Limiting Distributions in Generalized b-bin Zeckendorf Decompositions

Yujin Kim (yujin.kim@columbia.edu)
Eric Winsor (rcwnsr@umich.edu)

Collaborators: Granger Carty, Alexandre Gueganic, Alina Shubina, Shannon Sweitzer, and Jianing Yang

Faculty Mentor: Steven Miller

Joint Mathematics Meeting
January 11, 2018
Introduction
Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.
Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example:
2017 = 1597 + 377 + 34 + 8 + 1 = F_{16} + F_{13} + F_{8} + F_{5} + F_{1}.
Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example:
\[2017 = 1597 + 377 + 34 + 8 + 1 = F_{16} + F_{13} + F_{8} + F_{5} + F_{1}.\]

Conversely, we can construct the Fibonacci sequence using this property:

1
Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example:
\[2017 = 1597 + 377 + 34 + 8 + 1 = F_{16} + F_{13} + F_8 + F_5 + F_1. \]

Conversely, we can construct the Fibonacci sequence using this property:

1, 2
Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example:
2017 = 1597 + 377 + 34 + 8 + 1 = \(F_{16} + F_{13} + F_{8} + F_{5} + F_{1} \).

Conversely, we can construct the Fibonacci sequence using this property:

1, 2, 3
Introduction

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example:

$$2017 = 1597 + 377 + 34 + 8 + 1 = F_{16} + F_{13} + F_8 + F_5 + F_1.$$

Conversely, we can construct the Fibonacci sequence using this property:

$$1, 2, 3, 5$$
Introduction

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example:
\[2017 = 1597 + 377 + 34 + 8 + 1 = F_{16} + F_{13} + F_{8} + F_{5} + F_{1}.\]

Conversely, we can construct the Fibonacci sequence using this property:

1, 2, 3, 5, 8
Introduction

Zeckendorf’s Theorem

Every positive integer can be written uniquely as a sum of one or more non-consecutive Fibonacci numbers.

Example:

\[2017 = 1597 + 377 + 34 + 8 + 1 = F_{16} + F_{13} + F_{8} + F_{5} + F_{1}. \]

Conversely, we can construct the Fibonacci sequence using this property:

1, 2, 3, 5, 8, 13...
Binning Perspective

Example (Fibonacci):

1
2
3
5
···

Bins of constant length 1, construct N by choosing summands from nonadjacent bins. (We take at most one summand from each bin)

Generalization: start with bins of specified size, and impose rules on how we choose summands from each bin. Obtain a sequence determined by these rules on the bins.
Example (Fibonacci):

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 5 & \ldots \\
2 & 3 & 5 & & & \\
3 & 5 & & & & \\
5 & & & & & \\
\end{array}
\]

Bins of constant length 1, construct \mathbb{N} by choosing summands from *nonadjacent* bins.
(We take at most one summand from each bin)
Binning Perspective

- **Example (Fibonacci):**

 \[
 1 \ 2 \ 3 \ 5 \ \cdots
 \]

 Bins of constant length 1, construct \(\mathbb{N} \) by choosing summands from *nonadjacent* bins.
 (We take at most one summand from each bin)

- **Generalization:** start with bins of specified size, and impose rules on how we choose summands from each bin.
Binning Perspective

- **Example (Fibonacci):**

 \[1, 2, 3, 5, \ldots \]

 Bins of constant length 1, construct \(\mathbb{N} \) by choosing summands from *nonadjacent* bins.
 (We take at most one summand from each bin)

- **Generalization:** start with bins of specified size, and impose rules on how we choose summands from each bin.
 Obtain a sequence determined by these rules on the bins.
Examples of Binning Generalization

Example: Bins of constant length $b_n = \frac{1}{2}$, may choose 0, 1 or 2 summands from each bin, summands from adjacent bins allowed

