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Introduction

Let A C NU {0}.

Definition
Sumset: A+A={x+Yy:x,y € A}

Example: if A= {1,2,5}, then

A+A=1{23,4,6,7,10}.

Why study sumsets?
@ Goldbach’s conjecture: {4,6,8,---} CP + P.

@ Fermat’s last theorem: let A, be the nth powers and
then ask if (A, +A,) NA, =0 foralln > 2.

@ Twin prime conjecture: P — P contains 2 infinitely
often.
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Motivation

@ Martin and O’Bryant '07: positive percentage are
sum-dominant.

@ Notex +y = y+xbutx —y #y—x.

@ Several ways to see new behavior usually dwarfed by
large size of typical random set.

@ Can choose elements equally with probability tending
to 0, or can choose sets with great structure.
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Goals

@ Eichhorn, Khan, Stein, and Yankov [EKSY] studied
modular hyperbolas:

Xy = 1 mod n.

@ Generalize to:

@ Xy =amod n.
@ higher dimensions: x; - - - Xxx = a mod n.
@ various sum sets and difference sets (tA+ A+ A+ .- L A).

@ Discuss tools and techniques.
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Pictures

Figure : xy = 1325 mod 482
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Sums and Differences of the Coordinates of Points on
Modular Hyperbolas

Dennis Eichhorn, Mizan R. Khan, Alan H. Stein, and
Christian L. Yankov
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Modular Hyperbolas

Definition (Modular Hyperbola)

Let a be coprime to n. A d-dimensional modular
hyperbola is

Ha(a;n) = {(X1,X2, -+ ,Xd) : X1---Xg =amodn,1 < x < n)}.

[ESKY] studied Hy(1; n).
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Notation

We utilize the following notation:

Do(a;n) ={x —y modn: (x,y) € Hy(a;n)}

Sy(a;n) ={x+ymodn:(x,y) € Hx(an)}

Ford > 2 and m > 1, where m is the number of plus
signs in +x; £ X, + - - - - Xq, let

Sag(m;a;n)={x3+---+Xm—---—%Xgmod n: (Xg, - ,Xq) € Hy(a; n)}.
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[EKSY] results

Theorem (EKSY 2009)

@ Found and proved explicit formulas for the cardinality
of S,(1; n) and D,(1;n).

@ Analyzed ratios of the cardinalities of S,(1;n) and
D,(1;n), found that at least 84% of the time,
Sz(1;n) > D2(1;n).

D
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Proposition 1 Generalization
Letn = [, p® be the canonical factorization of n. Then,

#Sq(m; a;n) = [T, #Sq(m; a mod pf'; pf).
Sketch of proof:

Consider
g : Sa(m;a;n) — [, Sa(m;a mod p®; p&)
where
g(x) = (x mod pft, - -+ ,x mod pg*).

By Chinese remainder theorem, g is a bijection.

’
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Theorem 2 Generalization

Let (x,y) € Ha(a; p'). Then

@ x +y =2k mod p' for some k € Z.
@ (2k mod p') € D,(a;p!) <= (k?+a) is a square
modulo p'.

© For odd primes p, there is a bijection between
{k : k? + aisasquare mod n,0 < k < p'} and
D»(a;n).

© For p = 2, there is a bijection between {k : k? + aisa
square mod n,0 < k < 271} and D,(a; n).

© Similar results for S,(a; n).
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Theorem 3 (Stangl)

Let p be an odd prime. Then,

pt+l
2(p+1)

p—1 3

ey T

#{k?mod p'} =

In the case p = 2,

#{k? mod 2'} = 2 + +
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Proposition 4

For p 1 ¢, we have the following:

O p#2:1fx>=cmod p is solvable, then for every
t > 2, x2 =c mod p' has exactly 2 distinct solutions.

= 2: If x2 = ¢ mod 22 is solvable, then for every
> 3, x2 = ¢ mod 2' has exactly 4 distinct solutions.

Qp
t

'
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Proposition 5

Sketch of proof:
@ Ifx +y € S,(a;n), then (x, —y) € Ho(—a; n).

® Thus x — (—y) € Dy(—a;n).
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Explicit Formulas

In the case when p = 2,

(24 CU7 13 t>5a=7mod8
#Dy(a;2') = ¢ 2t-3 t>5a=1,5mod8

(20 t>5a=3mod8

(24 G070 13 t>5a=1mod8
#S,(a;2") = { 2t-3 t>5a=3,7mod8

214 t >5 a=5mod 8.

\
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@ Claim: k2 + 1+ 8m is a square mod 2' < k = 4/ for
some ¢ € 7.
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Xy = a(modn)
L]

Sketch of case a = 1 mod 8 for Dy(a; n):

@ Claim: k2 + 1+ 8m is a square mod 2' < k = 4/ for
some ¢ € 7.

@ “= " Reduce mod 8, so k?+1+8m = k?+1 mod 8.

@ “<« " Reduce mod 8, so (4¢)?> +1+8m = 1 mod 8.
Use Proposition 4.
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Sketch of case a = 1 mod 8 for Dy(a; n):

@ Claim: k2 + 1+ 8m is a square mod 2' < k = 4/ for
some ¢ € 7.

@ “= " Reduce mod 8, so k?+1+8m = k?+1 mod 8.

@ “<« " Reduce mod 8, so (4¢)?> +1+8m = 1 mod 8.
Use Proposition 4.

