Generalized Sum and Difference Sets and *d***-dimensional Modular Hyperbolas**

Amanda Bower¹ and Victor D. Luo² Advisor: Steven J. Miller²

¹University of Michigan-Dearborn ²Williams College

http://www.williams.edu/Mathematics/sjmiller/ Young Mathematicians Conference Columbus, Ohio, July 27-29, 2012

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Why study sumsets?

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Why study sumsets?

• Goldbach's conjecture: $\{4, 6, 8, \cdots\} \subseteq P + P$.

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Why study sumsets?

- Goldbach's conjecture: $\{4, 6, 8, \cdots\} \subseteq P + P$.
- Fermat's last theorem: let A_n be the nth powers and then ask if $(A_n + A_n) \cap A_n = \emptyset$ for all n > 2.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}.$$

Why study sumsets?

- Goldbach's conjecture: $\{4, 6, 8, \dots\} \subseteq P + P$.
- Fermat's last theorem: let A_n be the nth powers and then ask if $(A_n + A_n) \cap A_n = \emptyset$ for all n > 2.
- Twin prime conjecture: P − P contains 2 infinitely often.

Motivation

- Martin and O'Bryant '07: positive percentage are sum-dominant.
 - Note x + y = y + x but $x y \neq y x$.

Motivation

- Martin and O'Bryant '07: positive percentage are sum-dominant.
 - Note x + y = y + x but $x y \neq y x$.
- Several ways to see new behavior usually dwarfed by large size of typical random set.

Motivation

- Martin and O'Bryant '07: positive percentage are sum-dominant.
 - Note x + y = y + x but $x y \neq y x$.
- Several ways to see new behavior usually dwarfed by large size of typical random set.
- Can choose elements equally with probability tending to 0, or can choose sets with great structure.

Goals

 Eichhorn, Khan, Stein, and Yankov [EKSY] studied modular hyperbolas:

$$xy \equiv 1 \mod n$$
.

Goals

 Eichhorn, Khan, Stein, and Yankov [EKSY] studied modular hyperbolas:

$$xy \equiv 1 \mod n$$
.

- Generalize to:
 - $xy \equiv a \mod n$.
 - higher dimensions: $x_1 \cdots x_k \equiv a \mod n$.
 - various sum sets and difference sets $(\pm A \pm A \pm A \pm \cdots \pm A)$.

Goals

 Eichhorn, Khan, Stein, and Yankov [EKSY] studied modular hyperbolas:

$$xy \equiv 1 \mod n$$
.

- Generalize to:
 - $xy \equiv a \mod n$.
 - higher dimensions: $x_1 \cdots x_k \equiv a \mod n$.
 - various sum sets and difference sets $(\pm A \pm A \pm A \pm A \pm \cdots \pm A)$.
- Discuss tools and techniques.

Pictures

Figure : $xy \equiv 197 \mod 2^{10}$

Pictures

Figure: $xy \equiv 1325 \mod 48^2$

Sums and Differences of the Coordinates of Points on Modular Hyperbolas Dennis Eichhorn, Mizan R. Khan, Alan H. Stein, and Christian L. Yankov

Modular Hyperbolas

Definition (Modular Hyperbola)

Let *a* be coprime to *n*. A *d*-dimensional modular hyperbola is

$$H_d(a; n) = \{(x_1, x_2, \cdots, x_d) : x_1 \cdots x_d \equiv a \bmod n, 1 \le x_i < n)\}.$$

[ESKY] studied $H_2(1; n)$.

Notation

We utilize the following notation:

$$\bar{D}_2(a; n) = \{x - y \bmod n : (x, y) \in H_2(a; n)\}$$

$$\bar{S}_2(a; n) = \{x + y \bmod n : (x, y) \in H_2(a; n)\}$$

Notation

We utilize the following notation:

$$\bar{D}_2(a; n) = \{x - y \bmod n : (x, y) \in H_2(a; n)\}$$

$$\bar{S}_2(a; n) = \{x + y \bmod n : (x, y) \in H_2(a; n)\}$$

For d > 2 and $m \ge 1$, where m is the number of plus signs in $\pm x_1 \pm x_2 \pm \cdots \pm x_d$, let

$$\bar{S}_d(m; a; n) = \{x_1 + \dots + x_m - \dots - x_d \bmod n : (x_1, \dots, x_d) \in H_d(a; n)\}.$$

[EKSY] results

Theorem (EKSY 2009)

• Found and proved explicit formulas for the cardinality of $\bar{S}_2(1; n)$ and $\bar{D}_2(1; n)$.

