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Introduction
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Goals of the Talk

Overview of recurrences, decompositions and gaps
Hopping and Kangaroo recurrences
Interesting probability distributions
Other positive linear recurrences
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.

Lekkerkerker’s Theorem (1952)
The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.
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Previous Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf
Lekkerkerker: Average number summands is CLekn + d .
Central Limit Type Theorem
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Gaps Between Summands
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Distribution of Gaps

For Hi1 + Hi2 + · · ·+ Hin , the gaps are the differences:

in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For H1 + H8 + H18, the gaps are 7 and 10.

Definition
Let Pn(m) be the probability that a gap for a decomposition in
[Hn,Hn+1) is of length m.

Big Question: What is P(m) = limn→∞ Pn(m)?
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Research Interests

We are interested in studying the distribution of gaps for various
positive linear recurrences.

Why?

Random Matrix Theory, Physics, and Riemann Zeta
Function

Wait times: banks, lines, managing computer queues
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Previous Results (Beckwith-Miller 2011)

Theorem (Zeckendorf Gap Distribution)
For Zeckendorf decompositions, P(m) = 1/ϕm for m ≥ 2, with
ϕ = 1+

√
5

2 the golden mean.

Figure: Distribution of gaps in [F1000,F1001).
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Kangaroo Recurrences
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Kangaroo Recurrences

Definition (Kangaroo Recurrence)
A Kangaroo recurrence of ` hops of length g is defined as
Kn+1 = Kn + Kn−g + Kn−2g + · · ·+ Kn−`g .

Example: Kn+1 = Kn + Kn−2 + Kn−4 where

K1 = 1,K2 = 2,K3 = 3,K4 = 5, and K5 = 8.

100 = K10 + K7 + K4 + K2.

Only a few kangaroos were harmed in the making of this
presentation.
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Our Results

Lemma
Given any Kangaroo decomposition for n ∈ N, Pn(j) = 0 for
j < g.

We are interested in studying Pn(j) for j ≥ g as n→∞.
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Probability of Obtaining a Gap Length j ≥ g + 1

Generalized Binet’s Formula: It is well known that we can write

Kn = a1λ
n
1 + a2λ

n
2 + · · ·+ a`g+1λ

n
`g+1

where |λ1| ≥ |λ2| ≥ · · · ≥ |λ`g+1|.

Let λg,` = λ1 for a Kangaroo recurrence with ` hops of length g.

Theorem (Exponential Decay)

If j ≥ g + 1, then P(j) = (λg,` − 1)2
(

a1
CLek

)
λ−j

g,`.
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Proof Set Up

Theorem

If j ≥ g + 1, then P(j) = (λg,` − 1)2
(

a1
CLek

)
λ−j

g,`.

Let Xi,i+j(n) = #{m ∈ [Kn,Kn+1): decomposition of m includes
Ki , Ki+j , but not Kq for i < q < i + j}.

Let Y (n) = total number of gaps in decompositions for integers
in [Kn,Kn+1).

P(j) = lim
n→∞

1
Y (n)

n−j∑
i=1

Xi,i+j(n).

Generalized Lekkerkerker⇒ Y (n) ∼ (CLekn + d)(Kn+1 − Kn).
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A Quick Counting Lesson: How do we count Xi,i+j?

We need to see the number of legal decompositions with a gap
of length j.

Can count how many legal decompositions exist to the left and
right of the gap.

Lemma
Let Hn+1 = c1Hn + · · ·+ cLHn+1−L be a Positive Linear
Recurrence Sequence, then the number of legal
decompositions which contain Hm as the largest summand is
Hm+1 − Hm.
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Calculating Xi,i+j

Theorem

If j ≥ g + 1, then P(j) = (λg,` − 1)2
(

a1
CLek

)
λ−j

g,`.

In the interval [Kn,Kn+1):
How many decompositions contain a gap from Ki to Ki+j?

Left: For the indices less than i : Ki+1 − Ki choices.

Right: For the indices greater than i + j :
Kn−j−i−g+1 − Kn−j−i−g + · · · + Kn−j−i−`g+1 − Kn−j−i−`g
choices.

So Xi,i+j(n) = Left ∗ Right =
(Ki+1 − Ki)(Kn−i−j+2 − Kn−i−j+1 − (Kn−i−j+1 − Kn−i−j)).
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Final Steps of the Proof

For sufficiently large n,g, and `, Kn ≈ a1λ
n
g,`.

Then with some algebra...

P(j) = (λg,` − 1)2
(

a1
CLek

)
λ−j

g,`.
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Probability of Having a Gap Length g

Theorem

If j = g, then P(j) =
(

a1
CLek

)
λ
−2g
g,`

The proof is combinatorial in nature like the previous one.