@ Then, by Theorem 2,
#{k : k? +1 +8mis a square mod 2,0 < k < 21}
= #{40:0< (< 273,
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Explicit Formulas contd.

In the case when p is an odd prime, fort > 3,

(p— 3) P (=1)'"%(p-1) a
#S,(a; p') = (0t ) a
p

#Dy(a; p') =
=1

g

P
-1
-1

2(p+1)
2(0) p =1 mod 4

(=2t b P+ ) p=1moda4, (
a
P
a
p

(p—3)p'~ ' | p'* (=1)'%(p-1) —
f—}‘m‘i‘ +w p:3mod4

2(p) p53m0d4

,
'OIQJ
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@ If p =1 mod 4, then San) _ q

Dz (a;n)
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— Sp(ain) _
© If p =1 mod 4, then Dz(a;n) =1.

Q Ifais a square mod n, then at least 84% of the time

S,(a;n)
—ﬁz(a;n) > 1.
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— Sp(ain) _
© If p =1 mod 4, then Dz(a;n) =1.

Q Ifais a square mod n, then at least 84% of the time
So(am) -, 9
Da(ain) '

@ If —ais a square mod n, then at least 84% of the time

S,(a;n)
—ﬁz(a;n) < 1.
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@ If p =1 mod 4, then San) _ q

Dz (a;n)

Q Ifais a square mod n, then at least 84% of the time
Sa(a;n)

B

@ If —ais a square mod n, then at least 84% of the time

S,(a;n)
—ﬁz(a;n) < 1.

@ Proof of 1 follows from cardinality formulas.

@ Proof of 2 and 3 follow from [EKSY]. Only need to
look at p = 3 mod 4.

A
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Lemma

Let F(X1,- -+ ,X) = 0 mod p' where p > 2. Then, the
number of solutions is

i t
S = é Zu N @2miuF (xg,-+ Xk)/P

where 0 < u,Xg, -+, Xk < p.

Sketch of proof:
Note that

t-1
1 pz: o2 /pt _ 1 x =0modp
pt = 0 x # 0 mod p.




d-dimensional Modular Hyp
o

Lemma

Let F(X1,- -+ ,X) = 0 mod p' where p > 2. Then, the
number of solutions is

i t
S = é Zu N @2miuF (xg,-+ Xk)/P

where 0 < u,Xg, -+, Xk < p.

Sketch of proof:
Note that

t-1
1 pz: o2 /pt _ 1 x =0modp
pt = 0 x # 0 mod p.

Each solution contributes 1 to S, while a non-solution
doesn’t contribute to S.
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Cardinality

If2,3and 5{nandd > 2, the cardinality of Sy(m; a; n) is
n.

Proof sketch:
@ Itis enough to show for S3(2; a; n) and S;(1; a; n).
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Cardinality

If2,3and 5{nandd > 2, the cardinality of Sy(m; a; n) is
n.

Proof sketch:
@ Itis enough to show for S3(2; a; n) and S;(1; a; n).

@ Show there is a solution (xo, Yo, Zo) for xyz = a mod p'
and x +y + ez = b mod p* where ¢ = £1.

@ |dea: show there are many solutions.

A
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@ Want to show xye(b —x —y) —a =0 mod p' has
many solutions.
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Cardinality Proof

@ Want to show xye(b —x —y) —a =0 mod p' has
many solutions.

@ Number of solutions is
i e(b—x-y)— t
o Lu(p) Loy (pr) &7

pi—1
e Equals pp_zt‘_‘_# D @2riu(xys(b—x—y)-a)/p'_
u=1xy(p')
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Cardinality Proof

@ Want to show xye(b —x —y) —a =0 mod p' has
many solutions.

@ Number of solutions is
i e(b—x-y)— t
o Lu(p) Loy (pr) &7

° Equals t+ Z Z e27riu(xya(b—x—y)—a)/p"
u=1x,y(p")
@ Change of variables:

pt—1
p + Z Z e( 2miub+2mi(a+y )24~ euy)/pt Z eme uya/p

u=1y(pt) x=0
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Cardinality Proof

@ Note, by generalized Gauss sums
p-1
S e ¥*we/p' — ¢ /pt where ¢ has magnitude 1.
x=0

@ Change of variables and Gauss sums again:

pt + d \/Et\/a ptz_l ((a+y)24‘1ey2—aby>
p

pt

y=0
where the magnitude of d is 1.
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Cardinality Proof

@ Note, by generalized Gauss sums

p .
> e2mx*uy=/p' — ¢ /pt where ¢ has magnitude 1.

@ Change of variables and Gauss sums again:

pt + d \/Et\/a ptz_l ((a+y)24‘1ey2—aby>
p

t
y=0 P

where the magnitude of d is 1.

@ Main term is p'. Rest of sum is bounded in magnitude
by pt — 1.
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Summary

@ Higher dimensions sums/differences capture all
possibilities.

@ Behavior is the same for Sq(m; a; n) where d > 2.

@ For d = 2, behavior is varied, so ratios lead to
interesting behavior.
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@ Cardinality of the intersection of other modular
objects (ellipses, lower dimensional modular
hyperbolas) with modular hyperbolas.
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Future and Ongoing Research

@ Cardinality of the intersection of other modular
objects (ellipses, lower dimensional modular
hyperbolas) with modular hyperbolas.

@ Pick elements randomly with probability depending on
the dimension of the modular hyperbola.

@ Ratios for Hy(a; n) where a is not a square mod n.
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