[EKSY] results

Theorem (EKSY 2009)

- Found and proved explicit formulas for the cardinality of $\bar{S}_2(1; n)$ and $\bar{D}_2(1; n)$.
- Analyzed ratios of the cardinalities of \$\bar{S}_2(1; n)\$ and \$\bar{D}_2(1; n)\$,

[EKSY] results

Theorem (EKSY 2009)

- Found and proved explicit formulas for the cardinality of $\bar{S}_2(1; n)$ and $\bar{D}_2(1; n)$.
- Analyzed ratios of the cardinalities of $\bar{S}_2(1; n)$ and $\bar{D}_2(1; n)$, found that at least 84% of the time, $\bar{S}_2(1; n) > \bar{D}_2(1; n)$.

 $xy \equiv a \pmod{n}$ New Results

Introduction

Proposition 1 Generalization

Let $n = \prod_{i=1}^{m} p_i^{e_i}$ be the canonical factorization of n. Then,

$$\#\bar{S}_d(m; \mathbf{a}; n) = \prod_{i=1}^k \#\bar{S}_d(m; \mathbf{a} \bmod p_i^{e_i}; p_i^{e_i}).$$

Sketch of proof:

Consider

$$g: \bar{\mathsf{S}}_d(m;a;n) o \prod_{i=1}^k \bar{\mathsf{S}}_d(m;a oxdot p_i^{\mathsf{e}_i};p_i^{\mathsf{e}_i})$$

where

$$g(x) = (x \mod p_1^{e_1}, \cdots, x \mod p_{k}^{e_k}).$$

By Chinese remainder theorem, q is a bijection.

Let $(x, y) \in H_2(a; p^t)$. Then

Let $(x, y) \in H_2(a; p^t)$. Then

- $x \pm y \equiv 2k \mod p^t$ for some $k \in \mathbb{Z}$.
- 2 $(2k \mod p^t) \in \bar{D}_2(\mathbf{a}; p^t) \iff (k^2 + \mathbf{a})$ is a square modulo p^t .

Let $(x, y) \in H_2(a; p^t)$. Then

- $x \pm y \equiv 2k \mod p^t$ for some $k \in \mathbb{Z}$.
- ② $(2k \mod p^t) \in \bar{D}_2(\mathbf{a}; p^t) \iff (k^2 + \mathbf{a})$ is a square modulo p^t .
- To rodd primes p, there is a bijection between $\{k : k^2 + a \text{ is a square mod } n, 0 < k < p^t\}$ and $\overline{D}_2(a; n)$.

27

Let $(x, y) \in H_2(a; p^t)$. Then

- $x \pm y \equiv 2k \mod p^t$ for some $k \in \mathbb{Z}$.
- ② $(2k \mod p^t) \in \bar{D}_2(\mathbf{a}; p^t) \iff (k^2 + \mathbf{a})$ is a square modulo p^t .
- To rodd primes p, there is a bijection between $\{k : k^2 + a \text{ is a square mod } n, 0 < k < p^t\}$ and $\overline{D}_2(a; n)$.
- For p = 2, there is a bijection between $\{k : k^2 + a \text{ is a square mod } n, 0 < k < 2^{t-1}\}$ and $\bar{D}_2(a; n)$.

၁၀

Let $(x, y) \in H_2(a; p^t)$. Then

- $x \pm y \equiv 2k \mod p^t$ for some $k \in \mathbb{Z}$.
- ② $(2k \mod p^t) \in \bar{D}_2(\mathbf{a}; p^t) \iff (k^2 + \mathbf{a})$ is a square modulo p^t .
- To rodd primes p, there is a bijection between $\{k : k^2 + a \text{ is a square mod } n, 0 < k < p^t\}$ and $\overline{D}_2(a; n)$.
- For p = 2, there is a bijection between $\{k : k^2 + a \text{ is a square mod } n, 0 < k < 2^{t-1}\}$ and $\bar{D}_2(a; n)$.
- **3** Similar results for $\bar{S}_2(a; n)$.

Theorem 3 (Stangl)

Let *p* be an odd prime. Then,

$$\#\{k^2 \bmod p^t\} = \frac{p^{t+1}}{2(p+1)} + (-1)^{t-1} \frac{p-1}{4(p+1)} + \frac{3}{4}.$$

In the case p = 2,

$$\#\{k^2 \bmod 2^t\} = \frac{2^{t-1}}{3} + \frac{(-1)^{t-1}}{6} + \frac{3}{2}, t \ge 2.$$

30

Proposition 4

For $p \nmid c$, we have the following:

- $p \neq 2$: If $x^2 \equiv c \mod p$ is solvable, then for every $t \geq 2$, $x^2 \equiv c \mod p^t$ has exactly 2 distinct solutions.
- p = 2: If $x^2 \equiv c \mod 2^3$ is solvable, then for every $t \geq 3$, $x^2 \equiv c \mod 2^t$ has exactly 4 distinct solutions.