$1 \quad 2 \quad 4 \quad 8 \quad 16 \quad 32 \quad \ldots$

Example 2: Bins of length $b_n = \frac{n}{2}$, may choose 0, 1 or 2 summands from each bin, adjacent bins are not allowed

$1 \quad 2 \quad 3 \quad 4 \quad 6 \quad 8 \quad 16 \quad 20 \quad 24 \quad 28 \quad \ldots$
Examples of Binning Generalization

Example: Bins of constant length $b_n = 2$, may choose 0, 1 or 2 summands from each bin, summands from adjacent bins allowed.
Examples of Binning Generalization

Example: Bins of constant length $b_n = 2$, may choose 0, 1 or 2 summands from each bin, summands from adjacent bins allowed
Examples of Binning Generalization

Example: Bins of constant length $b_n = 2$, may choose 0, 1 or 2 summands from each bin, summands from adjacent bins allowed

```
1 2 4 8
```
Examples of Binning Generalization

Example: Bins of constant length $b_n = 2$, may choose 0, 1 or 2 summands from each bin, summands from adjacent bins allowed

```
1 2 4 8 16 32 ...
```
Examples of Binning Generalization

Example: Bins of constant length \(b_n = 2 \), may choose 0, 1 or 2 summands from each bin, summands from adjacent bins allowed

\[1 \ 2 \ 4 \ 8 \ 16 \ 32 \ \ldots \]

Example 2: Bins of length \(b_n = n \), may choose 0, 1 or 2 summands from each bin, adjacent bins are not allowed
Examples of Binning Generalization

Example: Bins of constant length $b_n = 2$, may choose 0, 1 or 2 summands from each bin, summands from adjacent bins allowed

1 2 4 8 16 32 ...

Example 2: Bins of length $b_n = n$, may choose 0, 1 or 2 summands from each bin, adjacent bins are not allowed

1
Examples of Binning Generalization

Example: Bins of constant length $b_n = 2$, may choose 0, 1 or 2 summands from each bin, summands from adjacent bins allowed

\[
\begin{array}{cccccc}
1 & 2 & 4 & 8 & 16 & 32 \\
\end{array}
\]

Example 2: Bins of length $b_n = n$, may choose 0, 1 or 2 summands from each bin, adjacent bins are not allowed

\[
\begin{array}{ccc}
1 & 2 & 3 \\
\end{array}
\]
Examples of Binning Generalization

Example: Bins of constant length $b_n = 2$, may choose 0, 1 or 2 summands from each bin, summands from adjacent bins allowed

1 2 4 8 16 32 ...

Example 2: Bins of length $b_n = n$, may choose 0, 1 or 2 summands from each bin, adjacent bins are not allowed

1 2 3 4 6 8
Examples of Binning Generalization

Example: Bins of constant length $b_n = 2$, may choose 0, 1 or 2 summands from each bin, summands from adjacent bins allowed

\[\underline{1} \underline{2} \underline{4} \underline{8} \underline{16} 32 \ldots \]

Example 2: Bins of length $b_n = n$, may choose 0, 1 or 2 summands from each bin, adjacent bins are not allowed

\[\underline{1} \underline{2} \underline{3} \underline{4} \underline{6} \underline{8} \underline{16} 20 24 28 \ldots \]
Questions to Investigate

When we vary . . .
Questions to Investigate

When we vary . . .

- the size of the bins ($b_n = ?$)
Questions to Investigate

When we vary . . .

- the size of the bins ($b_n = ?$)
- the number of summands allowed to be taken from each bin
Questions to Investigate

When we vary . . .

- the size of the bins \(b_n = ? \)
- the number of summands allowed to be taken from each bin
- the adjacency conditions on the bins (eg. summands may not be taken from adjacent bins)
Questions to Investigate

When we vary . . .

- the size of the bins \((b_n = ?)\)
- the number of summands allowed to be taken from each bin
- the adjacency conditions on the bins (eg. summands may not be taken from adjacent bins)

. . . in which situations do we retain uniqueness of decomposition of the integers?
Questions to Investigate

When we vary . . .

