Mind the Gap: Distribution of Gaps in Generalized Zeckendorf Decompositions

Amanda Bower and Rachel Insoft

Joint with: Olivia Beckwith, Louis Gaudet, Shiyu Li, Steven J. Miller, and Philip Tosteson http://www.williams.edu/Mathematics/sjmiller/public_html

YMC, Ohio State University, July 27-29th 2012

Intro 000	Gaps 000	Kangaroo Recurrences	Other Positive Linear Recurrences

Introduction

Intro ●○○	Gaps 000	Kangaroo Recurrences	Other Positive Linear Recurrences

Goals of the Talk

- Overview of recurrences, decompositions and gaps
- Hopping and Kangaroo recurrences
- Interesting probability distributions
- Other positive linear recurrences

000000000000000000000000000000000000000	rences

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \dots$

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrences
000			

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
;
 $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \dots$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrences
000			

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, ...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: 2012 = $1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_8 + F_3 + F_1$.

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrences
000			

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, ...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:

 $2012 = 1597 + 377 + 34 + 3 + 1 = F_{16} + F_{13} + F_8 + F_3 + F_1.$

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrences
000			

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \dots + c_n H_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrences
000			

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_nH_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

Zeckendorf

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrences
000			

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \dots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_nH_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

Zeckendorf

• Lekkerkerker: Average number summands is $C_{\text{Lek}}n + d$.

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrences
000			

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with $H_1 = 1$, $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_nH_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_L > 0$ if $L \ge 2$; $c_1 > 1$ if L = 1.

Zeckendorf

- Lekkerkerker: Average number summands is $C_{\text{Lek}}n + d$.
- Central Limit Type Theorem

Intro 000	Gaps 000	Kangaroo Recurrences	Other Positive Linear Recurrences

Gaps Between Summands

Intro 000	Gaps ●○○	Kangaroo Recurrences	Other Positive Linear Recurrences

For $H_{i_1} + H_{i_2} + \cdots + H_{i_n}$, the gaps are the differences:

$$i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1.$$

Intro 000	Gaps ●○○	Kangaroo Recurrences	Other Positive Linear Recurrences

For $H_{i_1} + H_{i_2} + \cdots + H_{i_n}$, the gaps are the differences:

$$i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1.$$

Example: For $H_1 + H_8 + H_{18}$, the gaps are 7 and 10.

Intro 000	Gaps ●○○	Kangaroo Recurrences	Other Positive Linear Recurrences

For $H_{i_1} + H_{i_2} + \cdots + H_{i_n}$, the gaps are the differences:

$$i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1.$$

Example: For $H_1 + H_8 + H_{18}$, the gaps are 7 and 10.

Definition

Let $P_n(m)$ be the probability that a gap for a decomposition in $[H_n, H_{n+1})$ is of length *m*.

Intro 000	Gaps ●○○	Kangaroo Recurrences	Other Positive Linear Recurrences

For $H_{i_1} + H_{i_2} + \cdots + H_{i_n}$, the gaps are the differences:

$$i_n - i_{n-1}, i_{n-1} - i_{n-2}, \ldots, i_2 - i_1.$$

Example: For $H_1 + H_8 + H_{18}$, the gaps are 7 and 10.

Definition

Let $P_n(m)$ be the probability that a gap for a decomposition in $[H_n, H_{n+1})$ is of length *m*.

Big Question: What is $P(m) = \lim_{n \to \infty} P_n(m)$?

Intro 000	Gaps ○●○	Kangaroo Recurrences	Other Positive Linear Recurrences
Resear	ch Interests		

We are interested in studying the distribution of gaps for various positive linear recurrences.

Intro 000	Gaps ○●○	Kangaroo Recurrences	Other Positive Linear Recurrences
Resear	ch Interests		

We are interested in studying the distribution of gaps for various positive linear recurrences.

Why?