21

Proposition 5

$$\bar{S}_2(a;n)=\bar{D}_2(-a;n).$$

Sketch of proof:

- If $x + y \in \bar{S}_2(a; n)$, then $(x, -y) \in H_2(-a; n)$.
- Thus $x (-y) \in \bar{D}_2(-a; n)$.

Explicit Formulas

In the case when p = 2,

$$\#\bar{D}_2(a;2^t) = \begin{cases} \frac{2^t - 4}{3} + \frac{(-1)^{t-1}}{3} + 3 & t \ge 5, a \equiv 7 \bmod 8 \\ 2^{t-3} & t \ge 5, a \equiv 1, 5 \bmod 8 \\ 2^{t-4} & t \ge 5, a \equiv 3 \bmod 8 \end{cases}$$

$$\#\bar{S}_{2}(a;2^{t}) = \begin{cases} \frac{2^{t}-4}{3} + \frac{(-1)^{t-1}}{3} + 3 & t \geq 5, a \equiv 1 \mod 8\\ 2^{t-3} & t \geq 5, a \equiv 3, 7 \mod 8\\ 2^{t-4} & t \geq 5, a \equiv 5 \mod 8. \end{cases}$$

33

Sketch of case $a \equiv 1 \mod 8$ for $\bar{D}_2(a; n)$:

• Claim: $k^2 + 1 + 8m$ is a square mod $2^t \Leftrightarrow k = 4\ell$ for some $\ell \in \mathbb{Z}$.

Sketch of case $a \equiv 1 \mod 8$ for $\bar{D}_2(a; n)$:

- Claim: $k^2 + 1 + 8m$ is a square mod $2^t \Leftrightarrow k = 4\ell$ for some $\ell \in \mathbb{Z}$.
- " \Rightarrow " Reduce mod 8, so $k^2 + 1 + 8m \equiv k^2 + 1 \mod 8$.

Sketch of case $a \equiv 1 \mod 8$ for $\bar{D}_2(a; n)$:

- Claim: $k^2 + 1 + 8m$ is a square mod $2^t \Leftrightarrow k = 4\ell$ for some $\ell \in \mathbb{Z}$.
- " \Rightarrow " Reduce mod 8, so $k^2 + 1 + 8m \equiv k^2 + 1 \mod 8$.
- " \Leftarrow " Reduce mod 8, so $(4\ell)^2 + 1 + 8m \equiv 1 \mod 8$. Use Proposition 4.

36

Sketch of case $a \equiv 1 \mod 8$ for $\bar{D}_2(a; n)$:

- Claim: $k^2 + 1 + 8m$ is a square mod $2^t \Leftrightarrow k = 4\ell$ for some $\ell \in \mathbb{Z}$.
- " \Rightarrow " Reduce mod 8, so $k^2 + 1 + 8m \equiv k^2 + 1 \mod 8$.
- " \Leftarrow " Reduce mod 8, so $(4\ell)^2 + 1 + 8m \equiv 1 \mod 8$. Use Proposition 4.
- Then, by Theorem 2, $\#\{k: k^2+1+8m \text{ is a square mod } 2^t, 0 \le k < 2^{t-1}\}$ $=\#\{4\ell: 0 \le \ell < 2^{t-3}\}.$

37

$$\#\bar{S}_2(a; p^t) = \begin{cases} \frac{(p-3)p^{t-1}}{2} + \frac{p^{t-1}}{p+1} + \frac{3}{2} + \frac{(-1)^{t-3}(p-1)}{2(p+1)} & \left(\frac{a}{p}\right) = 1\\ \frac{\phi(p^t)}{2} & \left(\frac{a}{p}\right) = -1 \end{cases}$$

$$\#\bar{D}_2(a;p^t) =$$

$$\begin{cases} \frac{(p-3)p^{t-1}}{2} + \frac{p^{t-1}}{p+1} + \frac{3}{2} + \frac{(-1)^{t-3}(p-1)}{2(p+1)} & p \equiv 1 \mod 4, \left(\frac{a}{p}\right) = 1\\ \frac{\phi(p^t)}{2} & p \equiv 1 \mod 4 \left(\frac{a}{p}\right) = -1\\ \frac{(p-3)p^{t-1}}{2} + \frac{p^{t-1}}{p+1} + \frac{3}{2} + \frac{(-1)^{t-3}(p-1)}{2(p+1)} & p \equiv 3 \mod 4 \left(\frac{a}{p}\right) = -1\\ \frac{\phi(p^t)}{2} & p \equiv 3 \mod 4 \left(\frac{a}{p}\right) = 1. \end{cases}$$

Ratios

Theorem

① If $p \equiv 1 \mod 4$, then $\frac{\bar{S}_2(a;n)}{\bar{D}_2(a;n)} = 1$.