- the size of the bins \(b_n =? \)
- the number of summands allowed to be taken from each bin
- the adjacency conditions on the bins (eg. summands may not be taken from adjacent bins)

. . . in which situations do we retain uniqueness of decomposition of the integers?
. . . in which situations do the distribution of the average number of summands in a decomposition converge to a Gaussian (CLT-type result)?
Questions to Investigate (cont’d)
Questions to Investigate (cont’d)

A \((\{b_n\}, \{A_n\}, a)\)-Sequence has:
Questions to Investigate (cont’d)

A \(\{b_n\}, \{A_n\}, a\)-Sequence has:

- the size of the \(n^{\text{th}}\) bin is \(b_n\)
Questions to Investigate (cont’d)

A \((\{b_n\}, \{A_n\}, a)\)-Sequence has:

- the size of the \(n^{th}\) bin is \(b_n\)
- the number of allowable elements we can choose from the \(n^{th}\) bin is \(A_n \subset \{0, 1, 2, \ldots, b_n\}\)
A \(\{b_n\}, \{A_n\}, a \)-Sequence has:

- the size of the \(n^{\text{th}} \) bin is \(b_n \)
- the number of allowable elements we can choose from the \(n^{\text{th}} \) bin is \(A_n \subset \{0, 1, 2, \ldots, b_n\} \)
- we cannot take elements from two different bins unless there are at least \(a \geq 0 \) bins between them (adjacency condition)
Uniqueness

Theorem (Carty-Gueganic-K-M-Shubina-Sweitzer-W-Yang)

A \((\{b_n\}, \{A_n\}, 0)\)-Sequence has uniqueness of decomposition (every number can be written and there is only one legal decomposition) if and only if for every positive \(n\) we have

\[A_n \in \\{\{0, 1\}, \{0, 1, \ldots, b_n - 1\}, \{0, 1, \ldots, b_n\}\} . \]

In each of these cases for \(A_n\), we derive a condition for the distribution of the number of summands whose largest summand is in bin \(N\) to converge to a Gaussian as \(N \to \infty\).
Distributions of Summands: previous results

Lekkerkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in \([F_n, F_{n+1})\) tends to \(\frac{n}{\phi^2 + 1} \approx 2.276\), where \(\phi = \frac{1 + \sqrt{5}}{2}\) is the golden mean.

Central Limit Type Theorem (KKMW 2010)

As \(n \to \infty\), the distribution of the number of summands in the Zeckendorf decomposition for integers in \([F_n, F_{n+1})\) is Gaussian.

Remark:

Note that this is equivalent to choosing summands from the first \(n\) Fibonacci numbers with the largest summand being \(F_n\).
Distributions of Summands: previous results

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in \([F_n, F_{n+1})\) tends to \(\frac{n}{\varphi^2 + 1} \approx .276n\), where \(\varphi = \frac{1+\sqrt{5}}{2}\) is the golden mean.
Distributions of Summands: previous results

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in \([F_n, F_{n+1})\) tends to \(\frac{n}{\varphi^2 + 1} \approx .276n\), where \(\varphi = \frac{1+\sqrt{5}}{2}\) is the golden mean.

Central Limit Type Theorem (KKMW 2010)

As \(n \to \infty\), the distribution of the number of summands in the Zeckendorf decomposition for integers in \([F_n, F_{n+1})\) is Gaussian.
Distributions of Summands: previous results

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in \([F_n, F_{n+1})\) tends to \(\frac{n}{\varphi^2 + 1} \approx .276n\), where \(\varphi = \frac{1+\sqrt{5}}{2}\) is the golden mean.

Central Limit Type Theorem (KKMW 2010)

As \(n \to \infty\), the distribution of the number of summands in the Zeckendorf decomposition for integers in \([F_n, F_{n+1})\) is Gaussian.

