On Summand Minimality of Generalized Zeckendorf Decompositions

Katherine Cordwell1, Magda Hlavacek2
SMALL REU, Williams College

ktcordwell@gmail.com
mhlavacek@hmc.edu

1University of Maryland, College Park
2Harvey Mudd College

Young Mathematicians Conference 2016
Fibonacci Sequence

\[F_{n+1} = F_n + F_{n-1} \]

1, 2, 3, 5, 8, 13, 21, ...
Zeckendorf Decompositions

Theorem (Zeckendorf)

Every positive integer has a unique representation as a sum of nonadjacent Fibonacci numbers.

Edouard Zeckendorf
Summand Minimality

Example

- $18 = 13 + 5 = F_6 + F_4$, legal decomposition, two summands
- $18 = 13 + 3 + 2 = F_6 + F_3 + F_2$, nonlegal decomposition, three summands
Definition

The Zeckendorf decomposition is summand minimal, because the Zeckendorf decomposition of any positive integer n uses the fewest summands out of any decomposition of n into Fibonacci numbers.
Definition
The Zeckendorf decomposition is summand minimal, because the Zeckendorf decomposition of any positive integer \(n \) uses the fewest summands out of any decomposition of \(n \) into Fibonacci numbers.

Overall Question
What other recurrences are summand minimal?
Positive Linear Recurrence Sequences

Definition

A positive linear recurrence sequence (PLRS) is the sequence given by a recurrence a of the following form:

$$a_n = c_1 a_{n-1} + \cdots + c_t a_{n-t}$$

where all $c_i \geq 0$ and $c_1, c_t > 0$.
A positive linear recurrence sequence (PLRS) is the sequence given by a recurrence \(a \) of the following form:

\[
a_n = c_1 a_{n-1} + \cdots + c_t a_{n-t}
\]

where all \(c_i \geq 0 \) and \(c_1, c_t > 0 \). We use **ideal initial conditions** \(a_{-(n-1)} = 0, \ldots, a_{-1} = 0, a_0 = 1 \).
Definition

A positive linear recurrence sequence (PLRS) is the sequence given by a recurrence a of the following form:

$$a_n = c_1 a_{n-1} + \cdots + c_t a_{n-t}$$

where all $c_i \geq 0$ and $c_1, c_t > 0$. We use ideal initial conditions $a_{-(n-1)} = 0, \ldots, a_{-1} = 0, a_0 = 1$.

Definition

We call (c_1, \ldots, c_t) the signature of the sequence.
Definition

For some sequence \(\{a_i\} \), suppose we have:

\[
 n = b_k a_k + b_{k-1} a_{k-1} + \cdots + b_0 a_0
\]

Then we call \([b_k, b_{k-1}, \ldots, b_0, \infty]\) a representation of \(n \) over \(\{a_0\} \).
Definition

For some sequence \(\{a_i\} \), suppose we have:

\[
n = b_k a_k + b_{k-1} a_{k-1} + \cdots + b_0 a_0
\]

Then we call \([b_k, b_{k-1}, \ldots, b_0, \infty]\) a representation of \(n\) over \(\{a_0\}\).

Example

18 = \(F_6 + F_4\) and \(F_6 + F_3 + F_2\)

We denote these two representations of 18 by:

\([1, 0, 1, 0, 0, 0, 0, \infty]\) and \([1, 0, 0, 1, 1, 0, 0, \infty]\)
Allowable Blocks

Definition

Given a PLRS with signature \((c_1, \ldots, c_t)\), we say that \([b_1, \ldots, b_k]\) is an **allowable block** if \(k \leq t\) and \(b_i = c_i\) for \(i < k\) and \(0 \leq b_k < c_k\).
Allowable Blocks

Definition

Given a PLRS with signature \((c_1, \ldots, c_t)\), we say that \([b_1, \ldots, b_k]\) is an **allowable block** if \(k \leq t\) and \(b_i = c_i\) for \(i < k\) and \(0 \leq b_k < c_k\).

Example

Signature: \((1, 2, 1)\)
Legal blocks: \([0], [1, 0], [1, 1], [1, 2, 0]\)
Generalized Zeckendorf Decompositions

Definition

Given a positive linear recurrence, a representation of a positive integer n is a **generalized Zeckendorf decomposition** (GZD) if it can be formed as a tiling of a set of allowable blocks.
Generalized Zeckendorf Decompositions

Definition
Given a positive linear recurrence, a representation of a positive integer \(n \) is a **generalized Zeckendorf decomposition** (GZD) if it can be formed as a tiling of a set of allowable blocks.

