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Zeckendorf Decompositions

Fibonacci Numbers: Fn+1 = Fn + Fn−1;

F1 = 1, F2 = 2, F3 = 3, F4 = 5, · · · .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.

Lekkerkerker’s Theorem (1952)
The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.

3



Intro Strategy and Tools Action Conclusion

Zeckendorf Decompositions

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, · · · .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.

Lekkerkerker’s Theorem (1952)
The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.

4



Intro Strategy and Tools Action Conclusion

Zeckendorf Decompositions

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, · · · .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.

Lekkerkerker’s Theorem (1952)
The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.

5



Intro Strategy and Tools Action Conclusion

Zeckendorf Decompositions

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, · · · .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.

Lekkerkerker’s Theorem (1952)
The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.

6



Intro Strategy and Tools Action Conclusion

Zeckendorf Decompositions

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, · · · .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 = 1597 + 377 + 34 + 3 + 1 = F16 + F13 + F8 + F3 + F1.

Lekkerkerker’s Theorem (1952)
The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.

7



Intro Strategy and Tools Action Conclusion

Gaps: Our object of study

Instead of looking at the number of summands, we study the
spacings between them, as follows:

Definition: Gaps
If x ∈ [Fn,Fn+1) has Zeckendorf decomposition
x = Fn + Fn−g1 + Fn−g2 + · · ·+ Fn−gk , we define the gaps in its
decomposition to be {g1,g1 − g2, · · · ,gk−1 − gk}.

Example:
2012 = F16 + F13 + F8 + F3 + F1.

Gaps of length 3, 5, 5, and 2.
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Previous Results (Miller-Beckwith)

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P(k) = 1
φk for k ≥ 2, with

φ = 1+
√

5
2 the golden mean.
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Figure: Distribution of gaps in [F1000,F1001); F1000 ≈ 10208.
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Our Problem:

Given a random number x in the interval [Fn,Fn+1), what is the

probability that x has longest gap equal to r?
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Why is this exciting?

In probability theory, the longest run of heads in a sequence of
n coin tosses has generated much work.

The longest run grows logarithmically, and has finite
variance, independent of n.
After modifications, our problem looks similar

The study of these behaviors has many applications. For
example:

Fraud detection (IRS)
Machine running times and Algorithms
Philadelphia International Airport
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Method

Our plan of attack is as follows:

Recast the problem in a combinatorial perspective

Use generating functions!

Discover relationships between important quantities

Analyze limiting behavior

First we’ll review what we need to know.
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Review of Generating Functions

Given a sequence an, its generating function is
A(x) =

∑∞
n=0 anxn.

Let’s find the number of ways to have k numbers sum to n
(where order matters), all the numbers are less than b.

So we have
a1 + ...+ ak = n,a1, ...,ak < b.

We can represent this by the nth coefficient of the function

(1 + x + ...+ xb−1)k .

Using geometric series expansion, this is equal to(
1− xn

1− x

)k

.

27



Intro Strategy and Tools Action Conclusion

Review of Generating Functions

Given a sequence an, its generating function is
A(x) =

∑∞
n=0 anxn.

Let’s find the number of ways to have k numbers sum to n
(where order matters), all the numbers are less than b.

So we have
a1 + ...+ ak = n,a1, ...,ak < b.

We can represent this by the nth coefficient of the function

(1 + x + ...+ xb−1)k .

Using geometric series expansion, this is equal to(
1− xn

1− x

)k

.

28



Intro Strategy and Tools Action Conclusion

Review of Generating Functions

Given a sequence an, its generating function is
A(x) =

∑∞
n=0 anxn.

Let’s find the number of ways to have k numbers sum to n
(where order matters), all the numbers are less than b.

So we have
a1 + ...+ ak = n,a1, ...,ak < b.

We can represent this by the nth coefficient of the function

(1 + x + ...+ xb−1)k .

Using geometric series expansion, this is equal to(
1− xn

1− x

)k

.

29



Intro Strategy and Tools Action Conclusion

Review of Generating Functions

Given a sequence an, its generating function is
A(x) =

∑∞
n=0 anxn.

