Spectral Statistics of Non-Hermitian Matrix Ensembles

Ryan Chen, Eric Winsor

rcchen@princeton.edu, rcwnsr@umich.edu

with Yujin Kim, Jared Lichtman, Alina Shubina, and Shannon Sweitzer Advisor: Steven J. Miller

Introd		inn
	auci	IUII

2

Introduction

Random Matrix Ensembles

A **random matrix ensemble** is a collection of matrices, with some probability assigned to each matrix.

For us, we will consider ensembles with matrix probabilities given by a product of entry probabilities:

$$A \;=\; \left(egin{array}{ccccccc} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \ a_{12} & a_{22} & a_{23} & \cdots & a_{2N} \ dots & dots & dots & dots & dots & dots \ a_{1N} & a_{2N} & a_{3N} & \cdots & a_{NN} \end{array}
ight)$$

Fix *p*, define

$$\mathsf{Prob}(A) = \prod_{1 \le i,j \le N} p(a_{ij}).$$

Singular Values

Checkerboard Matrices

Random Matrix Ensembles - Examples

Examples:

- Real symmetric matrices
- Hermitian matrices
- Real asymmetric matrices
- Complex symmetric/asymmetric matrices

Real eigenvalues: Real symmetric matrices, Hermitian matrices

Complex eigenvalues: Real asymmetric matrices, Complex symmetric/asymmetric matrices

Singular Values

Checkerboard Matrices

Classical Random Matrix Theory

The basic question: Given a random matrix ensemble, what does the distribution of eigenvalues look like as we send the matrix dimension $N \rightarrow \infty$?

Wigner's Semi-Circle Law (Wigner 1958)

 $N \times N$ real symmetric matrices, entries i.i.d.r.v. from a fixed p(x) with mean 0, variance 1, and other moments finite. Then for almost all A, as $N \to \infty$

$$\mu_{A,N}(x) \longrightarrow \begin{cases} \frac{2}{\pi}\sqrt{1-x^2} & \text{if } |x| \le 1\\ 0 & \text{otherwise.} \end{cases}$$

Introd	luction
0000	0

Singular Values

Checkerboard Matrices

Proof Sketch - Wigner Semicircle

The *kth-moments* M_k of a probability distribution μ are given by $M_k := \int_{-\infty}^{\infty} x^k d\mu$.

Let *A* be an $N \times N$ matrix with eigenvalues λ_i .

•
$$M_k(N) := \frac{1}{N} \cdot \mathbb{E}\left[\sum_{i=1}^N \left(\frac{\lambda_i}{\sqrt{N}}\right)^k\right]$$

• $\sum_{i=1}^N \lambda_i^k = \operatorname{Trace}(A^k) = \sum_{i_1=1}^N \cdots \sum_{i_k=1}^N a_{i_1 i_2} \cdots a_{i_k i_1}$

Introduction 0000	Complex Eigenvalues	Singular Values	Checkerboard Matrices

The even moments are given by the Catalan numbers.

Introduction

Ensembles with Complex Eigenvalues

Moment analysis has its limitations - for example, in the complex plane, every radially symmetric distribution has all moments zero!

Circular Law - Complex Asymmetric (Tao and Vu, 2008)

Consider the ensemble of $N \times N$ complex asymmetric random matrices, with iidrv complex random variables with mean 0 and variance 1. Then, after normalizing by \sqrt{N} , the eigenvalue distribution converges to the uniform distribution on the unit disk.

Introduction 00000	Complex Eigenvalues ○●○	Singular Values	Checkerboard Matrices
Numerical Supp	port		

(Rescaled) 500 Matrices (Gaussian) 250×250

We will study complex symmetric matrices. It turns out that, for sufficient conditions on the higher moments of the base distribution, we also obtain a circular law:

Circular Law - Complex Symmetric (SMALL 2017)

Consider the ensemble of $N \times N$ complex symmetric random matrices, with iidrv complex random variables with mean 0 and variance 1. Then, after normalizing by \sqrt{N} , the eigenvalue distribution converges to the uniform distribution on the unit disk.