Theorem (Miller et. al., Hamlin)
Given any positive linear recurrence, each positive integer \(n \) has a unique generalized Zeckendorf decomposition.
Not All Recurrences are Summand Minimal

Recurrence: \(f_n = f_{n-1} + 2f_{n-2} + f_{n-3} \)

Signature: (1, 2, 1)
Sequence: 1, 1, 3, 6, 13, ...
Allowable blocks: [0], [1, 0], [1, 1], [1, 2, 0]
Not All Recurrences are Summand Minimal

Recurrence: \(f_n = f_{n-1} + 2f_{n-2} + f_{n-3} \)

Signature: (1, 2, 1)
Sequence: 1, 1, 3, 6, 13, ...
Allowable blocks: [0], [1, 0], [1, 1], [1, 2, 0]

GZD
- \(6 + 2(3) \)
- [1, 2, 0, 0]
- Three summands
Not All Recurrences are Summand Minimal

Recurrence: $f_n = f_{n-1} + 2f_{n-2} + f_{n-3}$

Signature: (1, 2, 1)
Sequence: 1, 1, 3, 6, 13, ...
Allowable blocks: [0], [1, 0], [1, 1], [1, 2, 0]
Main Result

Theorem

Suppose we have a PLRS with signature \((c_1, c_2, \ldots, c_t)\)\n
The corresponding GZD of each positive integer \(n\) is summand minimal if and only if:

\[
c_1 \geq c_2 \geq \cdots \geq c_t.
\]
Borrow and Carry

Signature: \((c_1, c_2, \ldots, c_t)\)

\[[1, 0, \ldots, 0] \quad \text{borrow} \quad [0, c_1, \ldots, c_t] \]

\[[0, c_1, \ldots, c_t] \quad \text{carry} \quad [1, 0, \ldots, 0] \]
Proof Sketch

Theorem (\(\iff\))

If the signature of a recurrence is weakly decreasing, then the recurrence is summand minimal.
Theorem (\(\Rightarrow\))

If the signature of a recurrence is weakly decreasing, then the recurrence is summand minimal.

Proof.

Start with any representation and use successive borrows and carries to reach the GZD. Because after borrowing we can always carry, we never increase the number of summands.
Sufficiency Example

Signature: (3, 2, 1)
Sequence: 1, 3, 11, 40, ...
Start with: 15

\[
\begin{align*}
[5, 0, \infty] & \quad 15 = 5 \cdot 3
\end{align*}
\]
Sufficiency Example

Signature: (3, 2, 1)
Sequence: 1, 3, 11, 40, ...
Start with: 15

\[[5, 0, \infty] \quad \text{borrow} \quad [4, 3, \infty] \]

\[15 = 5 \cdot 3 \]
\[15 = 4 \cdot 3 + 3 \cdot 1 \]
Sufficiency Example

Signature: (3, 2, 1)
Sequence: 1, 3, 11, 40, ...
Start with: 15

\[[5, 0, \infty] \]

borrow

\[[4, 3, \infty] \]

15 = 5 \times 3

\[[1, 1, 1, \infty] \]

carry

15 = 4 \times 3 + 3 \times 1

15 = 1 \times 11 + 1 \times 3 + 1 \times 1
Theorem (\iff)

If a recurrence is summand minimal, then its signature is weakly decreasing.
Theorem (\iff)

If a recurrence is summand minimal, then its signature is weakly decreasing.

Proof.

Two cases: $c_1 > 1$ or $c_1 = 1$.
Theorem (⇐)

If a recurrence is summand minimal, then its signature is weakly decreasing.

Proof.

Two cases: $c_1 > 1$ or $c_1 = 1$.
If $c_1 > 1$, then the general idea is to construct a non-legal representation and show that the corresponding legal representation uses more summands.
Theorem (\iff)

If a recurrence is summand minimal, then its signature is weakly decreasing.

Proof.

Two cases: $c_1 > 1$ or $c_1 = 1$.
If $c_1 > 1$, then the general idea is to construct a non-legal representation and show that the corresponding legal representation uses more summands.
If $c_1 = 1$, then we use a growth rate argument to demonstrate the existence of a non-legal representation.
Case 1: $c_1 > 1$

Further subcases. One example:

Signature: $(2, 1, 3)$
Sequence: $0, 0, 1, 2, 5, 15, 41, 112, ...$
Blocks: $[0], [1], [2, 0], [2, 1, 0], [2, 1, 1], [2, 1, 2]$
Case 2: \(c_1 = 1 \)

Assume \(c_1 = 1 \). What are good subcases? Let \(k > 1 \).