Let’s find the number of ways to have k numbers sum to n
(where order matters), all the numbers are less than b.

So we have
a1 + ...+ ak = n,a1, ...,ak < b.

We can represent this by the nth coefficient of the function

(1 + x + ...+ xb−1)k .

Using geometric series expansion, this is equal to(
1− xn

1− x

)k

.

30



Intro Strategy and Tools Action Conclusion

Review of Generating Functions

Given a sequence an, its generating function is
A(x) =

∑∞
n=0 anxn.

Let’s find the number of ways to have k numbers sum to n
(where order matters), all the numbers are less than b.

So we have
a1 + ...+ ak = n,a1, ...,ak < b.

We can represent this by the nth coefficient of the function

(1 + x + ...+ xb−1)k .

Using geometric series expansion, this is equal to(
1− xn

1− x

)k

.

31



Intro Strategy and Tools Action Conclusion

Partial Fraction Expansion

Now we will introduce a basic idea of our derivations.

Consider:

f (x) =
1

1− x − x2 .

Using the method of partial fractions, we can write this as:

f (x) =
c1

x + φ
+

c2

x − 1/φ
,

where −φ and 1/φ are the roots of 1− x − x2, and c1 and c2
are determined by algebra to be c1 = c2 =

√
5.
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Partial Fraction Expansion

So we have:

f (x) =
√

5
[

φ

1 + (1/φ)x
+

(1/φ)
1− φx

]
.

Which by geometric series expansion gives:

f (x) =
∞∑

i=0

1√
5

[
(−1/φ)i + φi

]
x i .

And by Binet’s well known formula for the Fibonacci numbers,
we see that:

f (x) =
∞∑

i=0

Fix i .
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Why will this be useful?

If we can find the generating function for our desired quantity in
closed form:

f (x) =
1

1− x − x2 ,

the partial fraction expansion reduces its limiting behavior to the
study of the roots of a polynomial.

f (x) =
∞∑

i=0

1√
5

[
(−1/φ)i + φi

]
x i .
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Results
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Cumulative Distribution Function

Pick x randomly from the interval [Fn,Fn+1). We prove explicitly
the cumulative distribution of x ’s longest gap.

Theorem

Let r = φ2/(φ2 + 1). Define f as f (n,u) = log rn/ logφ + u for
some fixed u ∈ R. Then, as n→∞, the probability that
x ∈ [Fn,Fn+1) has longest gap less than or equal to f (n)
converges to

P(L(x) ≤ f (n,u)) = ee(1−u) log φ+{f (n)}

Immediate Corollary: If f (n,u) grows any slower or faster than
log n/ logφ, then P(L(x) ≤ f (n)) goes to 0 or 1 respectively.
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Mean and Variance

We can use the CDF to determine the regular distribution
function, and particularly the mean and variance.

Let

P(u) = P
(

L(x) ≤
log( φ2

φ2+1n)

logφ
+ u

)
,

then the distribution of the longest gap is approximately
d

duP(u).

The mean is given by

µ =

∫ ∞
−∞

u
d

du
P(u)du.

The variance follows similarly.
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Mean and Variance

So the mean is about

µ =
log
(

φ2

φ2+1

)
logφ

+

∫ ∞
−∞

e−e(1−u) log φ
e(1−u) logφ logφ du.

= 1/ logφ
(

log
(

φ2

φ2 + 1

)
−
∫ ∞

0
log we−w dw

)
Theorem
In the continuous approximation, the mean is

log
(

φ2

φ2+1n
)

logφ
− γ,

where γ is the Euler- Mascheroni constant.
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Fibonacci Case Generating Function

We let Gn,k ,f be the number of ways to have a Zeckendorf
decomposition with k nonzero summands and all gaps less
than f (n).

Gn,k ,f is the coefficient of xn+1 for the generating function

1
1− x

f (n)−1∑
j=2

x j

k−1
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The Combinatorics

Why the n + 1st coefficient of
1

1− x

f (n)−1∑
j=2

x j

k−1

?