Remark:

Note that this is equivalent to choosing summands from the first \(n\) Fibonacci numbers with the largest summand being \(F_n\).
Distributions of Summands: previous results

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in \([F_n, F_{n+1})\) tends to \(\frac{n}{\phi^2 + 1} \approx 0.276n\), where \(\phi = \frac{1+\sqrt{5}}{2}\) is the golden mean.

Central Limit Type Theorem (KKMW 2010)

As \(n \to \infty\), the distribution of the number of summands in the Zeckendorf decomposition for integers in \([F_n, F_{n+1})\) is Gaussian.

Remark:

Note that this is equivalent to choosing summands from the first \(n\) Fibonacci numbers with the largest summand being \(F_n\).

Distribution of summands after introducing binning?
Condition on Gaussianity, $A_n = \{0, 1\}$

Recall:

Uniqueness of decomposition

$\iff A_n \in \{\{0, 1\}, \{0, 1, \ldots, b_n - 1\}, \{0, 1, \ldots, b_n\}\}$
Condition on Gaussianity, $A_n = \{0, 1\}$

Recall:

Uniqueness of decomposition

$$A_n \in \{\{0, 1\}, \{0, 1, \ldots, b_n - 1\}, \{0, 1, \ldots, b_n\}\}$$

Theorem (Carty-Gueganic-K-M-Shubina-Sweitzer-W-Yang)

Consider a ($\{b_n\}, \{0, 1\}, 0$)-Sequence. If $\sum_{n=1}^{\infty} 1/b_n$ diverges, then the distribution of the number of summands of integers whose largest summand is in bin N converges to a Gaussian as $N \to \infty$.
Condition on Gaussianity II, $A_n \in \{\{0, \ldots, b_n - 1\}, \{0, \ldots, b_n\}\}$

Theorem (Carty-Gueganic-K-M-Shubina-Sweitzer-W-Yang)

Consider a $({b_n}, {A_n}, 0)$-Sequence, where for all $n \in \mathbb{N}$, $b_n = n$, and $A_n \in \{\{0, \ldots, n - 1\}, \{0, \ldots, n\}\}$. The distribution of the number of summands of integers whose largest summand is in bin N converges to a Gaussian as $N \to \infty$.
Condition on Gaussianity III, A_n constant

Theorem (Carty-Gueganic-K-M-Shubina-Sweitzer-W-Yang)

Assume A_n is a constant set A for all n. Then the distribution of the number of summands converges to Gaussian if

$$\sum \frac{1}{b_n^{m-m'}}$$

diverges, where m is the maximal element of A and m' is the second maximal element.
Proof Method

We will need the following theorem for the proof:

Theorem (Lyapunov CLT)

Let \(\{Y_1, Y_2, \ldots\} \) be independent random variables, each with finite mean \(\mu_i \) and variance \(\sigma_i^2 \). Define \(s_n^2 = \sum_{i=1}^{n} \sigma_i^2 \). Then if there exists a \(\delta > 0 \) such that

\[
\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{i=1}^{n} \mathbb{E}(|Y_i - \mu_i|^{2+\delta}) = 0, \quad \frac{1}{N} \sum_{i=1}^{\infty} Y_i \text{ converges to a Gaussian as } N \to \infty.
\]
Setting up the Random Variables

For an integer m let $Y_n(m) = 1$ if we use an element of the n^{th} bin in m’s decomposition, and 0 otherwise; thus if the largest summand in m’s decomposition is from bin N then the number of summands is $Y_1(m) + \cdots + Y_N(m)$.
The probability of choosing \(i \) summands from the \(n \)-th bin is

\[
p(Y_n = i) = \frac{ \binom{b_n}{i} }{ \sum_{t \in A_n} \binom{b_n}{t} },
\]
The probability of choosing \(i \) summands from the \(n \)-th bin is

\[
p(Y_n = i) = \frac{\binom{b_n}{i}}{\sum_{t \in A_n} \binom{b_n}{t}},
\]