Ratios

Theorem

- If $p \equiv 1 \mod 4$, then $\frac{\overline{S}_2(a;n)}{\overline{D}_2(a;n)} = 1$.
- If a is a square mod n, then at least 84% of the time $\frac{\bar{S}_2(a;n)}{\bar{D}_2(a;n)} > 1$.

Ratios

Theorem

- If $p \equiv 1 \mod 4$, then $\frac{\overline{S}_2(a;n)}{\overline{D}_2(a;n)} = 1$.
- If a is a square mod n, then at least 84% of the time $\frac{\bar{S}_2(a;n)}{\bar{D}_2(a;n)} > 1$.
- If -a is a square mod n, then at least 84% of the time $\frac{\bar{S}_2(a;n)}{\bar{D}_2(a;n)} < 1$.

Introduction

Theorem

Background

- If a is a square mod n, then at least 84% of the time $\frac{\bar{S}_2(a;n)}{\bar{D}_2(a;n)} > 1$.
- If -a is a square mod n, then at least 84% of the time $\frac{\bar{S}_2(a;n)}{\bar{D}_2(a;n)} < 1$.
 - Proof of 1 follows from cardinality formulas.
 - Proof of 2 and 3 follow from [EKSY]. Only need to look at p ≡ 3 mod 4.

d-dimensional Modular Hyperbolas

Lemma

Let $F(x_1, \dots, x_k) \equiv 0 \mod p^t$ where p > 2. Then, the number of solutions is

$$S = \frac{1}{p^t} \sum_{u,x_1,\cdots,x_k} e^{2\pi i u F(x_1,\cdots,x_k)/p^t}$$

where $0 \leq u, x_1, \cdots, x_k < p^t$.

Sketch of proof:

Note that

$$\frac{1}{p^t}\sum_{u=0}^{p^t-1} e^{2\pi i u x/p^t} = \begin{cases} 1 & x \equiv 0 \bmod p^t \\ 0 & x \not\equiv 0 \bmod p^t. \end{cases}$$

44

Lemma

Introduction

Let $F(x_1, \dots, x_k) \equiv 0 \mod p^t$ where p > 2. Then, the number of solutions is

$$S = \frac{1}{p^t} \sum_{u,x_1,\cdots,x_k} e^{2\pi i u F(x_1,\cdots,x_k)/p^t}$$

where $0 \leq u, x_1, \cdots, x_k < p^t$.

Sketch of proof:

Note that

$$\frac{1}{p^t} \sum_{u=0}^{p^t-1} e^{2\pi i u x/p^t} = \begin{cases} 1 & x \equiv 0 \bmod p^t \\ 0 & x \not\equiv 0 \bmod p^t. \end{cases}$$

Each solution contributes 1 to *S*, while a non-solution doesn't contribute to *S*.

Cardinality

Theorem

If 2, 3 and 5 \nmid n and d > 2, the cardinality of $\bar{S}_d(m; a; n)$ is n.

Proof sketch:

• It is enough to show for $\bar{S}_3(2; a; n)$ and $\bar{S}_3(1; a; n)$.

Cardinality

Theorem

If 2, 3 and 5 \nmid n and d > 2, the cardinality of $\bar{S}_d(m; a; n)$ is n.

Proof sketch:

- It is enough to show for $\bar{S}_3(2; a; n)$ and $\bar{S}_3(1; a; n)$.
- Show there is a solution (x_0, y_0, z_0) for $xyz \equiv a \mod p^t$ and $x + y + \varepsilon z \equiv b \mod p^t$ where $\epsilon = \pm 1$.

Cardinality

Theorem

If 2, 3 and 5 \nmid n and d > 2, the cardinality of $\bar{S}_d(m; a; n)$ is n.

Proof sketch:

- It is enough to show for $\bar{S}_3(2; a; n)$ and $\bar{S}_3(1; a; n)$.
- Show there is a solution (x_0, y_0, z_0) for $xyz \equiv a \mod p^t$ and $x + y + \varepsilon z \equiv b \mod p^t$ where $\epsilon = \pm 1$.
- Idea: show there are many solutions.

• Want to show $xy\varepsilon(b-x-y)-a\equiv 0 \mod p^t$ has many solutions.

