,n} \sim p_{\frac{n}{1-c}}$$
, it follows $R_{c,N(1-c)} \sim p_N$.

1-c

Let $\pi(x)$ be the prime-counting function that gives the number of primes less than or equal to x.

Results

0000000

Let $\pi(x)$ be the prime-counting function that gives the number of primes less than or equal to x.

Rosser's Theorem states:

$$p_m = m \log m + O(m \log \log m).$$

Preliminaries

Let $\pi(x)$ be the prime-counting function that gives the number of primes less than or equal to x.

Rosser's Theorem states:

$$p_m = m \log m + O(m \log \log m).$$

The Prime Number Theorem states:

$$\lim_{x\to\infty}\frac{\pi(x)}{x/\log(x)}=1.$$

The logarithmic integral function Li(x) is defined by

$$\operatorname{Li}(x) = \int_2^x \frac{1}{\log t} dt.$$

The Prime Number Theorem

The logarithmic integral function Li(x) is defined by

$$\operatorname{Li}(x) = \int_2^x \frac{1}{\log t} dt.$$

The Prime Number Theorem gives us

$$\pi(x) = \operatorname{Li}(x) + O\left(\frac{x}{\log^2 x}\right),$$

i.e., there is a C > 0 such that for all x sufficiently large

$$-C\frac{x}{\log x} \leq \pi(x) - \operatorname{Li}(x) \leq C\frac{x}{\log x}.$$

Theorem (Amersi, Beckwith, Ronan, 2011)

For all $n \in \mathbb{Z}$ and all $c \in (0, 1)$, the n-th c-Ramanujan prime $R_{c,n}$ exists.

Theorem (Amersi, Beckwith, Ronan, 2011)

For all $n \in \mathbb{Z}$ and all $c \in (0, 1)$, the n-th c-Ramanujan prime $R_{c,n}$ exists.

Results

Proof:

Theorem (Amersi, Beckwith, Ronan, 2011)

For all $n \in \mathbb{Z}$ and all $c \in (0, 1)$, the *n*-th *c*-Ramanujan prime $R_{c,n}$ exists.

Proof:

• The number of primes in (cx, x] is $\pi(x) - \pi(cx)$.

Existence of $R_{c,n}$

Theorem (Amersi, Beckwith, Ronan, 2011)

For all $n \in \mathbb{Z}$ and all $c \in (0, 1)$, the n-th c-Ramanujan prime $R_{c,n}$ exists.

Proof:

- The number of primes in (cx, x] is $\pi(x) \pi(cx)$.
- Using the Prime Number Theorem and Mean Value Theorem:

$$\pi(x) - \pi(cx) = \operatorname{Li}(x) - \operatorname{Li}(cx) + O(x \log^{-2} x)$$

Existence of $R_{c,n}$

Theorem (Amersi, Beckwith, Ronan, 2011)

For all $n \in \mathbb{Z}$ and all $c \in (0, 1)$, the n-th c-Ramanujan prime $R_{c,n}$ exists.

Proof:

- The number of primes in (cx, x] is $\pi(x) \pi(cx)$.
- Using the Prime Number Theorem and Mean Value Theorem:

$$\pi(x) - \pi(cx) = \operatorname{Li}(x) - \operatorname{Li}(cx) + O(x \log^{-2} x)$$
$$= \operatorname{Li}'(y_c)(x - cx) + O(x \log^{-2} x)$$
$$\text{with } y_c(x) \in [cx, x].$$

•
$$\pi(x) - \pi(cx) = \frac{(1-c)x}{\log y_c} + O(x \log^{-2} x).$$

Existence of $R_{c,n}$

Introduction

- $\pi(x) \pi(cx) = \frac{(1-c)x}{\log x} + O(x \log^{-2} x).$
- Since $\log y_c = \log x b_c$, for $b_c \in [0, -\log c]$,

$$\pi(x) - \pi(cx) = \frac{(1-c)x}{\log x - b_c} + O\left(\frac{x}{\log^2 x}\right).$$

Existence of $R_{c,n}$

- $\pi(x) \pi(cx) = \frac{(1-c)x}{\log x} + O(x \log^{-2} x).$
- Since $\log y_c = \log x b_c$, for $b_c \in [0, -\log c]$,

$$\pi(x) - \pi(cx) = \frac{(1-c)x}{\log x - b_c} + O\left(\frac{x}{\log^2 x}\right).$$

• For sufficiently large x, $\pi(x) - \pi(cx)$ is strictly increasing and $\pi(x) - \pi(cx) \ge n$, for all integers n.

Bounds on $R_{c,n}$

• $R_{c,n} \geq p_n$

Bounds on $\overline{R_{c,n}}$

• $R_{c,n} \ge p_n \ge n \log n$.