Introduction

Singular Values

Checkerboard Matrices

Complex Symmetric Matrices - Singular Values

- The *singular values* of a matrix *A* are defined as the square roots of the eigenvalues of *A***A*.
- Since *A***A* is Hermitian, these eigenvalues will be real.
- Furthermore, *A***A* positive definite implies all the eigenvalues are nonnegative.

Quarter Circular Law - Complex Asymmetric (Marchenko and Pastur, 1967)

Consider the ensemble of $N \times N$ complex asymmetric random matrices, with iidrv complex random variables with mean 0 and variance 1. Then, after normalizing by \sqrt{N} , the singular value distribution converges to a quarter circle.

Introduction

Singular Values

Checkerboard Matrices

Numerical Support

(Rescaled) 500 Matrices (Gaussian) 250×250

Singular Values

Checkerboard Matrices

The Complex Symmetric Case

It turns out that, for sufficient conditions on the higher moments of the base distribution, we also obtain a quarter circular law for complex symmetric matrices:

Quarter Circular Law - Complex Symmetric (SMALL 2017)

Consider the ensemble of $N \times N$ complex symmetric random matrices, with iidrv complex random variables with mean 0 and variance 1. Then, after normalizing by \sqrt{N} , the singular value distribution converges to a quarter circular law.

Singular Values

Checkerboard Matrices

Joint Density Functions (Gaussian Distributions)

Joint Density - Real Asymmetric Singular Values (James 1960)

$$\rho_N(z_1,...,z_N) = c_N \prod_{1 \le i < j \le N} |z_j^2 - z_i^2| \prod_{1 \le i \le N} e^{-|z_i|^2}$$

Joint Density - Complex Asymmetric Singular Values (James 1963)

$$\rho_N(Z_1,\ldots,Z_N) = C_N \prod_{1 \le i < j \le N} |Z_j^2 - Z_i^2|^2 \prod_{1 \le i \le N} |Z_i| \prod_{1 \le i \le N} e^{-|Z_i|^2}$$

Introduction

Complex Eigenvalues

Singular Values

Checkerboard Matrices

Joint Density - Complex Symmetric Singular Values (SMALL 2017)

$$\rho_N(z_1,...,z_N) = c_N \prod_{1 \le i < j \le N} |z_j^2 - z_i^2| \prod_{1 \le i \le N} |z_i| \prod_{1 \le i \le N} e^{-|z_i|^2}$$

Singular Values

Checkerboard Matrices

Joint Densities - 2-tuples of singular values of 2×2 matrices

Figure: Real and Complex Asymmetric

Singular Values

Checkerboard Matrices

Joint Densities - 2-tuples of singular values of 2×2 matrices

Figure: Complex Symmetric

Introductio	on

Structured Families - Complex Checkerboard Matrices

Singular Values

Checkerboard Matrices

Complex Symmetric Checkerboard Matrices

A complex symmetric (k, w)-checkerboard random matrix is a complex symmetric matrix made up of $k \times k$ blocks of the form

$$B = \begin{pmatrix} w & * & \cdots & * \\ * & w & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \cdots & w \end{pmatrix}$$

where w is some fixed constant and each * represents a random variable.

Singular Values

Checkerboard Matrices

Complex Symmetric Checkerboard - Singular Values

Singular Value Distribution for Complex Symmetric Checkerboard Ensemble (SMALL 2017)

The limiting singular value distribution for the complex symmetric checkerboard ensemble shows split limiting behavior:

- A "bulk" containing most of the mass following the Quarter Circle Law.
- A "blip" of density k/N with mean close to Nw/k whose distribution is that of the hollow GOE ensemble (random real symmetric matrices with 0 on the diagonal).