Let y = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1 , then we
have the following:

The sum of the gaps of x is ≤ n.
Each gap is ≥ 2.
Each gap is < f (n).

The gaps uniquely identify y because of Zeckendorf’s Theorem!

54



Intro Strategy and Tools Action Conclusion

The Combinatorics

Why the n + 1st coefficient of
1

1− x

f (n)−1∑
j=2

x j

k−1

?

Let y = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1 , then we
have the following:

The sum of the gaps of x is ≤ n.
Each gap is ≥ 2.
Each gap is < f (n).

The gaps uniquely identify y because of Zeckendorf’s Theorem!

55



Intro Strategy and Tools Action Conclusion

The Combinatorics

Why the n + 1st coefficient of
1

1− x

f (n)−1∑
j=2

x j

k−1

?

Let y = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1 , then we
have the following:

The sum of the gaps of x is ≤ n.

Each gap is ≥ 2.
Each gap is < f (n).

The gaps uniquely identify y because of Zeckendorf’s Theorem!

56



Intro Strategy and Tools Action Conclusion

The Combinatorics

Why the n + 1st coefficient of
1

1− x

f (n)−1∑
j=2

x j

k−1

?

Let y = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1 , then we
have the following:

The sum of the gaps of x is ≤ n.
Each gap is ≥ 2.

Each gap is < f (n).

The gaps uniquely identify y because of Zeckendorf’s Theorem!

57



Intro Strategy and Tools Action Conclusion

The Combinatorics

Why the n + 1st coefficient of
1

1− x

f (n)−1∑
j=2

x j

k−1

?

Let y = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1 , then we
have the following:

The sum of the gaps of x is ≤ n.
Each gap is ≥ 2.
Each gap is < f (n).

The gaps uniquely identify y because of Zeckendorf’s Theorem!

58



Intro Strategy and Tools Action Conclusion

The Combinatorics

Why the n + 1st coefficient of
1

1− x

f (n)−1∑
j=2

x j

k−1

?

Let y = Fn + Fn−g1 + Fn−g1−g2 + · · ·+ Fn−g1−···−gn−1 , then we
have the following:

The sum of the gaps of x is ≤ n.
Each gap is ≥ 2.
Each gap is < f (n).
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The Combinatorics

Then Gn,k ,f is the number of ways to choose k gaps between 2
and f (n)− 1, that add up to ≤ n .

So its the n th coefficient of
1

1− x

[
x2 + · · ·+ x f (n)−1

]k−1
.

=
1

1− x
x2(k−1)

(
1− x f−2

1− x

)k−1

For fixed k , this is surprisingly hard to analyze. We only care
about the sum over all k.
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The Generating Function pt 2

If we sum over k we get the total number of x ∈ [Fn,Fn+1) with
longest gap < f (n) call it Gk ,f .

It’s the n + 1st coefficient of

F (x) =
1

1− x

∞∑
k=1

(
1− x f−2

1− x

)
=

x
1− x − x2 + x f (n)

Let’s work with this (use partial fractions and Rouché) to find
the CDF.
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Partial Fractions pt 2

Write the roots of x f − x2 − x − 1 as {αi}fi=1. We can write our
generating function

F (x) =
x

1− x − x2 + x f (n) =

f (n)∑
i=1

−αi

f (n)αf (n)
i − 2α2

i − αi

∞∑
j=1

(
x
αi

)j

.

We can take the n + 1st coefficient of this expansion to find the
number of y with gaps less than f (n).
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Partial Fractions pt 3

Divide the number of y ∈ [Fn,Fn+1) with longest gap
< f (n), by the total number of y , which is Fn+1 − Fn ∼ 1√

5
φn.