Bounds on $R_{c,n}$

Introduction

- $R_{c,n} \geq p_n \geq n \log n$.
- Want $R_{c,n} \leq \alpha_c n \log(\alpha_c n)$ for large n.

Bounds on $R_{c,n}$

Introduction

- $R_{c,n} \geq p_n \geq n \log n$.
- Want $R_{c,n} \leq \alpha_c n \log(\alpha_c n)$ for large n.
- Conjecture $\alpha_c = \frac{2}{1-c}$.

- $R_{c,n} > p_n > n \log n$.
- Want $R_{c,n} \leq \alpha_c n \log(\alpha_c n)$ for large n.
- Conjecture $\alpha_c = \frac{2}{1-c}$.
- To prove, must show $\pi(x) \pi(cx) \ge n \ \forall x \ge \alpha_c n \log(\alpha_c n)$.

Results

Introduction

• $R_{c,n} \ge p_n \ge n \log n$.

- $n_{c,n} \geq p_n \geq m \log n$.
- Want $R_{c,n} \le \alpha_c n \log(\alpha_c n)$ for large n.
- Conjecture $\alpha_c = \frac{2}{1-c}$.
- To prove, must show $\pi(x) \pi(cx) \ge n \ \forall x \ge \alpha_c n \log(\alpha_c n)$.
- We then obtain bounds on $\log R_{c,n}$:

- $R_{c,n} > p_n > n \log n$.
- Want $R_{c,n} \leq \alpha_c n \log(\alpha_c n)$ for large n.
- Conjecture $\alpha_c = \frac{2}{1-\alpha}$.
- To prove, must show $\pi(x) - \pi(cx) > n \ \forall x > \alpha_c n \log(\alpha_c n).$
- We then obtain bounds on $\log R_{c,n}$:

$$\left(1 - \frac{\beta_c \log \log n}{\log n}\right) \log n \leq \log R_{c,n} \leq \left(1 + \frac{\beta_c \log \log n}{\log n}\right) \log n.$$

Results

Asymptotic Behavior

Introduction

Theorem (Amersi, Beckwith, Ronan, 2011)

For any fixed $c \in (0, 1)$, the *n*th *c*-Ramanujan prime is asymptotic to the $\frac{n}{1-c}$ th prime as $n \to \infty$

$$\begin{aligned} \left| R_{c,n} - p_{\frac{n}{1-c}} \right| & \leq \left| \left| R_{c,n} - \frac{n}{1-c} \log R_{c,n} \right| + \left| \frac{n}{1-c} \log R_{c,n} - \frac{n}{1-c} \log n \right| \\ & + \left| \frac{n}{1-c} \log n - \frac{n}{1-c} \log \frac{n}{1-c} \right| \\ & + \left| \frac{n}{1-c} \log n - p_{\frac{n}{1-c}} \right| \end{aligned}$$

Results

Introduction

Theorem (Amersi, Beckwith, Ronan, 2011)

For any fixed $c \in (0, 1)$, the *n*th *c*-Ramanujan prime is asymptotic to the $\frac{n}{1-c}$ th prime as $n \to \infty$

$$\begin{aligned} \left| R_{c,n} - p_{\frac{n}{1-c}} \right| & \leq \left| R_{c,n} - \frac{n}{1-c} \log R_{c,n} \right| + \left| \frac{n}{1-c} \log R_{c,n} - \frac{n}{1-c} \log n \right| \\ & + \left| \frac{n}{1-c} \log n - \frac{n}{1-c} \log \frac{n}{1-c} \right| \\ & + \left| \frac{n}{1-c} \log n - p_{\frac{n}{1-c}} \right| \\ & \leq \gamma_c n \log \log n \end{aligned}$$

Asymptotic Behavior

Theorem (Amersi, Beckwith, Ronan, 2011)

For any fixed $c \in (0,1)$, the nth c-Ramanujan prime is asymptotic to the $\frac{n}{1-c}$ th prime as $n \to \infty$

$$\begin{aligned} \left| R_{c,n} - p_{\frac{n}{1-c}} \right| & \leq \left| R_{c,n} - \frac{n}{1-c} \log R_{c,n} \right| + \left| \frac{n}{1-c} \log R_{c,n} - \frac{n}{1-c} \log n \right| \\ & + \left| \frac{n}{1-c} \log n - \frac{n}{1-c} \log \frac{n}{1-c} \right| \\ & + \left| \frac{n}{1-c} \log n - p_{\frac{n}{1-c}} \right| \\ & \leq \gamma_c n \log \log n \end{aligned}$$