Intro 000	Gaps ○●○	Kangaroo Recurrences	Other Positive Linear Recurrences

Research Interests

We are interested in studying the distribution of gaps for various positive linear recurrences.

Why?

 Random Matrix Theory, Physics, and Riemann Zeta Function

Intro 000	Gaps ○●○	Kangaroo Recurrences	Other Positive Linear Recurrences

Research Interests

We are interested in studying the distribution of gaps for various positive linear recurrences.

Why?

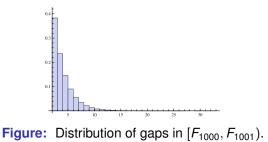
- Random Matrix Theory, Physics, and Riemann Zeta Function
- Wait times: banks, lines, managing computer queues

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurre
	000		

Previous Results (Beckwith-Miller 2011)

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, $P(m) = 1/\varphi^m$ for $m \ge 2$, with $\varphi = \frac{1+\sqrt{5}}{2}$ the golden mean.



	Gaps

Definition (Kangaroo Recurrence)

A Kangaroo recurrence of ℓ hops of length g is defined as $K_{n+1} = K_n + K_{n-g} + K_{n-2g} + \cdots + K_{n-\ell g}$.

Definition (Kangaroo Recurrence)

A Kangaroo recurrence of ℓ hops of length g is defined as $K_{n+1} = K_n + K_{n-g} + K_{n-2g} + \cdots + K_{n-\ell g}$.

Example:
$$K_{n+1} = K_n + K_{n-2} + K_{n-4}$$
 where $K_1 = 1, K_2 = 2, K_3 = 3, K_4 = 5$, and $K_5 = 8$.

Definition (Kangaroo Recurrence)

A Kangaroo recurrence of ℓ hops of length g is defined as $K_{n+1} = K_n + K_{n-g} + K_{n-2g} + \cdots + K_{n-\ell g}$.

Example:
$$K_{n+1} = K_n + K_{n-2} + K_{n-4}$$
 where $K_1 = 1, K_2 = 2, K_3 = 3, K_4 = 5$, and $K_5 = 8$.

 $100 = K_{10} + K_7 + K_4 + K_2.$

Definition (Kangaroo Recurrence)

A Kangaroo recurrence of ℓ hops of length g is defined as $K_{n+1} = K_n + K_{n-g} + K_{n-2g} + \cdots + K_{n-\ell g}$.

Example:
$$K_{n+1} = K_n + K_{n-2} + K_{n-4}$$
 where $K_1 = 1, K_2 = 2, K_3 = 3, K_4 = 5$, and $K_5 = 8$.

$$100 = K_{10} + K_7 + K_4 + K_2.$$

Only a few kangaroos were harmed in the making of this presentation.

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrences
000	000	●●●●●●●●●	

Our Results

Lemma

Given any Kangaroo decomposition for $n \in \mathbb{N}$, $P_n(j) = 0$ for j < g.

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrenc
000	000	○●○○○○○○○○	

Our Results

Lemma

Given any Kangaroo decomposition for $n \in \mathbb{N}$, $P_n(j) = 0$ for j < g.

We are interested in studying $P_n(j)$ for $j \ge g$ as $n \to \infty$.

Probability of Obtaining a Gap Length $j \ge g + 1$

Generalized Binet's Formula: It is well known that we can write

$$K_n = a_1\lambda_1^n + a_2\lambda_2^n + \cdots + a_{\ell g+1}\lambda_{\ell g+1}^n$$

where $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_{\ell g+1}|$.

Let $\lambda_{g,\ell} = \lambda_1$ for a Kangaroo recurrence with ℓ hops of length g.

Probability of Obtaining a Gap Length $j \ge g + 1$

Generalized Binet's Formula: It is well known that we can write

$$K_n = a_1 \lambda_1^n + a_2 \lambda_2^n + \cdots + a_{\ell g+1} \lambda_{\ell g+1}^n$$

where $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_{\ell g+1}|$.

