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Introduction




Goals of the Talk

@ Overview of recurrences, decompositions and gaps
@ Hopping and Kangaroo recurrences

@ Interesting probability distributions

@ Other positive linear recurrences
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Fibonacci Numbers: Fp. 1 = Fn+ Fp_q;
Fi=1,F,=2,F=3,F,=5,....

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 =1597 + 377 +34 +3 + 1 :F16+F13+F8+F3+F1.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf

decomposition for integers in [Fp, Fpi 1) tends to @2”“ ~ .276n,

where ¢ = /5 s the golden mean.
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Previous Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hpy1 = cyHp+coHp4 + -+ CctHp_ 41, N> L

with Hy =1, Hppy = ¢iHp + CoHp—1 + - -+ caHy +1, n < L,
coefficients ¢; > 0; ¢, >0ifL>2;¢cy >1ifL=1.
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Previous Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hpy1 = cyHp+coHp4 + -+ CctHp_ 41, N> L

with Hy =1, Hpp1 = ctHp+ oHp1 + -+ cpHy + 1, n < L,
coefficients ¢; > 0; ¢, >0ifL>2;¢cy >1ifL=1.
@ Zeckendorf
@ Lekkerkerker: Average number summands is Crxn + d.
@ Central Limit Type Theorem
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Distribution of Gaps

For H;, + H, + - -- + H,,, the gaps are the differences:
In = In—1, Ip-1 — Ip—2, ..., b — I

Example: For Hy + Hg + Hig, the gaps are 7 and 10.

Definition

Let P,(m) be the probability that a gap for a decomposition in
[Hn, Hny 1) is of length m.

Big Question: What is P(m) = limp_,oc Pn(m)?
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Research Interests

We are interested in studying the distribution of gaps for various
positive linear recurrences.
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Research Interests

We are interested in studying the distribution of gaps for various
positive linear recurrences.

Why?

@ Random Matrix Theory, Physics, and Riemann Zeta
Function

@ Wait times: banks, lines, managing computer queues




Previous Results (Beckwith-Miller 2011)

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P(m) = 1/¢o™ for m > 2, with
¢ = 155 the golden mean.

10 15 20 2 30

Figure: Distribution of gaps in [Fioo0, F1001)-
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Kangaroo Recurrences

Definition (Kangaroo Recurrence)

A Kangaroo recurrence of ¢ hops of length g is defined as
Kny1 = Kn+ Kng + Kn—ag + -+ + Kn_sg-
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Kangaroo Recurrences

Definition (Kangaroo Recurrence)

A Kangaroo recurrence of ¢ hops of length g is defined as
Kny1 = Kn+ Kng + Kn—ag + -+ + Kn_sg-

Example: Kpi1 = Ky + Kh—2 + Kh—4 Where
Ky = 1,K2:2,K3:3,K4:5, and Ks = 8.

100 = Kig + K7 + K4y + Ko.

Only a few kangaroos were harmed in the making of this
presentation.
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Our Results

Given any Kangaroo decomposition for n € N, P,(j) = 0 for
j<ag.
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Our Results

Given any Kangaroo decomposition for n € N, P,(j) = 0 for
j<ag.

We are interested in studying P,(j) forj > g as n — <.
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Probability of Obtaining a Gap Length j > g + 1

Generalized Binet's Formula: It is well known that we can write
Ky = a4 )\? + 32)\5 + -+ agg+1/\£’g+1
where ’/\1‘ > ’)\2‘ > > ‘)\gg+1|.

Let A\g» = Ay for a Kangaroo recurrence with £ hops of length g.
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Probability of Obtaining a Gap Length j > g + 1

Generalized Binet's Formula: It is well known that we can write
Ky = a4 )\? + 32)\5 + -+ agg+1/\£’g+1

where ’/\1‘ > ’)\2‘ > > ‘)\gg+1|.

Let A\g» = Ay for a Kangaroo recurrence with £ hops of length g.

Theorem (Exponential Decay)

1> g-+1, then P() = (rge — 112 () Agh
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Proof Set Up

Ifj > g+1, then P(j) = (Age — 1) (céfk) )‘Zé'

Let X; ij(n) = #{m € [Kn, Kh11): decomposition of m includes
Ki, Kij, but not Ky for i < q < i+ j}.
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Kangaroo Recurrences
o

Proof Set Up

Ifj > g +1, then P(j) = (Age — 12 (&) Agh.

Clek

Let X; ij(n) = #{m € [Kn, Kh11): decomposition of m includes
Ki, Kij, but not Ky for i < q < i+ j}.

Let Y(n) = total number of gaps in decompositions for integers
in [Kn, Kni1)-

Generalized Lekkerkerker = Y(n) ~ (Crexn + d)(Knt1 — Kn).
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A Quick Counting Lesson: How do we count X, ;?

We need to see the number of legal decompositions with a gap
of length j.

Can count how many legal decompositions exist to the left and
right of the gap.

LetHp 1 = ciHp+ - -- + ¢ Hp 1 be a Positive Linear
Recurrence Sequence, then the number of legal
decompositions which contain Hy, as the largest summand is
Hmi1 — Hm.

‘.
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Calculating X;

Ifj > g +1, then P(j) = (Age = 172 (&5 ) Agh-

In the interval [Kp, Kn41):
How many decompositions contain a gap from K; to K;;?
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Calculating X;

Ifj>g+1, then P(j) = (\g¢ — 1) (ci‘k) Aot

In the interval [Kp, Kn41):
How many decompositions contain a gap from K; to K;;?

Left: For the indices less than i: K;. 1 — Kj choices.
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Calculating X;

Ifj > g +1, then P(j) = (Age = 172 (&5 ) Agh-

Clek

In the interval [Kp, Kn41):
How many decompositions contain a gap from K; to K;;?

