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Introduction

A Gaussian prime is a prime element in the ring of
Gaussian integers Z[i]. Since they are located in the
complex plane, interesting questions regarding their
geometric properties naturally arise. We associate
to each Gaussian prime a + bi an angle whose tan-
gent is b/a. Hecke showed in 1919 that these angles
are uniformly distributed in the plane, and Kubil-
ius proved uniform distribution in somewhat short
arcs in 1950. Motivated by a random matrix theory
model and a function field analogue, Rudnick and
Waxman gave a conjecture for the variance of such
angles across short arcs. We apply the L-functions
ratios conjecture to a family of Hecke L-functions to
derive a formula which computes the one-level den-
sity and variance of Gaussian primes across short
arcs.

Figure 1: Gaussian primes uniformly distributed in the plane
https://illustratedtheoryofnumbers.wordpress.com/tag/primes/

The Conjecture

It has been observed that the statistics for classical
random matrix ensembles match the statistics for
zeros of various families of L-functions, and that the
characteristic polynomials for such matrix ensem-
bles can model the L-functions. A natural extension
is to use random matrices to model ratios of prod-
ucts of L-functions. However, the ratios conjecture
captures the subtle arithmetic properties found in
the correction factor, thus providing an even closer
model.

The Ratios Recipe

We wish to apply the ratios conjecture to
1
K

∑
k≤K

LK(1/2 + α)LK(1/2 + β)
LK(1/2 + γ)LK(1/2 + δ)

.

1 We replace all L-functions in the numerator by their approximate functional equation. In our case, the
approximate functional equation is given by

Lk(s) =
∑
n

A(n)
ns

+ π2s−1Γ(1− s + |2k|)
Γ(s + |2k|)

.

We replace L-functions in the denominator using the equation
1

Lk(s)
=
∑
n

U(n)
ns

.

We then multiply out the remaining expression.
2 We use Euler products to rewrite each term in the expanded expression as a product over primes, and then
replace the values A(pm)A(pn)U(ph)U(pl) with their averages over the family.

3 We now pull out terms that contribute zeros and poles to the products. In particular, these are Zeta
functions and L-functions. We are then left with something of the form

A

Y
(α, β, γ, δ),

where Y is composed of the pulled out Zeta and L-functions and A is the remaining arithmetic term.

Figure 2: A plot of the ratio Var(NK, x)/E(NK, x) versus β = logK/ logN , for X ≈ 108 . The smooth line is min(1, 2β).

Application to the One-Level Density

We wish to compute SK(f ) = 1
K

∑
k≤K

∑
γk f (γk), where f is a nice even function, and 1

2 + γk denotes the
ordinate of a generic zero of Lk(s) on the half-line. However, contour integration gives

1
K

1
2π

∫ ∞
−∞

f (t− i(c− 1/2))
∑
k≤K

L′k
Lk

(c + it)dt −→
∫ ∞
−∞

g(x)
(

1− sin(2πx)
2πx

)
dx

where s = c+it. We apply the ratios conjecture to L′k(s)/Lk(s), and make the substitution x = (2π/ logK)t.

Application to the Variance

We wish to compute
Var(ψK,X) =

Kγ−2

4π2
∑
k 6=0
|f̂ ( k
K

)|2
∫

(c)

∫
(c′)

L′k
Lk

(1
2

+ α)L
′
k

Lk
(1
2
− β)

· Φ̃(1
2

+ α)Φ̃(1
2

+ β)eiλ(α−β)dαdβ.

We apply the ratios conjecture to the expression
Lk(1

2 + α)Lk(1
2 + β)

Lk(1
2 + γ)Lk(1

2 + δ)
,

and then take the second derivative with respect to
α and β to get a more manageable form of L

′
k

Lk
(1

2 +
α)L

′
k

Lk
(1

2 − β).
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