Theorem
The proportion of y ∈ [Fn,Fn+1) with L(x) < f (n) is exactly

f (n)∑
i=1

−
√

5(αi)

f (n)αf (n)
i − 2α2

i − αi

(
1
αi

)n+1 1
(φn − (−1/φ)n)

Now, we find out about the roots of x f − x2 − x + 1.
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Rouché and Roots

When f (n) is large z f (n) is very small, for |z| < 1. Thus, by
Rouché’s theorem from complex analysis:

Lemma

For f ∈ N and f ≥ 4, the polynomial pf (z) = z f − z2 − z + 1 has
exactly one root zf with |zf | < .9. Further, zf ∈ R and

zf =
1
φ +

∣∣∣ z f
f

zf+φ

∣∣∣, so as f →∞, zf converges to 1
φ .

And we only care about the small roots.
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Getting the CDF

As f grows, only one root goes to 1/φ. The other roots don’t
matter. So,

Theorem
If limn→∞ f (n) =∞, the proportion of y with L(y) < f (n) is, as
n→∞

lim
n→∞

(φzf )
−n = lim

n→∞

(
1 +

∣∣∣∣∣φz f (n)
f

φ+ zf

∣∣∣∣∣
)−n

.

And if f (n) is bounded, then Pf = 0.
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Getting the CDF

Theorem
In the limit, if limn→∞ f (n) =∞ then

Pf = lim
n→∞

Pn,f = lim
n→∞

(φzf )
−n = lim

n→∞

(
1 +

∣∣∣∣∣φz f (n)
f

φ+ zf

∣∣∣∣∣
)−n

.

And if f (n) is bounded, then Pf = 0.

We’re almost there!:
Take logarithms
Taylor expand
Use that zf → 1/φ as n→∞
Re-exponentiate
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Cumulative Distribution Function

After some technical details, we get our long awaited theorem!

Theorem

Let r = φ2/(φ+ 1). Define f : as f (n) = log rn/ logφ + u for
some fixed u ∈ R. Then, as n→∞, the probability that
x ∈ [Fn,Fn+1) has longest gap less than f (n) is

P(L(x) < f (n)) = e−eu log φ+{f}
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Conclusions and
Future Work
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Positive Linear Recurrence Sequences

This method can be greatly generalized to Positive Linear
Recurrence Sequences ie: linear recurrences with
non-negative coefficients. WLOG:

Hn+1 = c1Hn−(t1=0) + c2Hn−t2 + · · ·+ cLHn−tL .

Theorem (Zeckendorf’s Theorem for PLRS recurrences)
Any b ∈ N has a unique legal decomposition into sums of Hn,
b = a1Hi1 + · · ·+ aik Hik .

Here legal reduces to non-adjacency of summands in the
Fibonacci case.
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Generating Function, pt n

The number of b ∈ [Hn,Hn+1), with longest gap < f is the
coefficient of xn−s in the generating function:

∑
k≥0

[ (
(c1 − 1)x t1 + · · ·+ (cL − 1)x tL

)(xs+1 − x f

1− x

)
+

x t1

(
xs+t2−t1+1 − x f

1− x

)
+ · · ·+ x tL−1

(
xs+tL−tL−1 + 1− x f

1− x

)]k

×

1
1− x

(
c1 − 1 + c2x t2 + · · ·+ cLx tL

)
A geometric series!
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Some More Definitions

Let λi be the eigenvalues of the recurrence, and pi their
coefficients. Define

G(x) =
L∏

i=2

(
x − 1

λi

)

P(x) = (c1 − 1)x t1 + c2x t2 + · · ·+ cLx tL ,

R(x) = c1x t1 + c2x t2 + · · ·+ (cL − 1)x tL .

and
M(x) = 1− c1x − c2x t2+1 − · · · − cLx tL+1
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Exact Cumulative Distribution

There is again a critical root , zf → 1/λ1 exponentially as
f →∞.

Theorem
PLRS Cumulative Distribution The cumulative distribution of the
longest gap in [Hn,Hn+1) is:

P(L(x) < f ) =
−P(zf ) / (p1λ1 − p1)

zfM′(zf ) + f z f
f R(zf ) + z f+1

f R′(zf )

(
1

zfλ1

)n

+H(n, f )

where there exists ε with 1/λ1 < ε < 1, such that Hn,f � f εn

Our techniques handle this!
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Thank you!!!
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