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Zeckendorf Decompositions
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Fibonacci Numbers: Fp.1 = Fn+ Fp_q;
Fi=1,F,=2,F3=3,F4=5,---.

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2012 =1597 +377+34 +3 + 1 :F16+F13+F8+F3+F1.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf

decomposition for integers in [Fp, Fpy 1) tends to @2”“ ~ .276n,

where ¢ = /5 s the golden mean.




Gaps: Our object of study

Instead of looking at the number of summands, we study the
spacings between them, as follows:

Definition: Gaps

If x € [Fp, Fry1) has Zeckendorf decomposition
X=Fn+ Fn_g, + Fn—g, +--- + Fn_g,, We define the gaps in its
decomposition to be {g1,91 — 92, -+ , Gk—1 — Gk }-

Example:
02012:F16—|-F13—|—F8+F3—|—F1.




Gaps: Our object of study

Instead of looking at the number of summands, we study the
spacings between them, as follows:

Definition: Gaps

If x € [Fp, Fry1) has Zeckendorf decomposition
X=Fn+ Fn_g, + Fn—g, +--- + Fn_g,, We define the gaps in its
decomposition to be {g1,91 — 92, -+ , Gk—1 — Gk }-

Example:
@ 2012 = Fig+ Fi3+ Fs + F3 + F1.
@ Gaps of length 3, 5, 5, and 2.




Previous Results (Miller-Beckwith)

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P(k) = # for k > 2, with
¢ = 15 the golden mean.




Previous Results (Miller-Beckwith)

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P(k) = # for k > 2, with
¢ = 15 the golden mean.

Figure: Distribution of gaps in [Fio00, F1001); Fio00 ~ 102%8.




Our Problem:

Given a random number x in the interval [Fj,, F,. 1), what is the

probability that x has longest gap equal to r?
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Why is this exciting?

In probability theory, the longest run of heads in a sequence of
n coin tosses has generated much work.

@ The longest run grows logarithmically, and has finite
variance, independent of n.

@ After modifications, our problem looks similar

The study of these behaviors has many applications. For
example:

@ Fraud detection (IRS)

@ Machine running times and Algorithms

@ Philadelphia International Airport
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Our plan of attack is as follows:

@ Recast the problem in a combinatorial perspective
@ Use generating functions!
@ Discover relationships between important quantities

@ Analyze limiting behavior

First we’ll review what we need to know.
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Strategy and Tools
[ eJele]

Review of Generating Functions

Given a sequence a,, its generating function is

A(X) = 32520 anx”.

Let’s find the number of ways to have k numbers sum to n
(where order matters), all the numbers are less than b.

So we have
a+..+tak=na,..,a<b.

We can represent this by the nth coefficient of the function
(14 X 4 ...+ xP~Hk,
Using geometric series expansion, this is equal to

1—xmM\*
(%)
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Partial Fraction Expansion

Now we will introduce a basic idea of our derivations.

Consider:

1

=375

Using the method of partial fractions, we can write this as:

Cq Co

f(x) = ,
A

where —¢ and 1/¢ are the roots of 1 — x — x2, and ¢; and ¢,

are determined by algebra to be ¢y = ¢, = /5.




Strategy and Tools
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Partial Fraction Expansion

So we have:

_ ¢ (1/9)
1) = V5 |5 d7ax T 1 x|




Strategy and Tools
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Partial Fraction Expansion

So we have:

_ 6 (1/6)
fx) = V5 [1 (/)% —<z>x] |

Which by geometric series expansion gives:

£

i=0

(=1/0) + /| X'

E\*

‘.




Strategy and Tools
[e]e] o]

Partial Fraction Expansion

So we have:

b (1/6)
fx) = V5 [1 (/o)X —<z>x] |

Which by geometric series expansion gives:

) = 3 [(1/0) + o] X'

i=0

And by Binet’s well known formula for the Fibonacci numbers,

we see that: .
x) = > Fx'
=0
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Why will this be useful?
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Why will this be useful?