Let $\lambda_{g,\ell} = \lambda_1$ for a Kangaroo recurrence with ℓ hops of length g.

Theorem (Exponential Decay)

If
$$j \geq g+1$$
, then $P(j) = (\lambda_{g,\ell}-1)^2 \left(rac{a_1}{C_{Lek}}\right) \lambda_{g,\ell}^{-j}$.

Theorem

If
$$j \geq g+1$$
 , then $P(j) = (\lambda_{g,\ell}-1)^2 \left(rac{a_1}{C_{\textit{Lek}}}
ight) \lambda_{g,\ell}^{-j}.$

Let $X_{i,i+j}(n) = \#\{m \in [K_n, K_{n+1}): \text{ decomposition of } m \text{ includes } K_i, K_{i+j}, \text{ but not } K_q \text{ for } i < q < i+j\}.$

Theorem

If
$$j \geq g+1$$
 , then $extsf{P}(j) = (\lambda_{g,\ell}-1)^2 \left(rac{a_1}{C_{\textit{Lek}}}
ight) \lambda_{g,\ell}^{-j}.$

Let $X_{i,i+j}(n) = \#\{m \in [K_n, K_{n+1}): \text{ decomposition of } m \text{ includes } K_i, K_{i+j}, \text{ but not } K_q \text{ for } i < q < i+j\}.$

Let Y(n) = total number of gaps in decompositions for integers in [K_n, K_{n+1}).

Theorem

If
$$j \geq g+1$$
 , then $P(j) = (\lambda_{g,\ell}-1)^2 \left(rac{a_1}{C_{\textit{Lek}}}
ight) \lambda_{g,\ell}^{-j}.$

Let $X_{i,i+j}(n) = \#\{m \in [K_n, K_{n+1}): \text{ decomposition of } m \text{ includes } K_i, K_{i+j}, \text{ but not } K_q \text{ for } i < q < i+j\}.$

Let Y(n) = total number of gaps in decompositions for integers in [K_n , K_{n+1}).

$$\boldsymbol{P}(j) = \lim_{n \to \infty} \frac{1}{Y(n)} \sum_{i=1}^{n-j} X_{i,i+j}(n).$$

Theorem

If
$$j \geq g+1$$
 , then $P(j) = (\lambda_{g,\ell}-1)^2 \left(rac{a_1}{C_{\textit{Lek}}}
ight) \lambda_{g,\ell}^{-j}.$

Let $X_{i,i+j}(n) = \#\{m \in [K_n, K_{n+1}): \text{ decomposition of } m \text{ includes } K_i, K_{i+j}, \text{ but not } K_q \text{ for } i < q < i+j\}.$

Let Y(n) = total number of gaps in decompositions for integers in [K_n, K_{n+1}).

$$P(j) = \lim_{n \to \infty} \frac{1}{Y(n)} \sum_{i=1}^{n-j} X_{i,i+j}(n).$$

Generalized Lekkerkerker $\Rightarrow Y(n) \sim (C_{Lek}n + d)(K_{n+1} - K_n).$

Gaps

Other Positive Linear Recurrences

A Quick Counting Lesson: How do we count $X_{i,i+j}$?

We need to see the number of legal decompositions with a gap of length j.

Can count how many legal decompositions exist to the left and right of the gap.

Lemma

Let $H_{n+1} = c_1 H_n + \cdots + c_L H_{n+1-L}$ be a Positive Linear Recurrence Sequence, then the number of legal decompositions which contain H_m as the largest summand is $H_{m+1} - H_m$.

Intro	Gaps	Kangaroo Recurrences
		00000000000

Calculating $X_{i,i+j}$

Theorem

If
$$j \geq g+1$$
 , then $P(j) = (\lambda_{g,\ell}-1)^2 \left(rac{a_1}{C_{\textit{Lek}}}
ight) \lambda_{g,\ell}^{-j}.$

In the interval $[K_n, K_{n+1})$:

How many decompositions contain a gap from K_i to K_{i+i} ?