and the expectation values of \(Y_n \) and \(Y_n^2 \) are

\[
\mathbb{E}[Y_n] = \frac{\sum_{t \in A_n} t \binom{b_n}{t}}{\sum_{t \in A_n} \binom{b_n}{t}} \quad \mathbb{E}[Y_n^2] = \frac{\sum_{t \in A_n} t^2 \binom{b_n}{t}}{\sum_{t \in A_n} \binom{b_n}{t}}
\]
We then find that
\[
\sigma_n^2 = \mathbb{E}[Y_n^2] - \mathbb{E}[Y_n]^2
\]
\[
= \sum_{i,j \in A_n, i \neq j} (i - j)^2 (b_n_i)(b_n_j) \cdot
\frac{2 \left(\sum_{t \in A_n} (b_n_t) \right)^2}{2 \left(\sum_{t \in A_n} (b_n_t) \right)^2},
\]
and the absolute centered moment
\[
\rho_n^{2+\delta} := \mathbb{E} \left[|Y_n - \mu_n|^{2+\delta} \right]
\]
\[
= \sum_{i \in A_n} \left(\frac{b_n_i}{b_n} \right) \left| \sum_{t \in A_n} (i - t) (b_n_t) \right|^{2+\delta}
\]
\[
= \frac{\left(\sum_{t \in A_n} (b_n_t) \right)^{3+\delta}}{\left(\sum_{t \in A_n} (b_n_t) \right)}^{3+\delta}
\]
Proof Method (cont’d)

We come to the conclusion of the theorem by analyzing σ_n^2 and $\rho_n^{2+\delta}$ asymptotically and applying the Lyapunov Central Limit Theorem.

Theorem (Carty-Gueganic-K-M-Shubina-Sweitzer-W-Yang)

Consider a $\left(\{b_n\}, \{A_n\}, 0\right)$-Sequence, where for all $n \in \mathbb{N}$, $b_n = n$, and $A_n \in \{\{0, \ldots, n-1\}, \{0, \ldots, n\}\}$. The distribution of the number of summands of integers whose largest summand is in bin N converges to a Gaussian as $N \to \infty$.
We come to the conclusion of the theorem by analyzing σ_n^2 and $\rho_n^{2+\delta}$ asymptotically and applying the Lyapunov Central Limit Theorem.

Theorem (Carty-Gueganic-K-M-Shubina-Sweitzer-W-Yang)

Consider a $\langle \{b_n\}, \{A_n\}, 0 \rangle$-Sequence, where for all $n \in \mathbb{N}$, $b_n = n$, and $A_n \in \{\{0, \ldots, n-1\}, \{0, \ldots, n\}\}$. The distribution of the number of summands of integers whose largest summand is in bin N converges to a Gaussian as $N \to \infty$. In fact, for any choice of $\delta > 0$, the Lyapunov condition is satisfied.
We come to the conclusion of the theorem by analyzing σ_n^2 and $\rho_n^{2+\delta}$ asymptotically and applying the Lyapunov Central Limit Theorem.

Conjecture
(Carty-Gueganic-K-M-Shubina-Sweitzer-W-Yang)

Consider a $\langle \{b_n\}, \{A_n\}, 0 \rangle$-Sequence, where for all $k, n \in \mathbb{N}$, $k \leq n$, $b_n = \lfloor n/k \rfloor$, and $A_n \in \{ \{0, \ldots, n-1\}, \{0, \ldots, n\} \}$. The distribution of the number of summands of integers whose largest summand is in bin N converges to a Gaussian as $N \to \infty$. In fact, for any choice of $\delta > 0$, the Lyapunov condition is satisfied.
References

- P. Billingsley, *Probability and Measure* (1979), pages 377-381

This research was conducted as part of the 2017 SMALL REU program at Williams College. This work was supported by NSF Grant DMS1561945 and DMS1659037, Williams College, and the Finnerty Fund.
Thank You!