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Introduction

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2017 = 1597 + 377 + 34 + 8 + 1 = F16 + F13 + F8 + F5 + F1.

Conversely, we can construct the Fibonacci sequence using
this property:

1, 2, 3, 5, 8, 13. . .
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Binning Perspective

Example (Fibonacci):

1 2 3 5 · · ·

Bins of constant length 1, construct N by choosing
summands from nonadjacent bins.
(We take at most one summand from each bin)
Generalization: start with bins of specified size, and
impose rules on how we choose summands from each bin.
Obtain a sequence determined by these rules on the bins.

11



Intro Bin Decomposition Results

Binning Perspective

Example (Fibonacci):

1 2 3 5 · · ·

Bins of constant length 1, construct N by choosing
summands from nonadjacent bins.
(We take at most one summand from each bin)

Generalization: start with bins of specified size, and
impose rules on how we choose summands from each bin.
Obtain a sequence determined by these rules on the bins.

12



Intro Bin Decomposition Results

Binning Perspective

Example (Fibonacci):

1 2 3 5 · · ·

Bins of constant length 1, construct N by choosing
summands from nonadjacent bins.
(We take at most one summand from each bin)
Generalization: start with bins of specified size, and
impose rules on how we choose summands from each bin.

Obtain a sequence determined by these rules on the bins.

13



Intro Bin Decomposition Results

Binning Perspective

Example (Fibonacci):

1 2 3 5 · · ·

Bins of constant length 1, construct N by choosing
summands from nonadjacent bins.
(We take at most one summand from each bin)
Generalization: start with bins of specified size, and
impose rules on how we choose summands from each bin.
Obtain a sequence determined by these rules on the bins.

14



Intro Bin Decomposition Results

Examples of Binning Generalization

Example: Bins of constant length bn = 2, may choose 0,1 or 2
summands from each bin, summands from adjacent bins
allowed

1 2 4 8 16 32 . . .

Example 2: Bins of length bn = n, may choose 0,1 or 2
summands from each bin, adjacent bins are not allowed

1 2 3 4 6 8 16 20 24 28 . . .
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Questions to Investigate

When we vary . . .

the size of the bins (bn =?)
the number of summands allowed to be taken from each
bin
the adjacency conditions on the bins (eg. summands may
not be taken from adjacent bins)

. . . in which situations do we retain uniqueness of
decomposition of the integers?
. . . in which situations do the distribution of the average number
of summands in a decomposition converge to a Gaussian
(CLT-type result)?
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Questions to Investigate (cont’d)

A ({bn}, {An},a)-Sequence has:
the size of the nth bin is bn

the number of allowable elements we can choose from the
nth bin is An ⊂ {0,1,2, . . . ,bn}
we cannot take elements from two different bins unless
there are at least a ≥ 0 bins between them (adjacency
condition)
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Questions to Investigate (cont’d)
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Uniqueness

Theorem (Carty-Gueganic-K-M-Shubina-Sweitzer-W-Yang)
A ({bn}, {An},0)-Sequence has uniqueness of decomposition
(every number can be written and there is only one legal
decomposition) if and only if for every positive n we have

An ∈ {{0,1} , {0,1, . . . ,bn − 1} , {0,1, . . . ,bn}} .

In each of these cases for An, we derive a condition for the
distribution of the number of summands whose largest
summand is in bin N to converge to a Gaussian as N →∞.
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Distributions of Summands: previous results

Lekkerkerker’s Theorem (1952)
The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.

Central Limit Type Theorem (KKMW 2010)
As n→∞, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fn,Fn+1) is
Gaussian.

Remark:
Note that this is equivalent to choosing summands from the first
n Fibonacci numbers with the largest summand being Fn.