- Want to show $xy\varepsilon(b-x-y)-a\equiv 0 \mod p^t$ has many solutions.
- Number of solutions is

$$\tfrac{1}{p^t} \textstyle \sum_{u(p^t)} \textstyle \sum_{x,y(p^t)} e^{2\pi i u(xy\varepsilon(b-x-y)-a)/p^t}.$$

- Want to show $xy\varepsilon(b-x-y)-a\equiv 0 \mod p^t$ has many solutions.
- Number of solutions is

$$\tfrac{1}{p^t} \sum_{u(p^t)} \sum_{x,y(p^t)} \mathrm{e}^{2\pi i u(xy\varepsilon(b-x-y)-a)/p^t}.$$

• Equals
$$\frac{p^{2t}}{p^t} + \frac{1}{p^t} \sum_{u=1}^{p^t-1} \sum_{x,y(p^t)} e^{2\pi i u(xy\varepsilon(b-x-y)-a)/p^t}$$
.

- Want to show $xy \in (b x y) a \equiv 0 \mod p^t$ has many solutions.
- Number of solutions is

$$\frac{1}{p^t}\sum_{u(p^t)}\sum_{x,y(p^t)} e^{2\pi i u(xy\varepsilon(b-x-y)-a)/p^t}$$

- Equals $\frac{p^{2t}}{p^t} + \frac{1}{p^t} \sum_{u=1}^{p^t-1} \sum_{x,y(p^t)} e^{2\pi i u(xy\varepsilon(b-x-y)-a)/p^t}$.
- Change of variables:

$$p^t + \frac{1}{p^t} \sum_{u=1}^{p^t-1} \sum_{y(p^t)} e^{(-2\pi i u b + 2\pi i (a+y)^2 4^{-1} \varepsilon u y)/p^t} \sum_{x=0}^{p^t-1} e^{2\pi i x^2 u y \varepsilon/p^t}.$$

Note, by generalized Gauss sums

$$\sum\limits_{x=0}^{p^t-1}e^{2\pi i x^2 u y arepsilon/p^t}=c\sqrt{p^t}$$
 where c has magnitude 1.

Note, by generalized Gauss sums

$$\sum\limits_{\mathsf{x}=0}^{p^t-1} e^{2\pi i \mathsf{x}^2 u \mathsf{y}_{arepsilon}/p^t} = c \sqrt{p^t}$$
 where c has magnitude 1.

Change of variables and Gauss sums again:

$$p^t + d \frac{\sqrt{p^t} \sqrt{p^t}}{p^t} \sum_{y=0}^{p^t-1} \left(\frac{(a+y)^2 4^{-1} \varepsilon y^2 - \varepsilon b y}{p^t} \right)$$

where the magnitude of d is 1.

Note, by generalized Gauss sums

$$\sum\limits_{\mathsf{x}=0}^{p^t-1} e^{2\pi i \mathsf{x}^2 u \mathsf{y}_{arepsilon}/p^t} = c \sqrt{p^t}$$
 where c has magnitude 1.

Change of variables and Gauss sums again:

$$p^t + d \frac{\sqrt{p^t} \sqrt{p^t}}{p^t} \sum_{y=0}^{p^t-1} \left(\frac{(a+y)^2 4^{-1} \varepsilon y^2 - \varepsilon b y}{p^t} \right)$$

where the magnitude of d is 1.

 Main term is p^t. Rest of sum is bounded in magnitude by $p^t - 1$.

Summary

 Higher dimensions sums/differences capture all possibilities.

Summary

- Higher dimensions sums/differences capture all possibilities.
- Behavior is the same for $\bar{S}_d(m; a; n)$ where d > 2.

Summary

- Higher dimensions sums/differences capture all possibilities.
- Behavior is the same for $\bar{S}_d(m; a; n)$ where d > 2.
- For d = 2, behavior is varied, so ratios lead to interesting behavior.

 Cardinality of the intersection of other modular objects (ellipses, lower dimensional modular hyperbolas) with modular hyperbolas.

- Cardinality of the intersection of other modular objects (ellipses, lower dimensional modular hyperbolas) with modular hyperbolas.
- Pick elements randomly with probability depending on the dimension of the modular hyperbola.

- Cardinality of the intersection of other modular objects (ellipses, lower dimensional modular hyperbolas) with modular hyperbolas.
- Pick elements randomly with probability depending on the dimension of the modular hyperbola.
- Ratios for $H_2(a; n)$ where a is not a square mod n.

Thanks to ...

- Ohio State and YMC
- NSF Grant DMS0850577
- NSF Grant DMS0970067
- Our advisor Steven J. Miller
- The audience for your time