Left: For the indices less than i: K;. 1 — Kj choices.
Right: For the indices greater than i + j:

Kn—j—i—g+1 — Kn—joicg +-++ + Knoj_iceg+1 — Knj—i—tg
choices.




Kangaroo Recurrences
L]

Calculating X;

Ifj>g+1, then P(j) = (\g¢ — 1) (ci‘k) Aot

In the interval [Kp, Kn41):
How many decompositions contain a gap from K; to K;;?

Left: For the indices less than i: K;. 1 — Kj choices.
Right: For the indices greater than i + j:
Kn—j—i—g+1 — Kn—joicg +-++ + Knoj_iceg+1 — Knj—i—tg

choices.

So X;i.j(n) = Left = Right =
(Kip1 — Ki)(Kn—i—jr2 — Kn—i—jy1 — (Kn—izjr1 — Knizj)).
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Final Steps of the Proof

For sufficiently large n, g, and ¢, K, =~ ay )‘g,e-

Then with some algebra...

PG) = (e — 102 () Agh =
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Ifj = g, then P(j) = () g5
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Probability of Having a Gap Length g

Ifj = g, then P(j) = () g5

The proof is combinatorial in nature like the previous one.

The main difference is the probabilities of the left and the right
are no longer independent.
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Proof Sketch

Ifj = g, then P(j) = ( a >A;§g

Clek

AR
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Proof Sketch

Ifj = g, then P(j) = () g5

We calculate the number of ways to have exactly b gaps of
lengthgforbe {1,...,.4—1}.
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Proof Sketch

Ifj = g, then P(j) = () g5

We calculate the number of ways to have exactly b gaps of
lengthgforbe {1,...,.4—1}.

where Xj i pg = (Kig — K1) (Kn—i—(b+1)g+1 — Kn—i—(b+1)g)
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Approximating \g

Characteristic polynomial of the recurrence = transcendental

equation
g
«
)\g,f =~ <1 +g) ,

where o ~ log(g) — log(log(9)) + %'
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Approximating \g

Characteristic polynomial of the recurrence = transcendental

equation
g
«
)\g,f =~ <1 +g) ,

where o ~ log(g) — log(log(9)) + %'

This tells us that
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Approximating \g
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Figure: gvs )y, for large ¢.
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Probability Ratios

What is the probability of getting a gap of length g compared to
any other gap?
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Probability Ratios

What is the probability of getting a gap of length g compared to
any other gap? By summing P(j) over all possible j > g we see
that the the ratio of gaps length g to those greater than g is

2
Prob(Gap at least g) )‘g,ég
Prob(Gap at least g + 1) )‘;g()\g,e (1 - )\Z;ﬁ).
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Probability Ratios

;

What is the probability of getting a gap of length g compared to
any other gap? By summing P(j) over all possible j > g we see
that the the ratio of gaps length g to those greater than g is

2
Prob(Gap at least g) )‘g,ég
Prob(Gap at least g + 1) )\;g()\g,é -1)(1 - )\njﬁ)

g,L

For large g,¢, and n, we use our approximations from the
previous slide




Kangaroo Recurrences
[ ]

Probability Ratios

What is the probability of getting a gap of length g compared to
any other gap? By summing P(j) over all possible j > g we see
that the the ratio of gaps length g to those greater than g is

2
Prob(Gap at least g) )‘g,ég
Prob(Gap at least g + 1) )\;g()\g,é -1)(1 - )\njﬁ)

g,L

For large g,¢, and n, we use our approximations from the
previous slide

1
log(g) — log(log(g)) + 2350l

Prob(Gap at least g)
Prob(Gap at least g + 1)

1
«
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Positive Linear Recurrences of Any Length

LetHp 1 = ciHp+ --- + ¢ Hp 1 be a Positive Linear
Recurrence Sequence, then, ifj > L,
P(j) = (A — 1)? (ﬁ) A{’, where Xy is the largest root of the

Clek
characteristic polynomial of the recurrence.
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Positive Linear Recurrences of Any Length

LetHp 1 = ciHp+ --- + ¢ Hp 1 be a Positive Linear
Recurrence Sequence, then, ifj > L,
P(j) = (A — 1)? (ﬁ) A{’, where Xy is the largest root of the

Clek
characteristic polynomial of the recurrence.

What can we say about the distribution of gaps < L for any
PLRS?

L
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Positive Linear Recurrences of Any Length

Let Hy 1 = ciHp+ ¢oHp—1 + - - - + ¢ Hp1— be a positive linear
recurrence of length L where ¢; > 1 forall1 < i < L. Then

1= (&) =A™ +2x7 + a7 =8) forj=0
P() = AT (e (M1 - 2a1) + &) forj =1
()\1—1)2(a>)\’ forj > 2

v
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Positive Linear Recurrences of Length 2

We can calculate the constants Aq, Ao, a1, and Cj ¢ for
recurrences of length 2
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Positive Linear Recurrences of Length 2

We can calculate the constants Aq, Ao, a1, and Cj ¢ for
recurrences of length 2

C1+4/C2 +4co
A = 5
c1 — /2 +4co
Ao = 5
ci+1-2A
ag =St
22— A2

((c2 — c1)M) + (2100 + €5 — C2)
2Ci1\ + 40

Crek =

A0
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Future Research

Future Research

@ Given a specific m € N, what is the probability its
decomposition has gap distribution close to the average?

@ What is the average longest gap?
@ How do the coefficients in a recurrence affect the results?

@ Generalizing results to all PLRS and signed
decompositions
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Thanks for your time!




