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Statement

A finite set of integers, |A| its size. Form

Sumset: A + A = {ai + aj : aj ,aj ∈ A}.
Difference set: A− A = {ai − aj : aj ,aj ∈ A}.

Definition
We say A is difference dominated if |A− A| > |A + A|,
balanced if |A− A| = |A + A| and sum dominated (or an
MSTD set) if |A + A| > |A− A|.
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Questions

We expect a generic set to be difference dominated:
addition is commutative, subtraction isn’t.
Generic pair (ai ,aj) gives 1 sum, 2 differences.

Questions
What happens when we increase the number of
summands?
What happens if we let the probability of choosing
elements decays with N?
What happens if we take subsets of non-abelian
groups?
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Past Results

Martin and O’Bryant, 2006: Positive percentage of
sets are MSTD when sets chosen with uniform
probability.

Iyer, Lazarev, Miller, Zhang, 2011: Generalized
results above to an arbitrary number of summands.
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Past Results

Hegarty and Miller, 2008: When elements chosen
with probability p(N)→ 0 as N →∞, then
|A− A| > |A + A| almost surely.

Found critical value of δ = 1
2 for probability

p(N) = cN−δ, δ ∈ (0,1). δ corresponds to the order of
the number of repeated elements in the sumset.
We call the critical value the phase transition because
it is the value at which the order of the number of
repeated elements is as large as the number of
distinct elements.
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Generalized Sumsets

Definition
For s > d , consider the Generalized Sumset
As,d = A + · · ·+ A− A− · · · − A where we have s plus
signs and d minus signs. Let h = s + d .

We want to study the size of this set as a function of s,d ,
and δ for probability p(N) = cN−δ.

Our goal: Extend the results of Hegarty-Miller to the case
of Generalized Sumsets and determine where the phase
transition occurs for h > 2.
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Questions

Questions

How does di effect the size of Asi ,di ?

Can we say anything about the relationship between δ
and the ratio

|As1,d1
|

|As2,d2
| for s1 + d1 = s2 + d2 = h?

What is the critical value as a function of δ?
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Cases for δ

To answer, we must consider three different cases for δ.

Fast Decay: δ > h−1
h .

Critical Decay: δ = h−1
h .

Slow Decay: δ < h−1
h .

These three cases correspond to the speed at which the
probability of choosing elements decays to 0.
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Fast Decay

For δ > h−1
h , the set with more differences is larger

100% of the time.

Ratio is a function of
(h

d

)
.

Results rely on the scarcity of elements chosen to be
in A.
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Proof I

Compute the number of distinct h-tuples.

For h-tuples a = (a1, · · · ,ah),b = (b1, · · · ,bh), define
indicator variable Ya,b to be 1 when a and b generate
the same element.

Define Y =
∑

a,b Ya,b

Bound the expected value and variance of Y .
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Proof II

Use Chebyshev’s Inequality:

Pr (|X − µ| ≥ kσ) ≤ 1
k2

Show that Y is close to E(Y ) .

Conclude that almost all h-tuples generate a distinct
number as N →∞.

Using combinatorics, conclude that ratio is:
|As1,d1

|
|As2,d2

| =
( h

d1
)

( h
d2
)
= s2!d2!

s1!d1!
.
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Critical Decay

Set with more minus signs is larger 100% of time.

In the two-case, for g(x) = 2
∑ (−1)k−1xk

(k+1)! ,

S ∼ g
(

c2

2

)
N and D ∼ g

(
c2
)

N.

For A + A + A, g(x) =
∑

(−1)k−1
(

1
k12k + ck

(−8)k

)
xk

with ck =
∫ 1√

3

− 1√
3

(x2 − 1)kdx .

For A+A−A, g(x) =
∑m

k=1(−1)k−1 1
k!((−

3
8)

kck +
1
k )x

k .

Second Moment Method
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Slow Decay

If δ < h−1
h , an even more delicate argument is needed.

Now the number of repeated elements are of a higher
order.

Martingale Machinery of Kim and Vu.
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Non-Abelian Finite Groups
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Some new Definitions

Since we are now looking at groups we need an
analogous definition.

So the sumset becomes S · S = {xy : x , y ∈ S}.

While the sum-difference becomes
S · S−1 = {xy−1 : x , y ∈ S}.
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Dihedral Group

The non-abelian group we will look at for this
presentation: the Dihedral Group with 2n elements
(D2n).

Recall that a presentation for the dihedral group is D2n
is 〈a,b|an = abab = b2 = e〉.
Note: at least half the elements in D2n are of order 2.
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Theorem

Theorem
If we let S be a random subset of D2n (if α ∈ D2n then
P(α ∈ S) = 1/2) then

lim
n→∞

P(|S · S| = |S · S−1|) = 1.

It is also true that

lim
n→∞

P(|S · S| = |S · S−1| = 2n) = 1.

We compute this instead, as it serve as a sufficient lower
bound.
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Intuition

Key Idea: In the Z case, fringe matters most, middle
sums and differences are present with high probability

If we choose the "fringe" of S cleverly, the middle of S
will become largely irrelevant. - Martin O’Bryant 2007

In Z/nZ there is no fringe. So the "largely irrelevant"
is the only thing that can be relevant.
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Sketch of Proof

Let S ⊆ D2n

Let S = R ∪ F where R is the set of rotations in S and
F is the set of flips in S.

For now we can ignore R − R,−R + F .

We use that both F + F and R + F are in S · S and
S · S−1 to compute lower bounds.
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Reduction to Cyclic Groups

Note that elements in R have the form ai , and
elements in F have the form aib,

so elements in R + R look like ax+y , while elements in
F + F look like ax−yb.