Calculating $X_{i,i+j}$

Theorem

If
$$j \geq g+1$$
 , then $P(j) = (\lambda_{g,\ell}-1)^2 \left(rac{a_1}{C_{\textit{Lek}}}
ight) \lambda_{g,\ell}^{-j}.$

In the interval $[K_n, K_{n+1})$:

How many decompositions contain a gap from K_i to K_{i+j} ?

Left: For the indices less than *i*: $K_{i+1} - K_i$ choices.

Calculating $X_{i,i+j}$

Theorem

If
$$j \geq g+1$$
 , then $P(j) = (\lambda_{g,\ell}-1)^2 \left(rac{a_1}{C_{\textit{Lek}}}
ight) \lambda_{g,\ell}^{-j}.$

In the interval $[K_n, K_{n+1})$:

How many decompositions contain a gap from K_i to K_{i+j} ?

Left: For the indices less than *i*: $K_{i+1} - K_i$ choices.

Right: For the indices greater than i + j: $K_{n-j-i-g+1} - K_{n-j-i-g} + \cdots + K_{n-j-i-\ell g+1} - K_{n-j-i-\ell g}$ choices.

Calculating $X_{i,i+j}$

Theorem

If
$$j \geq g+1$$
 , then $P(j) = (\lambda_{g,\ell}-1)^2 \left(rac{a_1}{C_{\textit{Lek}}}
ight) \lambda_{g,\ell}^{-j}.$

In the interval $[K_n, K_{n+1})$:

How many decompositions contain a gap from K_i to K_{i+j} ?

Left: For the indices less than *i*: $K_{i+1} - K_i$ choices.

Right: For the indices greater than i + j: $K_{n-j-i-g+1} - K_{n-j-i-g} + \cdots + K_{n-j-i-\ell g+1} - K_{n-j-i-\ell g}$ choices.

So
$$X_{i,i+j}(n) =$$
Left * Right =
 $(K_{i+1} - K_i)(K_{n-i-j+2} - K_{n-i-j+1} - (K_{n-i-j+1} - K_{n-i-j}))$.

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurre
		00000000000	

Final Steps of the Proof

For sufficiently large n, g, and ℓ , $K_n \approx a_1 \lambda_{g,\ell}^n$.

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurren
		00000000000	

Final Steps of the Proof

For sufficiently large n, g, and ℓ , $K_n \approx a_1 \lambda_{g,\ell}^n$.

Then with some algebra...

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurren
		00000000000	

Final Steps of the Proof

For sufficiently large n, g, and ℓ , $K_n \approx a_1 \lambda_{g,\ell}^n$.

Then with some algebra...

$$P(j) = (\lambda_{g,\ell} - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_{g,\ell}^{-j}.$$

Other Positive Linear Recurrences

Probability of Having a Gap Length g

Theorem

If
$$j = g$$
, then $P(j) = \left(\frac{a_1}{C_{Lek}}\right) \lambda_{g,\ell}^{-2g}$

Other Positive Linear Recurrences

Probability of Having a Gap Length g

Gaps

Theorem

If
$$j = g$$
, then $P(j) = \left(\frac{a_1}{C_{Lek}}\right) \lambda_{g,\ell}^{-2g}$

The proof is combinatorial in nature like the previous one.

The main difference is the probabilities of the left and the right are no longer independent.

Proof Sketch

Theorem

If
$$j = g$$
, then $P(j) = \left(\frac{a_1}{C_{Lek}}\right) \lambda_{g,\ell}^{-2g}$

Proof Sketch

Theorem

If
$$j = g$$
, then $P(j) = \left(\frac{a_1}{C_{Lek}}\right) \lambda_{g,\ell}^{-2g}$

We calculate the number of ways to have exactly *b* gaps of length *g* for $b \in \{1, \ldots, \ell - 1\}$.