If we can find the generating function for our desired quantity in

closed form: ;

™) =T e

the partial fraction expansion reduces its limiting behavior to the
study of the roots of a polynomial.
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Theorem

Letr = ¢?/(¢? + 1). Define f as f(n,u) = log rn/log ¢ + u for
some fixed u € R. Then, as n — oo, the probability that

X € [Fn, Fni1) has longest gap less than or equal to f(n)
converges to

s(1—u)log ¢+ {1(n)}

P(L(x) < f(n,u))=¢e
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Cumulative Distribution Function

Pick x randomly from the interval [F,, F,.1). We prove explicitly
the cumulative distribution of x’s longest gap.

Theorem

Letr = ¢?/(¢? + 1). Define f as f(n,u) = log rn/log ¢ + u for
some fixed u € R. Then, as n — oo, the probability that

X € [Fn, Fni1) has longest gap less than or equal to f(n)
converges to

s(1—u)log ¢+ {1(n)}

P(L(x) < f(n,u))=¢e

Immediate Corollary: If f(n, u) grows any slower or faster than
log n/log ¢, then P(L(x) < f(n)) goes to 0 or 1 respectively.

AA
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We can use the CDF to determine the regular distribution
function, and particularly the mean and variance.

Let ,

log(5#:5 1) )

P(u) = IP(L(X) < log &
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Mean and Variance

We can use the CDF to determine the regular distribution
function, and particularly the mean and variance.
Let ,
log(#:1)
P(u) =P[ L(x) < —¢+1 7
) =(L00 < 25 1 w),
then the distribution of the longest gap is approximately

SPw).
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Mean and Variance

We can use the CDF to determine the regular distribution
function, and particularly the mean and variance.
Let ,
log(#:1)
P(u) =P[ L(x) < —¢+1 7
) =(L00 < 25 1 w),
then the distribution of the longest gap is approximately

SPw).

The mean is given by

*© d
ﬂ_/ uaP(u)du.

—0o0

The variance follows similarly.
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Mean and Variance

So the mean is about

log <%> o
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Mean and Variance

So the mean is about

log <%> o
— + _g(1—u)log ¢ (17u)|og¢|
I “loge +/Ooe e og ¢ du.

=1/log ¢ (Iog (¢>2¢j—1) — /OOO log we™" dW)

BO)
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Mean and Variance

So the mean is about

2
lo < >
= g P21 +/00 679(1_U)|og¢e(17u)|09¢|Og¢dU.
—00

log ¢

=1/log ¢ (Iog (d)qu;) — /OOO log we™" dw)

In the continuous approximation, the mean is

log (¢>2+1 )

log ¢

where ~ is the Euler- Mascheroni constant.

)

;
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Fibonacci Case Generating Function

We let G, « r be the number of ways to have a Zeckendorf
decomposition with k nonzero summands and all gaps less
than f(n).
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Fibonacci Case Generating Function

We let G, « r be the number of ways to have a Zeckendorf
decomposition with k nonzero summands and all gaps less
than f(n).

Gn k¢ is the coefficient of x™+1 for the generating function

k—1

;
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The Combinatorics

fmy—1 KT

11x ij !

=

Why the n + 1st coefficient of

Lety = Fo+ Fo_g, + Fng,—g, + *** + Fn—g,—.—g,_» then we
have the following:

R RRRRRRRRRRRRRRRRRRRRRRBRRERRERERRSNSSSBEBEEESZES
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The Combinatorics

ENIOR k=1
Why the n + 1st coefficient of x!
2

~J

1—x

=

Lety = Fo+ Fo_g, + Fng,—g, + *** + Fn—g,—.—g,_» then we
have the following:

@ The sum of the gaps of x is < n.

R




Action
[e]e]elee] lelelelele]ele]e]

The Combinatorics

ENIOR k=1
Why the n + 1st coefficient of x!
2

~J

1—x
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@ The sum of the gaps of x is < n.
@ Eachgapis > 2.
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The Combinatorics

ENIOR k=1
Why the n + 1st coefficient of x!
2

~J

1—x

=

Lety =Fn+Fng, + Fn—gy—gp +- -+ Fn—g,—..—g,_,, then we
have the following:

@ The sum of the gaps of x is < n.

@ Eachgapis > 2.

@ Each gapis < f(n).

