Futurama Theorem and Products of Distinct Transpositions

Lihua Huang

Advisor: Professor Ron Evans University of California, San Diego

July 28, 2012

Background Main Result Related Results Acknowledgements

Keeler's Method

Let $P = C_1 \cdots C_r$, where the C_i are disjoint cycles. Let $C_1 = (a_1 \dots a_k)$, and define

$$\sigma_1 = (xa_1)(xa_2)\cdots(xa_{k-1})\cdot(ya_k)(xa_k)(ya_1). \tag{1}$$

Then $\sigma_1 C_1 = (xy)$, where x, y are <u>outsiders</u>. For each C_i , we have analogous products σ_i for which $\sigma_i C_i = (xy)$. Taking

$$\sigma = \begin{cases} (xy)\sigma_1\sigma_2\cdots\sigma_r, & \text{if } r \text{ is odd} \\ \sigma_1\sigma_2\cdots\sigma_r, & \text{if } r \text{ is even}, \end{cases}$$
 (2)

we find that σ **undoes** P. Let n be the number of entries in P. By (1) and (2), the number of factors in Keeler's σ is either n + 2r + 1 or n + 2r according as r is odd or even.

Background Main Result Related Results Acknowledgements

Our Optimal Refinement of Futurama/Keeler's Theorem

Theorem

Let $P = C_1 \cdots C_r$ be a product of r disjoint cycles in S_n , where n is the number of entries in P. Then P can be undone by a product λ of $\mathbf{n} + \mathbf{r} + \mathbf{2}$ distinct transpositions in S_{n+2} each containing at least one of the <u>outside</u> entries x = n + 1, y = n + 2. Moreover, this result is **best possible** in the sense that n + r + 2 cannot be replaced by a smaller number.

ackground Main Result Related Results Acknowledgements

Our Best Possible Algorithm

Recall $C_1 = (a_1 \dots a_k)$. Corresponding to the cycle C_1 , define

$$G_1(x) = (a_1x)(a_2x)\cdots(a_kx), \quad F_1(x) = (a_1x).$$

Corresponding to each cycle C_i , $i=1,\ldots,r$, define $G_i(x)$ and $F_i(x)$ analogously. Set

$$\lambda = (xy) \cdot G_r(x) \cdot \cdot \cdot G_2(x) \cdot (a_k x) G_1(y) (a_1 x) \cdot F_2(y) \cdot \cdot \cdot F_r(y).$$

It is readily checked that λ undoes P and that λ is a product of $\mathbf{n} + \mathbf{r} + \mathbf{2}$ distinct transpositions in S_{n+2} each containing at least one of the <u>outside</u> entries x, y.

Let
$$P = (93)(67)(12)(87)(43)(85)(84) = (12)(3456789)$$
.

Let
$$P = (93)(67)(12)(87)(43)(85)(84) = (12)(3456789)$$
.

Keeler's
$$\sigma = \text{product of}$$

Let
$$P = (93)(67)(12)(87)(43)(85)(84) = (12)(3456789)$$
.

Keeler's $\sigma =$ product of n + 2r = 9 + 4 = 13 transpositions.

Let
$$P = (93)(67)(12)(87)(43)(85)(84) = (12)(3456789)$$
.

Keeler's $\sigma = \text{product of } n + 2r = 9 + 4 = 13 \text{ transpositions.}$

Grime's $\sigma = (71)(42)(81)(52)(91)(62)(31)(72)(41)$, a product of only 9 transpositions.

Let P = (93)(67)(12)(87)(43)(85)(84) = (12)(3456789).

Keeler's $\sigma = \text{product of } n + 2r = 9 + 4 = 13 \text{ transpositions.}$

Grime's $\sigma = (71)(42)(81)(52)(91)(62)(31)(72)(41)$, a product of only 9 transpositions.

He called this "Grime's Corollary" in his video, where he issued the challenge:

Let P = (93)(67)(12)(87)(43)(85)(84) = (12)(3456789).

Keeler's $\sigma = \text{product of } n + 2r = 9 + 4 = 13 \text{ transpositions.}$

Grime's $\sigma = (71)(42)(81)(52)(91)(62)(31)(72)(41)$, a product of only 9 transpositions.

He called this "Grime's Corollary" in his video, where he issued the challenge: Can one do better than 9 switches to undo P?

Background Main Result Related Results Acknowledgements

Two Lemmas

Lemma (1)

Let $2 \le k \le n$. Then no k-cycle in S_n can be a product of fewer than k-1 transpositions.

Lemma (2)

Let $2 \le k \le n$. Suppose that $(a_1 \cdots a_k) \in S_n$ equals a product P of exactly k-1 transpositions in S_n . Then every entry in the product P is one of the a_i .