Distribution of summands after introducing binning?
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Condition on Gaussianity, An = {0,1}

Recall:

Uniqueness of decomposition
⇐⇒ An ∈ {{0,1} , {0,1, . . . ,bn − 1} , {0,1, . . . ,bn}}

Theorem (Carty-Gueganic-K-M-Shubina-Sweitzer-W-Yang)

Consider a ({bn}, {0,1},0)-Sequence. If
∑∞

n=1 1/bn diverges,
then the distribution of the number of summands of integers
whose largest summand is in bin N converges to a Gaussian
as N →∞.
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Condition on Gaussianity II, An ∈ {{0, . . . ,bn − 1}, {0, . . . ,bn}}

Theorem (Carty-Gueganic-K-M-Shubina-Sweitzer-W-Yang)
Consider a ({bn}, {An},0)-Sequence, where for all n ∈ N,
bn = n, and An ∈ {{0, . . . ,n − 1}, {0, . . . ,n}}. The distribution
of the number of summands of integers whose largest
summand is in bin N converges to a Gaussian as N →∞.
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Condition on Gaussianity III, An constant

Theorem (Carty-Gueganic-K-M-Shubina-Sweitzer-W-Yang)
Assume An is a constant set A for all n. Then the distribution of
the number of summands converges to Gaussian if

∑ 1
bm−m′

n

diverges, where m is the maximal element of A and m′ is the
second maximal element.
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Proof Method

We will need the following theorem for the proof:

Theorem (Lyapunov CLT)
Let {Y1,Y2, . . . } be independent random variables, each with
finite mean µi and variance σ2

i . Define s2
n =

∑n
i=1 σ

2
i . Then if

there exists a δ > 0 such that
limn→∞

1
s2+δ

n

∑n
i=1 E(|Yi − µi |2+δ) = 0, 1

N
∑∞

i=1 Yi converges to a
Gaussian as N →∞.
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Setting up the Random Variables

For an integer m let Yn(m) = 1 if we use an element of the nth

bin in m’s decomposition, and 0 otherwise; thus if the largest
summand in m’s decomposition is from bin N then the number
of summands is Y1(m) + · · ·+ YN(m)
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Proof Method (cont’d)

The probability of choosing i summands from the n-th bin is

p(Yn = i) =

(bn
i

)∑
t∈An

(bn
t

) ,

and the expectation values of Yn and Y 2
n are

E[Yn] =

∑
t∈An

t
(bn

t

)∑
t∈An

(bn
t

)
E[Y 2

n ] =

∑
t∈An

t2(bn
t

)∑
t∈An

(bn
t

)
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Proof Method (cont’d)
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Proof Method (cont’d)

We then find that

σ2
n = E[Y 2

n ]− E[Yn]
2

=

∑
i,j∈An,i 6=j(i − j)2(bn

i

)(bn
j

)
2
(∑

t∈An

(bn
t

))2 ,

and the absolute centered moment

ρ2+δ
n := E

[
|Yn − µn|2+δ

]
=

∑
i∈An

(bn
i

) ∣∣∣∑t∈An
(i − t)

(bn
t

)∣∣∣2+δ(∑
t∈An

(bn
t

))3+δ
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Proof Method (cont’d)

We come to the conclusion of the theorem by analyzing σ2
n and

ρ2+δ
n asymptotically and applying the Lyapunov Central Limit

Theorem.

Theorem (Carty-Gueganic-K-M-Shubina-Sweitzer-W-Yang)
Consider a ({bn}, {An},0)-Sequence, where for all n ∈ N,
bn = n, and An ∈ {{0, . . . ,n − 1}, {0, . . . ,n}}. The distribution
of the number of summands of integers whose largest
summand is in bin N converges to a Gaussian as N →∞.

In
fact, for any choice of δ > 0, the Lyapunov condition is
satisfied.
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Future Work

We come to the conclusion of the theorem by analyzing σ2
n and

ρ2+δ
n asymptotically and applying the Lyapunov Central Limit

Theorem.

Conjecture
(Carty-Gueganic-K-M-Shubina-Sweitzer-W-Yang)
Consider a ({bn}, {An},0)-Sequence, where for all k ,n ∈ N,
k ≤ n, bn = bn/kc, and An ∈ {{0, . . . ,n − 1}, {0, . . . ,n}}. The
distribution of the number of summands of integers whose
largest summand is in bin N converges to a Gaussian as
N →∞. In fact, for any choice of δ > 0, the Lyapunov condition
is satisfied.
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Thank You!
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