~- TS
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The Combinatorics

ENIOR k=1
Why the n + 1st coefficient of x!
2

~J

1—x

]:
Lety = Fo+ Fo_g, + Fng,—g, + *** + Fn—g,—.—g,_» then we
have the following:

@ The sum of the gaps of x is < n.
@ Eachgapis > 2.
@ Each gapis < f(n).

The gaps uniquely identify y because of Zeckendorf’s Theorem!

BQ
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The Combinatorics

Then G, « r is the number of ways to choose k gaps between 2
and f(n) — 1, thatadd upto < n.

So its the n th coefficient of

For fixed k, this is surprisingly hard to analyze. We only care
about the sum over all k.
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The Generating Function pt 2

If we sum over k we get the total number of x € [F,, Fry1) with
longest gap < f(n) call it Gy ¢
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If we sum over k we get the total number of x € [F,, Fp 1) with
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The Generating Function pt 2

If we sum over k we get the total number of x € [F,, Fp 1) with
longest gap < f(n) call it Gy ¢. It's the n + 1st coefficient of

1 = /1-x2 X
F(X)_1—x§< 1—x >_1—x—x2+xf(”)

Let’s work with this (use partial fractions and Rouché) to find
the CDF.
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Partial Fractions pt 2

Write the roots of x” — x2 — x — 1 as {«;}/_,. We can write our
generating function

R X JE—
1 —x—x24xn

F(x)
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Partial Fractions pt 2

Write the roots of x” — x2 — x — 1 as {«;}/_,. We can write our
generating function

f(n)

X —Q; = xY
F(x) = = () :
1— x— x2 + xf(n) ; f(n)af(n) — 20[,2 — Qj j=1 Qi
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Partial Fractions pt 2

Write the roots of x” — x2 — x — 1 as {«;}/_,. We can write our
generating function

f(n) o

1 — x — x2 + xf(n) f(n)af(”) — 242 )

. «
i=1 = !

We can take the n + 1st coefficient of this expansion to find the
number of y with gaps less than f(n).
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Partial Fractions pt 3

Divide the number of y € [F,, F,, 1) with longest gap
< f(n), by the total number of y, which is F 1 — gb”
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Partial Fractions pt 3

Divide the number of y € [F,, F,, 1) with longest gap
< f(n), by the total number of y, which is F 1 — ng”

Theorem

The proportion of y € [Fp, Fniq) with L(x) < f(n) is exactly

S e (L

= f(n)a!" — 202 — ¢" —(=1/9)")

y
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Partial Fractions pt 3

Divide the number of y € [F,, F,, 1) with longest gap
< f(n), by the total number of y, which is F 1 —

Theorem

The proportion of y € [Fp, Fniq) with L(x) < f(n) is exactly

f(n) n+1
—v5(a) 1\ 1
2 ) a; <af> (¢" = (=1/0)")

im1 f(na; — 2% —

¢n

Now, we find out about the roots of x — x2 — x + 1.

y
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Rouché and Roots

When f(n) is large z/(") is very small, for |z| < 1. Thus, by
Rouché’s theorem from complex analysis:

D
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Rouché and Roots

When f(n) is large Z'(") is very small, for |z| < 1. Thus, by
Rouché’s theorem from complex analysis:

For f € N and f > 4, the polynomial ps(z) = z — 22> — z+ 1 has
exactly one root z; with |zs| < .9. Further, zs € R and

Zf:ja—F

] 1
7t |’ so as f — oo, z5 converges to g
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Rouché and Roots

When f(n) is large Z'(") is very small, for |z| < 1. Thus, by
Rouché’s theorem from complex analysis:

For f € N and f > 4, the polynomial ps(z) = z — 22> — z+ 1 has
exactly one root z; with |zs| < .9. Further, zs € R and

Zf:ja—F

] 1
7t |’ so as f — oo, z5 converges to g

And we only care about the small roots.

TA
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Getting the CDF

As f grows, only one root goes to 1/¢. The other roots don'’t
matter. So,

TS
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Getting the CDF

As f grows, only one root goes to 1/¢. The other roots don'’t

matter. So,
Iflim,_ f(n) = oo, the proportion of y with L(y) < f(n) is, as
n— oo

f(n)
PZ;

¢+ Zf

lim (¢z)™" = Jim (1 + ) :

n—oo

And if f(n) is bounded, then Ps = 0.