Since
$$\frac{n \log \log n}{n_0} \to 0$$
 as $n \to \infty$

Asymptotic Behavior

Theorem (Amersi, Beckwith, Ronan, 2011)

For any fixed $c \in (0,1)$, the nth c-Ramanujan prime is asymptotic to the $\frac{n}{1-c}$ th prime as $n \to \infty$

$$\begin{aligned} \left| R_{c,n} - p_{\frac{n}{1-c}} \right| & \leq \left| R_{c,n} - \frac{n}{1-c} \log R_{c,n} \right| + \left| \frac{n}{1-c} \log R_{c,n} - \frac{n}{1-c} \log n \right| \\ & + \left| \frac{n}{1-c} \log n - \frac{n}{1-c} \log \frac{n}{1-c} \right| \\ & + \left| \frac{n}{1-c} \log n - p_{\frac{n}{1-c}} \right| \\ & \leq \gamma_c n \log \log n \end{aligned}$$

Since
$$\frac{n \log \log n}{p_n} \to 0$$
 as $n \to \infty \Rightarrow R_{c,n} \sim p_{\frac{n}{1-c}}$

Results

Frequency of c-Ramanujan Primes

Theorem (Amersi, Beckwith, Ronan, 2011)

In the limit, the probability of a generic prime being a c-Ramanujan prime is 1 - c.

• Define $N = \lfloor \frac{n}{1-c} \rfloor$.

Theorem (Amersi, Beckwith, Ronan, 2011)

In the limit, the probability of a generic prime being a c-Ramanujan prime is 1-c.

• Define $N = \lfloor \frac{n}{1-n} \rfloor$.

Results

Theorem (Amersi, Beckwith, Ronan, 2011)

In the limit, the probability of a generic prime being a c-Ramanujan prime is 1-c.

• Define $N = \lfloor \frac{n}{1-c} \rfloor$.

Results

Worst cases:

Theorem (Amersi, Beckwith, Ronan, 2011)

In the limit, the probability of a generic prime being a c-Ramanujan prime is 1-c.

• Define $N = \lfloor \frac{n}{1-c} \rfloor$.

- Worst cases:
 - $R_{c,n} = a_N$ and every prime in $(a_N, p_N]$ is *c*-Ramanujan,

Theorem (Amersi, Beckwith, Ronan, 2011)

In the limit, the probability of a generic prime being a c-Ramanujan prime is 1-c.

• Define $N = \lfloor \frac{n}{1-n} \rfloor$.

- Worst cases:
 - $R_{c,n} = a_N$ and every prime in $(a_N, p_N]$ is c-Ramanujan,
 - $R_{c,n} = b_N$ and every prime in $[p_N, b_N)$ is c-Ramanujan.

Theorem (Amersi, Beckwith, Ronan, 2011)

In the limit, the probability of a generic prime being a c-Ramanujan prime is 1-c.

• Define $N = \lfloor \frac{n}{1-c} \rfloor$.

- Worst cases:
 - $R_{c,n} = a_N$ and every prime in $(a_N, p_N]$ is c-Ramanujan,
 - $R_{c,n} = b_N$ and every prime in $[p_N, b_N)$ is *c*-Ramanujan.
- Goal: $\frac{\pi(b_N)-\pi(a_N)}{\pi(p_N)} \to 0$ as $N \to \infty$.

Rosser's Theorem:

Rosser's Theorem:

$$p_m = m \log m + O(m \log \log m)$$

Rosser's Theorem:

$$p_m = m \log m + O(m \log \log m)$$

Rosser's Theorem:

$$p_m = m \log m + O(m \log \log m)$$

Riemann Hypothesis:

Rosser's Theorem:

$$p_m = m \log m + O(m \log \log m)$$
 x

② Riemann Hypothesis:

$$\pi(x) = \operatorname{Li}(x) + O(\sqrt{x} \log x)$$

Rosser's Theorem:

$$p_m = m \log m + O(m \log \log m)$$
 x

② Riemann Hypothesis:

$$\pi(x) = \operatorname{Li}(x) + O(\sqrt{x} \log x)$$

สส

Rosser's Theorem:

$$p_m = m \log m + O(m \log \log m)$$
 x

② Riemann Hypothesis:

$$\pi(x) = \operatorname{Li}(x) + O(\sqrt{x}\log x)$$

Prime Number Theorem

Rosser's Theorem:

$$p_m = m \log m + O(m \log \log m)$$
 x

2 Riemann Hypothesis:

$$\pi(x) = \operatorname{Li}(x) + O(\sqrt{x}\log x)$$

Prime Number Theorem

Rosser's Theorem:

$$p_m = m \log m + O(m \log \log m)$$
 x

② Riemann Hypothesis:

$$\pi(x) = \operatorname{Li}(x) + O(\sqrt{x}\log x)$$

Prime Number Theorem

$$\Rightarrow \frac{\pi(b_N) - \pi(a_N)}{\pi(p_N)} \le \xi \frac{\log \log N}{\log N} \to 0 \text{ as } N \to \infty$$

