

Introduction

A Gaussian prime is a prime element in the ring of Gaussian integers $\mathbb{Z}[i]$. Since they are located in the complex plane, interesting questions regarding their geometric properties naturally arise. We associate to each Gaussian prime a + bi an angle whose tangent is b/a. Hecke showed in 1919 that these angles are uniformly distributed in the plane, and Kubilius proved uniform distribution in somewhat short arcs in 1950. Motivated by a random matrix theory model and a function field analogue, Rudnick and Waxman gave a conjecture for the variance of such angles across short arcs. We apply the L-functions ratios conjecture to a family of Hecke L-functions to derive a formula which computes the one-level density and variance of Gaussian primes across short arcs.

Figure 1: Gaussian primes uniformly distributed in the plane https://illustratedtheoryofnumbers.wordpress.com/tag/primes/

The Conjecture

It has been observed that the statistics for classical random matrix ensembles match the statistics for zeros of various families of L-functions, and that the characteristic polynomials for such matrix ensembles can model the L-functions. A natural extension is to use random matrices to model ratios of products of *L*-functions. However, the ratios conjecture captures the subtle arithmetic properties found in the correction factor, thus providing an even closer model.

Variance of Gaussian Primes Across Sectors and the Hecke L-functions Ratios Conjecture

Advisors: Steven J. Miller & Ezra Waxman SMALL REU 2017 at Williams College

The Ratios Re

We wish to apply the ratios conjecture to

$$\frac{1}{K} \sum_{k \leq K} \frac{L_K(1/2 + \alpha)L_K}{L_K(1/2 + \gamma)L_K}$$

• We replace all L-functions in the numerator by their approx approximate functional equation is given by

$$L_k(s) = \sum_{n} \frac{A(n)}{n^s} + \pi^{2s-1} \frac{I}{n^s}$$

We replace L-functions in the denominator using the equation

We then multiply out the remaining expression.

- We use Euler products to rewrite each term in the expanded replace the values $A(p^m)A(p^n)U(p^h)U(p^l)$ with their averag
- ³We now pull out terms that contribute zeros and poles to the functions and L-functions. We are then left with something $\frac{A}{V}(\alpha,\beta,\gamma,\delta)$

where Y is composed of the pulled out Zeta and L-function

Figure 2: A plot of the ratio Var(NK, x)/E(NK, x) versus $\beta = \log K$

Application to the One-Level Density

We wish to compute $S_K(f) = \frac{1}{K} \sum_{k \leq K} \sum_{\gamma_k} f(\gamma_k)$, where f is a nice even function, and $\frac{1}{2} + \gamma_k$ denotes the ordinate of a generic zero of $L_k(s)$ on the half-line. However, contour integration gives

$$\frac{1}{K} \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t - i(c - 1/2)) \sum_{k \le K} \frac{L'_k}{L_k} (c + it) dt$$

where s = c + it. We apply the ratios conjecture to $L'_k(s)/L_k(s)$, and make the substitution $x = (2\pi/\log K)t$.

Jared D. Lichtman (jared.d.lichtman.18@dartmouth.edu) & Shannon Sweitzer (sswei001@ucr.edu) with Ryan Chen, Yujin H. Kim, Eric Winsor, Jianing Yang

ecipe	Applic
$\frac{(1/2+\beta)}{(1/2+\delta)}.$	We wish to control $Var(\psi_{K,X}) = K^{\gamma-2}$
ximate functional equation. In our case, the	$\frac{4\pi^2}{4\pi^2} \sum_{\substack{k\neq 0 \\ k\neq 0}} 1$ $\cdot \tilde{\Phi}(\frac{1}{2})$
$\frac{\Gamma(1-s+ 2k)}{\Gamma(s+ 2k)}.$ ion	We apply the r
$\frac{n}{s}$.	and then take t α and β to get
d expression as a product over primes, and then ges over the family.	$\alpha)_{\overline{L_k}}(\frac{1}{2}-\beta).$
g of the form	J.B. Conrey,
, and A is the remaining arithmetic term.	J.B. Conrey, 1 ratios conjectures' 594-646
****************	of L-functions of Arithmetica, Volu W. Farmer, F als, random matrie 919-936
	Z. Rudnick, I https://arxiv.org/
	A
0.8 1.0	This research SMALL REU
$X/\log N$, for $X \approx 108$. The smooth line is $\min(1, 2\beta)$.	work was supp and DMS1659

$$\longrightarrow \int_{-\infty}^{\infty} g(x) \left(1 - \frac{\sin(2\pi x)}{2\pi x}\right) dx$$

pplication to the Variance

h to compute

$$\frac{\gamma^{-2}}{\pi^2} \sum_{k \neq 0} |\widehat{f}(\frac{k}{K})|^2 \int_{(c)} \int_{(c')} \frac{L'_k}{L_k} (\frac{1}{2} + \alpha) \frac{L'_k}{L_k} (\frac{1}{2} - \beta)$$
$$\cdot \widetilde{\Phi}(\frac{1}{2} + \alpha) \widetilde{\Phi}(\frac{1}{2} + \beta) e^{i\lambda(\alpha - \beta)} d\alpha d\beta.$$

bly the ratios conjecture to the expression

$$\frac{L_k(\frac{1}{2}+\alpha)L_k(\frac{1}{2}+\beta)}{L_k(\frac{1}{2}+\gamma)\overline{L}_k(\frac{1}{2}+\delta)},$$

en take the second derivative with respect to β to get a more manageable form of $\frac{L_k}{L_k}(\frac{1}{2} +$ $-\beta$).

References

Conrey, W. Farmer, M. R. Zirnbauer "Autocorrelaatios of L-functions", arXiv:0711.0718.

Conrey, N.C. Snaith "Applications of the L-functions njectures", Proc. Lon. Math. Soc.", 94, No 3 (2007)

Conrey, N.C. Snaith "On the orthogonal symmetry" ctions of a family of Hecke Gossencharacters", Acta tica, Volume 157, Issue 4, pages 323-356, 2013 Farmer, F. Mezzadri, N.C. Snaith "Random polynomiom matrices, and L-functions", Nonlinearity 19 (2006)

Rudnick, E. Waxman, Angles of Gaussian Primes. arxiv.org/abs/1705.07498

Acknowledgements

esearch was conducted as part of the 2017 L REU program at Williams College. This vas supported by NSF Grant DMS1561945 MS1659037, Williams College, and the Finnerty Fund.