TR
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Getting the CDF

In the limit, iflim,_ f(n) = co then

f(n)
¢z;

¢+ 2z

)’

. . . . _n . .
Py = Jm, o= Jm (520 = fim (1

And if f(n) is bounded, then Ps = 0.

oSS HSE
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Py = Jm, o= Jm (520 = fim (1

And if f(n) is bounded, then Ps = 0.

We’re almost there!:
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In the limit, iflim,_ f(n) = co then
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¢+ 2z

)’

. . . . _n . .
Py = Jm, o= Jm (520 = fim (1

And if f(n) is bounded, then Ps = 0.

We're almost there!:
@ Take logarithms
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Getting the CDF

In the limit, iflim,_ f(n) = co then

f(n)
¢z;

¢+ 2z

)’

. . . . _n . .
Py = Jm, o= Jm (520 = fim (1

And if f(n) is bounded, then Ps = 0.

We’re almost there!:
@ Take logarithms
@ Taylor expand
@ Usethat zs —+ 1/pas n— oo
@ Re-exponentiate
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Cumulative Distribution Function

After some technical details, we get our long awaited theorem!

Theorem

Letr = ¢?/(¢ +1). Define f : as f(n) = logrn/log ¢ + u for
some fixed u € R. Then, as n — oo, the probability that
X € [Fn, Fni1) has longest gap less than f(n) is

P(L(x) < f(n)) = g€+




Conclusion

Conclusions and
Future Work
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Positive Linear Recurrence Sequences

This method can be greatly generalized to Positive Linear
Recurrence Sequences ie: linear recurrences with
non-negative coefficients. WLOG:

Hn1 = ¢1Hn(4=0) + CoHp—t, + -+~ + CLHp 4.
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Positive Linear Recurrence Sequences

This method can be greatly generalized to Positive Linear
Recurrence Sequences ie: linear recurrences with
non-negative coefficients. WLOG:

Hn1 = ¢1Hn(4=0) + CoHp—t, + -+~ + CLHp 4.

Theorem (Zeckendorf’s Theorem for PLRS recurrences)

Any b € N has a unique legal decomposition into sums of H,
b:a1H,-1 +---+a,-kH

-

Here legal reduces to non-adjacency of summands in the
Fibonacci case.
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coefficient of x"~% in the generating function:
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Generating Function, pt n

The number of b € [Hy, Hpy 1), with longest gap < f is the
coefficient of x"~% in the generating function:

> [((01 —)xb et (o — 1)xT) <Xs+1_xf> N

1—x
k>0

—t 41 f — k
Xt1 Xs+t2 H+1 X P XtL71 XS+tL tq +1— Xf y
1—x 1—x

1
1—x
A geometric series!

(cr =1+ cox2+ -+ cxt)
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Some More Definitions

Let \; be the eigenvalues of the recurrence, and p; their
coefficients. Define

i—2
P(x) = (¢ — 1)x" + cox? + -+ crxt,

R(X) = c1x" + cox? + -+ (¢ — 1)xT.

and
M(x) =1—cix —opxt! — ... — g xtH1
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Exact Cumulative Distribution

There is again a critical root , z; — 1/A1 exponentially as
f — oo.
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Exact Cumulative Distribution

There is again a critical root , z; — 1/A1 exponentially as
f — oo.

Theorem

PLRS Cumulative Distribution The cumulative distribution of the
longest gap in [Hp, Hpiq) iS:

= —P(z) / (P1M — p1) 1\"
P(L(x) < f) = ZZM'(2Z5) + fsz R(zf) + fo+1R/(Zf) <zf)\1>

+H(n, f)

where there exists e with 1/ < e < 1, such that H, ; < fe"
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Exact Cumulative Distribution

There is again a critical root , z; — 1/A1 exponentially as
f — oo.

Theorem

PLRS Cumulative Distribution The cumulative distribution of the
longest gap in [Hp, Hpiq) iS:

= —P(z) / (P1M — p1) 1\"
P(L(x) < f) = ZZM'(2Z5) + fsz R(zf) + fo+1R/(Zf) <zf)\1>

+H(n, f)

where there exists e with 1/ < e < 1, such that H, ; < fe"

Our techniques handle this!
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Thank you!!!
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