Proof Sketch

Theorem

If
$$j = g$$
, then $P(j) = \left(\frac{a_1}{C_{Lek}}\right) \lambda_{g,\ell}^{-2g}$

We calculate the number of ways to have exactly *b* gaps of length *g* for $b \in \{1, \ldots, \ell - 1\}$.

$$P(g) = \lim_{n \to \infty} \frac{1}{Y(n)} \sum_{b=1}^{\ell-1} \sum_{i=1}^{n-bg} X_{i,i+bg}(n)$$

where $X_{i,i+bg} = (K_{i-g} - K_1)(K_{n-i-(b+1)g+1} - K_{n-i-(b+1)g})$

Intro 000	Gaps 000	Kangaroo Recurrences	Other Positive Linear Recurrences

Approximating $\lambda_{g,\ell}$

Characteristic polynomial of the recurrence \Rightarrow transcendental equation

$$\lambda_{g,\ell}^g \approx \left(1+rac{lpha}{g}
ight)^g,$$

where $\alpha \approx \log(g) - \log(\log(g)) + \frac{\log(\log(g))}{\log(g)}$.

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrences
000	000	○○○○○○○○●○○	

Approximating $\lambda_{g,\ell}$

Characteristic polynomial of the recurrence \Rightarrow transcendental equation

$$\lambda_{g,\ell}^g \approx \left(1+rac{lpha}{g}
ight)^g,$$

where $\alpha \approx \log(g) - \log(\log(g)) + \frac{\log(\log(g))}{\log(g)}$.

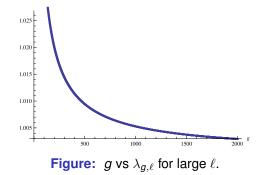
This tells us that

•
$$\lambda_{g,\ell} \approx 1$$

•
$$\lambda_{g,\ell}^{-g} \approx \frac{1}{g}$$

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrences
000	000	○○○○○○○○●○	

Approximating $\lambda_{g,\ell}$



Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrences
		00000000000	

What is the probability of getting a gap of length g compared to any other gap?

Intro Ga	aps Ka	angaroo Recurrences	Other Positive Linear Recurrences
		000000000	

What is the probability of getting a gap of length g compared to any other gap? By summing P(j) over all possible j > g we see that the the ratio of gaps length g to those greater than g is

$$\frac{\operatorname{Prob}(\operatorname{Gap} \text{ at least } g)}{\operatorname{Prob}(\operatorname{Gap} \text{ at least } g+1)} = \frac{\lambda_{g,\ell}^{-2g}}{\lambda_{g,\ell}^{-g}(\lambda_{g,\ell}-1)(1-\frac{1}{\lambda_{g,\ell}^{n-g-1}})}.$$

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrences
		0000000000	

What is the probability of getting a gap of length g compared to any other gap? By summing P(j) over all possible j > g we see that the the ratio of gaps length g to those greater than g is

$$\frac{\operatorname{Prob}(\operatorname{Gap} \text{ at least } g)}{\operatorname{Prob}(\operatorname{Gap} \text{ at least } g+1)} = \frac{\lambda_{g,\ell}^{-2g}}{\lambda_{g,\ell}^{-g}(\lambda_{g,\ell}-1)(1-\frac{1}{\lambda_{g,\ell}^{n-g-1}})}$$

For large g, ℓ , and n, we use our approximations from the previous slide

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrences
		00000000000	

What is the probability of getting a gap of length g compared to any other gap? By summing P(j) over all possible j > g we see that the the ratio of gaps length g to those greater than g is

$$\frac{\operatorname{Prob}(\operatorname{Gap} \text{ at least } g)}{\operatorname{Prob}(\operatorname{Gap} \text{ at least } g+1)} = \frac{\lambda_{g,\ell}^{-2g}}{\lambda_{g,\ell}^{-g}(\lambda_{g,\ell}-1)(1-\frac{1}{\lambda_{g,\ell}^{n-g-1}})}$$