The main difference is the probabilities of the left and the right
are no longer independent.
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Proof Sketch

Theorem

If j = g, then P(j) =
(

a1
CLek

)
λ
−2g
g,`

We calculate the number of ways to have exactly b gaps of
length g for b ∈ {1, . . . , `− 1}.

P(g) = lim
n→∞

1
Y (n)

`−1∑
b=1

n−bg∑
i=1

Xi,i+bg(n)

where Xi,i+bg = (Ki−g − K1)(Kn−i−(b+1)g+1 − Kn−i−(b+1)g)
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Approximating λg,`

Characteristic polynomial of the recurrence⇒ transcendental
equation

λ
g
g,` ≈

(
1 +

α

g

)g

,

where α ≈ log(g)− log(log(g)) + log(log(g))
log(g) .

This tells us that
λg,` ≈ 1

λ
−g
g,` ≈

1
g
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Approximating λg,`

Figure: g vs λg,` for large `.
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Probability Ratios

What is the probability of getting a gap of length g compared to
any other gap?

By summing P(j) over all possible j > g we see
that the the ratio of gaps length g to those greater than g is

Prob(Gap at least g)
Prob(Gap at least g + 1)

=
λ
−2g
g,`

λ
−g
g,` (λg,` − 1)(1− 1

λ
n−g−1
g,`

)
.

For large g,`, and n, we use our approximations from the
previous slide

Prob(Gap at least g)
Prob(Gap at least g + 1)

≈ 1
α
≈ 1

log(g)− log(log(g)) + log(log(g))
log(g)

.
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What is the probability of getting a gap of length g compared to
any other gap? By summing P(j) over all possible j > g we see
that the the ratio of gaps length g to those greater than g is

Prob(Gap at least g)
Prob(Gap at least g + 1)

=
λ
−2g
g,`

λ
−g
g,` (λg,` − 1)(1− 1

λ
n−g−1
g,`

)
.

For large g,`, and n, we use our approximations from the
previous slide

Prob(Gap at least g)
Prob(Gap at least g + 1)

≈ 1
α
≈ 1

log(g)− log(log(g)) + log(log(g))
log(g)

.
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Other Positive Linear Recurrences
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Positive Linear Recurrences of Any Length

Theorem
Let Hn+1 = c1Hn + · · ·+ cLHn+1−L be a Positive Linear
Recurrence Sequence, then, if j ≥ L,
P(j) = (λ1 − 1)2

(
a1

CLek

)
λ−j

1 , where λ1 is the largest root of the
characteristic polynomial of the recurrence.

What can we say about the distribution of gaps < L for any
PLRS?
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Positive Linear Recurrences of Any Length

Theorem
Let Hn+1 = c1Hn + · · ·+ cLHn+1−L be a Positive Linear
Recurrence Sequence, then, if j ≥ L,
P(j) = (λ1 − 1)2

(
a1

CLek

)
λ−j

1 , where λ1 is the largest root of the
characteristic polynomial of the recurrence.

What can we say about the distribution of gaps < L for any
PLRS?
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Positive Linear Recurrences of Any Length

Theorem
Let Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn+1−L be a positive linear
recurrence of length L where ci ≥ 1 for all 1 ≤ i ≤ L. Then

P(j) =


1− ( a1

CLek
)(λ−n+2

1 − λ−n+1
1 + 2λ−1

1 + a−1
1 − 3) for j = 0

λ−1
1 ( 1

CLek
)(λ1(1− 2a1) + a1) for j = 1

(λ1 − 1)2
(

a1
CLek

)
λ−j

1 for j ≥ 2
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Positive Linear Recurrences of Length 2

We can calculate the constants λ1, λ2,a1, and CLek for
recurrences of length 2

λ1 =
c1 +

√
c2

1 + 4c2

2

λ2 =
c1 −

√
c2

1 + 4c2

2

a1 =
c1 + 1− λ2

λ2
1 − λ1λ2

CLek =
((c2

1 − c1)λ1) + (2c1c2 + c2
2 − c2)

2c1λ1 + 4c2
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Positive Linear Recurrences of Length 2

We can calculate the constants λ1, λ2,a1, and CLek for
recurrences of length 2

λ1 =
c1 +

√
c2

1 + 4c2

2

λ2 =
c1 −

√
c2

1 + 4c2

2

a1 =
c1 + 1− λ2

λ2
1 − λ1λ2

CLek =
((c2

1 − c1)λ1) + (2c1c2 + c2
2 − c2)

2c1λ1 + 4c2
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Future Research

Future Research

Given a specific m ∈ N, what is the probability its
decomposition has gap distribution close to the average?

What is the average longest gap?

How do the coefficients in a recurrence affect the results?

Generalizing results to all PLRS and signed
decompositions
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Thanks for your time!
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