200

Suppose for the purpose of contradiction

Suppose for the purpose of contradiction that P can be undone by a product σ of at most 7 transpositions.

2 Lemma 1 implies that $\sigma = abcdefg$;

Suppose for the purpose of contradiction that P can be undone by a product σ of at most 7 transpositions.

2 Lemma 1 implies that $\sigma = abcdefg$; Lemma 2 implies all entries in σ are in $\{1, 2, \dots, 9\}$.

Suppose for the purpose of contradiction that P can be undone by a product σ of at most 7 transpositions.

- **2** Lemma 1 implies that $\sigma = abcdefg$; Lemma 2 implies all entries in σ are in $\{1, 2, \dots, 9\}$.
- 3 Consider the rightmost factor of σ which has one of the entries 1, 2. WLOG, this factor is (13).

) Q (~

- **2** Lemma 1 implies that $\sigma = abcdefg$; Lemma 2 implies all entries in σ are in $\{1, 2, \dots, 9\}$.
- 3 Consider the rightmost factor of σ which has one of the entries 1, 2. WLOG, this factor is (13).
- 4 Move (13) to the far right in σ . New $\sigma = \tilde{a}\tilde{b}\tilde{c}\tilde{d}\tilde{e}\tilde{f}(13)$.

Suppose for the purpose of contradiction that P can be undone by a product σ of at most 7 transpositions.

- **2** Lemma 1 implies that $\sigma = abcdefg$; Lemma 2 implies all entries in σ are in $\{1, 2, \dots, 9\}$.
- 3 Consider the rightmost factor of σ which has one of the entries 1, 2. WLOG, this factor is (13).
- 4 Move (13) to the far right in σ . New $\sigma = \tilde{a}\tilde{b}\tilde{c}\tilde{d}\tilde{e}\tilde{f}(13)$.
- 5 $\tilde{a}\tilde{b}\tilde{c}\tilde{d}\tilde{e}\tilde{f}(13)(13) = (9876543)(21)(13) = (987654321).$

) d (A

Suppose for the purpose of contradiction that P can be undone by a product σ of at most 7 transpositions.

- **2** Lemma 1 implies that $\sigma = abcdefg$; Lemma 2 implies all entries in σ are in $\{1, 2, \dots, 9\}$.
- 3 Consider the rightmost factor of σ which has one of the entries 1, 2. WLOG, this factor is (13).
- 4 Move (13) to the far right in σ . New $\sigma = \tilde{a}\tilde{b}\tilde{c}\tilde{d}\tilde{e}\tilde{f}(13)$.
- **5** $\tilde{a}\tilde{b}\tilde{c}\tilde{d}\tilde{e}\tilde{f}(13)(13) = (9876543)(21)(13) = (987654321).$
- 6 < (9-1), which contradicts Lemma 1.

200

Our Optimal Method to Undo the Stargate Switch (with no outsiders)

Our Optimal Method to Undo the **Stargate** Switch (with no outsiders)

Theorem

For n > 1, let $\mathbf{P} = (12)(34) \cdots (2n-1,2n)$, a product of n disjoint transpositions in S_{2n} . Then P can be undone by a product of 2n+1 or 2n distinct transpositions according as n is odd or even. This result is **best possible**.

Example: For P = (12)(34)(56)(78)(9,10), find $\sigma \in S_{10}$ s.t. σ undoes P.

Example: For P = (12)(34)(56)(78)(9, 10), find $\sigma \in S_{10}$ s.t. σ undoes P.

Our Solution: $\sigma = (13)(16)(45)(46)(35)(25)(15)(8,10)(79)(89)(7,10)$.

Example: For P = (12)(34)(56)(78)(9, 10), find $\sigma \in S_{10}$ s.t. σ undoes P.

Our Solution: $\sigma = (13)(16)(45)(46)(35)(25)(15)(8,10)(79)(89)(7,10)$. $\sigma P = I$.

Example: For P = (12)(34)(56)(78)(9, 10), find $\sigma \in S_{10}$ s.t. σ undoes P.

Our Solution:
$$\sigma = (13)(16)(45)(46)(35)(25)(15)(8,10)(79)(89)(7,10).$$

 $\sigma P = I.$

Number of switches:

Example: For P = (12)(34)(56)(78)(9,10), find $\sigma \in S_{10}$ s.t. σ undoes P.

Our Solution: $\sigma = (13)(16)(45)(46)(35)(25)(15)(8,10)(79)(89)(7,10).$ $\sigma P = I.$

Number of switches: 2n + 1 = 2(5) + 1 = 11

Acknowledgements:

- Professor Ron Evans (UCSD)
- Ohio State University, NSF, and YMC

Thank YOU for listening! :)