For large g, ℓ , and n, we use our approximations from the previous slide

$$\frac{\operatorname{Prob}(\operatorname{Gap} \text{ at least } g)}{\operatorname{Prob}(\operatorname{Gap} \text{ at least } g+1)} \approx \frac{1}{\alpha} \approx \frac{1}{\log(g) - \log(\log(g)) + \frac{\log(\log(g))}{\log(g)}}.$$

Intro 000	Gaps 000	Kangaroo Recurrences	Other Positive Linear Recurrences

Other Positive Linear Recurrences

Other Positive Linear Recurrences

Positive Linear Recurrences of Any Length

Theorem

Let $H_{n+1} = c_1 H_n + \cdots + c_L H_{n+1-L}$ be a Positive Linear Recurrence Sequence, then, if $j \ge L$, $P(j) = (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_1^{-j}$, where λ_1 is the largest root of the characteristic polynomial of the recurrence.

Positive Linear Recurrences of Any Length

Theorem

Let $H_{n+1} = c_1 H_n + \cdots + c_L H_{n+1-L}$ be a Positive Linear Recurrence Sequence, then, if $j \ge L$, $P(j) = (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right) \lambda_1^{-j}$, where λ_1 is the largest root of the characteristic polynomial of the recurrence.

What can we say about the distribution of gaps < L for any PLRS?

Positive Linear Recurrences of Any Length

Theorem

Let $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_LH_{n+1-L}$ be a positive linear recurrence of length L where $c_i \ge 1$ for all $1 \le i \le L$. Then

$$P(j) = \begin{cases} 1 - (\frac{a_1}{C_{Lek}})(\lambda_1^{-n+2} - \lambda_1^{-n+1} + 2\lambda_1^{-1} + a_1^{-1} - 3) & \text{for } j = 0\\ \lambda_1^{-1}(\frac{1}{C_{Lek}})(\lambda_1(1 - 2a_1) + a_1) & \text{for } j = 1\\ (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right)\lambda_1^{-j} & \text{for } j \ge 2 \end{cases}$$

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrences
			00000

Positive Linear Recurrences of Length 2

We can calculate the constants $\lambda_1, \lambda_2, a_1$, and C_{Lek} for recurrences of length 2

Intro	Gaps	Kangaroo Recurrences	Other Positive Linear Recurrences
			00000

Positive Linear Recurrences of Length 2

We can calculate the constants $\lambda_1, \lambda_2, a_1$, and C_{Lek} for recurrences of length 2

$$\lambda_{1} = \frac{c_{1} + \sqrt{c_{1}^{2} + 4c_{2}}}{2}$$
$$\lambda_{2} = \frac{c_{1} - \sqrt{c_{1}^{2} + 4c_{2}}}{2}$$
$$a_{1} = \frac{c_{1} + 1 - \lambda_{2}}{\lambda_{1}^{2} - \lambda_{1}\lambda_{2}}$$
$$C_{Lek} = \frac{((c_{1}^{2} - c_{1})\lambda_{1}) + (2c_{1}c_{2} + c_{2}^{2} - c_{2})}{2c_{1}\lambda_{1} + 4c_{2}}$$

Intro 000	Gaps 000	Kangaroo Recurrences	Other Positive Linear Recurrences

Future Research

Future Research

- Given a specific *m* ∈ N, what is the probability its decomposition has gap distribution close to the average?
- What is the average longest gap?
- How do the coefficients in a recurrence affect the results?
- Generalizing results to all PLRS and signed decompositions

Acknowledgements

Gaps

Thanks to ...

- NSF Grant DMS0850577
- NSF Grant DMS0970067
- Young Mathematicians Conference
- Our peers at Williams SMALL REU Summers 2010, 2011, and 2012
- Our Advisor Steven J. Miller

Thanks for your time!