Prime Numbers

101 103 107 113 127 131 137 139 149 157 163 167 173 179 181 193 197 199 211 223 227

Ramanujan Primes

101 103 107 113 127 131 137 139 149 157 163 167 173 179 181 193 197 199 211 223 227

We define

Introduction

• $\gamma = 0.5772...$, the Euler-Mascheroni constant,

We define

- $\gamma = 0.5772...$, the Euler-Mascheroni constant,
- P, the probability of Heads,

Results

Coin Flipping Model (Variation on Cramer Model)

We define

- $\gamma = 0.5772...$, the Euler-Mascheroni constant,
- P, the probability of Heads,
- N, the number of trials,

We define

- $\gamma = 0.5772...$, the Euler-Mascheroni constant,
- P, the probability of Heads,
- N, the number of trials,
- L_N , the longest run of Heads.

We define

- $\gamma = 0.5772...$, the Euler-Mascheroni constant,
- P, the probability of Heads,
- N, the number of trials,
- L_N , the longest run of Heads.

$$\mathbb{E}[L_N] \quad \approx \quad \frac{\log N}{\log(1/P)} - \left(\frac{1}{2} - \frac{\log(1-P) + \gamma}{\log(1/P)}\right)$$

We define

- $\gamma = 0.5772...$, the Euler-Mascheroni constant,
- P, the probability of Heads,
- N, the number of trials,
- L_N , the longest run of Heads.

$$\mathbb{E}[L_N] \approx \frac{\log N}{\log(1/P)} - \left(\frac{1}{2} - \frac{\log(1-P) + \gamma}{\log(1/P)}\right)$$

$$\operatorname{Var}[L_N] \approx \frac{\pi^2}{6\log^2(1/P)} + \frac{1}{12}$$

What is P?

• Define P_c as the frequency of c-Ramanujan primes amongst the primes,

- Define P_c as the frequency of c-Ramanujan primes amongst the primes,
- As $N \to \infty$, $P_c = 1 c$,

- Define P_c as the frequency of c-Ramanujan primes amongst the primes,
- As $N \to \infty$, $P_c = 1 c$,
- For finite intervals [a, b], P_c is a function of a and b,

- Define P_c as the frequency of c-Ramanujan primes amongst the primes,
- As $N \to \infty$, $P_c = 1 c$,
- For finite intervals [a, b], P_c is a function of a and b,
- Choose $a = 10^5$, $b = 10^6$.

Distribution of generalized Ramanujan primes

	Length of the longest run in [10 ⁵ , 10 ⁶] of					
	<i>c</i> -Ramanujan primes		Non-c-Ramanujan primes			
С	Expected	Actual	Expected	Actual		
0.50	14	20	16	36		

	Length of the longest run in [10 ⁵ , 10 ⁶] of					
	<i>c</i> -Ramanujan primes		Non-c-Ramanujan primes			
С	Expected	Actual	Expected	Actual		
0.10	70	58	5	3		
0.20	38	36	7	7		
0.30	25	25	10	12		
0.40	18	21	13	16		
0.50	14	20	16	36		
0.60	11	17	22	42		
0.70	9	14	30	78		
0.80	7	9	46	154		
0.90	5	11	91	345		

Open Problems

Introduction

1 Laishram and Sondow: $p_{2n} < R_n < p_{3n}$ for n > 1. Can we find good choices of a_c and b_c such that $p_{a_cn} \leq R_{c,n} \leq p_{b_cn}$ for all n?

Open Problems

Introduction

1 Laishram and Sondow: $p_{2n} < R_n < p_{3n}$ for n > 1. Can we find good choices of a_c and b_c such that $p_{a_cn} \leq R_{c,n} \leq p_{b_cn}$ for all n?

Results

2 For a given prime p, for what values of c is p a c-Ramanujan prime?

- **1** Laishram and Sondow: $p_{2n} < R_n < p_{3n}$ for n > 1. Can we find good choices of a_c and b_c such that $p_{a_0n} < R_{c,n} < p_{b_0n}$ for all n?
- 2 For a given prime p, for what values of c is p a c-Ramanujan prime?
- Is there any explanation for the unexpected distribution of c-Ramanujan primes amongst the primes?

Acknowledgements

Introduction

This work was supported by the NSF, Williams College, University College London.

We would like to thank Jonathan Sondow and our colleagues from the 2011 REU at Williams College.