Introduction 00000	Complex Eigenvalues	Singular Values	Checkerboard Matrices

Numerical Support

(Rescaled) 2000 Complex Symmetric (3,1)-Checkerboard Matrices 100×100

Singular Values

Checkerboard Matrices

Proof Outline - Checkerboard Singular Value Bulk

- Reduce to case of w = 0 by using a matrix perturbation argument.
- Apply eigenvalue-trace and method of moments.
- Use combinatorial argument similar to Wigner Semicircle Law proof.

Singular Values

Checkerboard Matrices

Checkerboard Singular Value Blip

Harder: Define the **empirical blip square singular spectral measure** (EBSSSM) for a matrix *A* to be

$$\mu_{A,N}^{s^2} := \frac{1}{k} \sum_{\sigma} f_{n(N)} \left(\frac{k^2 \sigma}{N^2} \right) \delta \left(x - \frac{1}{N} \left(\sigma - \frac{N^2}{k^2} \right) \right)$$

where σ ranges over singular values of A,

$$f_n(x) = x^{2n} (x-2)^{2n}$$

and n(N) is some slow growing function.

Introduction

Complex Eigenvalues

Singular Values

Checkerboard Matrices

Checkerboard Singular Value Blip

We apply the method of moments to show that this distribution converges to the square of the hollow GOE distribution in the case of the complex symmetric checkerboard ensemble.

Singular Values

Checkerboard Matrices

Complex Symmetric Checkerboard - Eigenvalues

Eigenvalue Distribution for Complex Symmetric Checkerboard Ensemble (SMALL 2017)

The limiting singular value distribution for the complex symmetric checkerboard ensemble shows split limiting behavior:

- A "bulk" containing most of the mass following the Circular Law.
- 2 A "blip" of density k/N with mean close to Nw/k.

Introductio	on

Singular Values

Checkerboard Matrices

Numerical Support

(Rescaled) 500 Complex Symmetric (3,1)-Checkerboard Matrices 300×300

Singular Values

Checkerboard Matrices

Checkerboard Eigenvalue Blip

Use knowledge of singular values.

Fact

The largest singular value of a complex symmetric matrix *A* has magnitude greater than or equal to that of the largest eigenvalue of *A*.

The absolute values of the eigenvalues must be bounded above by N/k + O(1). Look at eigenvalues of $\frac{k}{N}A$.

Singular Values

Checkerboard Matrices

Checkerboard Eigenvalue Blip

Eigenvalues of $\frac{k}{N}A$: Contained within disk of radius $1 + O\left(\frac{1}{N}\right)$.

- Show that mean of eigenvalue distribution is $\frac{k}{N} + O(N^{-2})$.
- Show that the only eigenvalues contributing to the mean must be on the boundary of the disk.
- Conclude that there must be $\frac{k}{N}$ eigenvalues at 1.

Introduction

Future Work

- Different placement of *w*'s and different block shapes.
- Complex asymmetric and combinations of checkerboarding with other ensembles.
- Allow the block size to grow as a function of *N*.

Introduction	Complex Eigenvalues	Singular Values	Checkerboard Matrices
References			

Paula Burkhardt, Peter Cohen, Jonathan Dewitt, Max Hlavacek, Steven J. Miller, Carsten Sprunger, Yen Nhi Truong Vu, Roger Van Peski, and Kevin Yang, *Random Matrix Ensembles with Split Limiting Behavior*, prepint. http://arxiv.org/abs/1609.03120.

Jean Ginibre, *Statistical Ensembles of Complex, Quaternion, and Real Matrices*, Journal of Mathematical Physics, 6, 440 (1965).

Alan James, *Distributions of Matrix Variates and Latent Roots Derived from Normal Samples*, The Annals of Mathematics Statistics (1963).

Terence Tao, *254a, notes 4: The semi-circular law*, https://terrytao.wordpress.com/2010/02/02/254a-notes-4-the-semi-circularlaw/, Posted:2010-02-02, Accessed:2017-08-04.

Terence Tao, Topics in Random Matrix Theory (2011).

Introduction