This observation allows us to look at powers of the
elements as an cyclic group instead.
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Flips and Rotations

If we let R∗ and F ∗ be random subsets of Z/nZ then
we have the following:

P(|S · S−1| = |S · S|) ≥ P(|S · S−1| = 2n and |S · S| = 2n)

≥ P(|S · S−1| = 2n)P(S · S = 2n)

≥ P(|S · S−1| = 2n)2

= P(|F ∗ − F ∗| = n & |F ∗ + R∗| = n)2
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Probability of Missing Elements

We now proceed by computing the probability that an
element is not in the desired set.

Lemma (Number of Missing Flips)
P(k /∈ F ∗ + R∗) = O((3/4)n)

This follows immediately from the number of ways
one can add numbers in Z/nZ to equal k .
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Lemma

Lemma (Number of Missing Rotations)

P(k /∈ F ∗ − F ∗) = f (n/d)d

2n ≤ (ϕ/2)n where gcd(k ,n) = d
and f (n) = F (n + 1) + F (n − 1) where F (n) is the nth
Fibonacci number

The proof does not follow as immediately as it requires
some combinatorics.
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Why do we care about the gcd

Here’s an example what the polygons would look like
when F ∗ = Z/6Z and k ≡ 2 (mod 6)

6

4

2 5

3

1

Note that we get gcd(2,6) = 2 number of polygons
and they each have 6/gcd(2,6) = 3 vertices.
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So where does Fibonacci come from?

So the problem is thus reduced to counting the
number of ways how the vertices of a n polygon can
be colored either red or blue such that there are no 2
red vertices next to each other.

61



Introduction Generalized Sumsets Critical Value Dihedral Group Theorem Sketch of Proof Additional Results and Questions Bibliography

So where does Fibonacci come from?

So the problem is thus reduced to counting the
number of ways how the vertices of a n polygon can
be colored either red or blue such that there are no 2
red vertices next to each other.

62



Introduction Generalized Sumsets Critical Value Dihedral Group Theorem Sketch of Proof Additional Results and Questions Bibliography

So where does Fibonacci come from?

So the problem is thus reduced to counting the
number of ways how the vertices of a n polygon can
be colored either red or blue such that there are no 2
red vertices next to each other.

63



Introduction Generalized Sumsets Critical Value Dihedral Group Theorem Sketch of Proof Additional Results and Questions Bibliography

So where does Fibonacci come from?

So the problem is thus reduced to counting the
number of ways how the vertices of a n polygon can
be colored either red or blue such that there are no 2
red vertices next to each other.

64



Introduction Generalized Sumsets Critical Value Dihedral Group Theorem Sketch of Proof Additional Results and Questions Bibliography

So where does Fibonacci come from?

So the problem is thus reduced to counting the
number of ways how the vertices of a n polygon can
be colored either red or blue such that there are no 2
red vertices next to each other.

f (4) =

65



Introduction Generalized Sumsets Critical Value Dihedral Group Theorem Sketch of Proof Additional Results and Questions Bibliography

So where does Fibonacci come from?

So the problem is thus reduced to counting the
number of ways how the vertices of a n polygon can
be colored either red or blue such that there are no 2
red vertices next to each other.

66



Introduction Generalized Sumsets Critical Value Dihedral Group Theorem Sketch of Proof Additional Results and Questions Bibliography

So where does Fibonacci come from?

So the problem is thus reduced to counting the
number of ways how the vertices of a n polygon can
be colored either red or blue such that there are no 2
red vertices next to each other.

67



Introduction Generalized Sumsets Critical Value Dihedral Group Theorem Sketch of Proof Additional Results and Questions Bibliography

So where does Fibonacci come from?

So the problem is thus reduced to counting the
number of ways how the vertices of a n polygon can
be colored either red or blue such that there are no 2
red vertices next to each other.

f (3) =

68



Introduction Generalized Sumsets Critical Value Dihedral Group Theorem Sketch of Proof Additional Results and Questions Bibliography

Proof II

Although there are dependency issues, for the sake
of this theorem we can be crude enough to say if any
element is missing, then all elements are missing.

So by our two lemmas we have that as n goes to
infinity,

P(|F ∗ − F ∗| = n and |F ∗ + R∗| = n)2 = 1.

Since this is the lower bound, we are done.
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Additional Results

Theorem (Semi-Direct Products)
For the group Z/nZ o Z/mZ, if either n or m go to infinity
then, P(|S · S| = |S · S−1|) = 1.

Theorem ([Abelian Groups)
As the size of an abelian group approaches infinity, then
P(|S · S| = |S · S−1|) = 1.

72



Introduction Generalized Sumsets Critical Value Dihedral Group Theorem Sketch of Proof Additional Results and Questions Bibliography

Additional Results

Theorem (Semi-Direct Products)
For the group Z/nZ o Z/mZ, if either n or m go to infinity
then, P(|S · S| = |S · S−1|) = 1.

Theorem ([Abelian Groups)
As the size of an abelian group approaches infinity, then
P(|S · S| = |S · S−1|) = 1.

73



Introduction Generalized Sumsets Critical Value Dihedral Group Theorem Sketch of Proof Additional Results and Questions Bibliography

Additional Results

Theorem (Semi-Direct Products)
For the group Z/nZ o Z/mZ, if either n or m go to infinity
then, P(|S · S| = |S · S−1|) = 1.

Theorem ([Abelian Groups)
As the size of an abelian group approaches infinity, then
P(|S · S| = |S · S−1|) = 1.

74



Introduction Generalized Sumsets Critical Value Dihedral Group Theorem Sketch of Proof Additional Results and Questions Bibliography

Ping Pong

Theorem (Free Group)
If we let 〈a,b〉l be all words up to length l and S ⊆ 〈a,b〉l
then as l goes to infinity we have that:

P(|S · S| ≥ |S · S−1|) = 1
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