- \(\{1, k, \ldots\} \)
- \(\{1, \ldots, 1, k, \ldots\}, \ a \geq 2 \)
- \(\{1, \ldots, 1, 0, \ldots, 0, \ldots, 1, \ldots, 1, 0, \ldots, 0, k, \ldots\} \) \(a_1 > 1 \)
- \(\{1, 0, \ldots, 0, k, \ldots\} \)
Example Construction

Signature: \((1, ..., 1, 0, ..., 0, ..., 1, ..., 1, k, ...), a_1 > 1\)

Non-legal representation:

\([1, ..., 1, 0, ..., 0, ..., 1, ..., 1, 2, 0, ..., 0, \infty]\)

Change in summands: \(a_1 - 1\)
Subcases Start to get Overwhelming

\begin{itemize}
 \item $c_0 = 1$?
 \item $\exists c_i > 1$?
 \item $c_2 > 1$?
 \item $\exists 0$ before $c_i > 1$
 \item $c_2 = 1$
 \item $11\ldots 00..01..1k$
 \item $1100..01..10..0k$
\end{itemize}

$1k \rightarrow \text{Proven}$

$11..1k \rightarrow \text{Proven}$
Definition

The characteristic polynomial of a recurrence with signature \((c_1, c_2, \ldots, c_k)\) is

\[x^k - c_1 x^{k-1} - \cdots - c_k. \]
Solution: Growth Rates!

Definition

The characteristic polynomial of a recurrence with signature (c_1, c_2, \ldots, c_k) is

$$x^k - c_1 x^{k-1} - \cdots - c_k.$$

Theorem

Given a PLRS with a signature of the form $(1, c_2, \ldots)$, the characteristic polynomial has a unique largest positive root $\alpha > 1$. For large n,

$$a_n \approx C\alpha^n.$$
Counterexample: Trying to represent $2a_n$

Theorem

For every non-weakly-decreasing signature with $c_1 = 1$, then there exists some n for which the GZD of $2a_n$ has at least 3 summands.
Counterexample: Trying to represent \(2a_n\)

Theorem

For every non-weakly-decreasing signature with \(c_1 = 1\), then there exists some \(n\) for which the GZD of \(2a_n\) has at least 3 summands.

If summand minimal, the GZD of \(2a_n\) must have only 1 or 2 summands:

- \([1, 0, 0, \ldots]\)
- \([1, 0, \ldots, 1, 0, \ldots]\)
Representations of $2a_n$

Growth rate arguments give three specific forms:

- $2a_n = a_{n+r}$
- $2a_n = a_{n+r} + a_{n-s}$
- $2a_n = a_{n+r} + a_{n-s+1}$

for some fixed r, s.
Representations of $2a_n$

Growth rate arguments give three specific forms:

- $2a_n = a_{n+r}$
- $2a_n = a_{n+r} + a_{n-s}$
- $2a_n = a_{n+r} + a_{n-s+1}$

for some fixed r, s.

These recurrences have different growth rates; only one can correspond to our sequence.

For all $n > N$, every representation of $2a_n$ must be of the same form.
The characteristic polynomial of a truncated sequence must divide exactly one of the following characteristic polynomials:

- \(x^r - 2 \)
- \(x^r - 2x^s - 1 \)
- \(x^r - 2x^{s-1} - 1 \)

By a result of Schinzel on the factorization of these polynomials, this cannot be the case.
The characteristic polynomial of a truncated sequence must divide exactly one of the following characteristic polynomials:

- $x^r - 2$
- $x^r - 2x^s - 1$
- $x^r - 2x^{s-1} - 1$

By a result of Schinzel on the factorization of these polynomials, this cannot be the case.
This is joint work with Chi Huynh, Steven J. Miller, Eyvindur Palsson, Carsten Peterson, and Yen Nhi Truong Vu.
Acknowledgments

This is joint work with Chi Huynh, Steven J. Miller, Eyvindur Palsson, Carsten Peterson, and Yen Nhi Truong Vu.

We would like to thank Professor Amanda Folsom for funding as well as NSF Grants DMS1265673, DMS1561945, DMS1347804, and DMS1449679.
This is joint work with Chi Huynh, Steven J. Miller, Eyvindur Palsson, Carsten Peterson, and Yen Nhi Truong Vu.

We would like to thank Professor Amanda Folsom for funding as well as NSF Grants DMS1265673, DMS1561945, DMS1347804, and DMS1449679.

Thank you also to the Ohio State University and the organizers of YMC.
Selected References

Sufficiency Example

Signature: (3, 2, 1)
Sequence: 1, 3, 11, 40, 145 ...
Start with: 160

[4, 0, 0, 0, ∞]
160 = 4•40
Sufficiency Example

Signature: (3, 2, 1)
Sequence: 1, 3, 11, 40, 145 ...
Start with: 160

\[[4, 0, 0, 0, \infty] \]

160 = 4 \cdot 40

\[[3, 3, 2, 1, \infty] \]

borrow
Sufficiency Example

Signature: (3, 2, 1)
Sequence: 1, 3, 11, 40, 145 ...
Start with: 160

\[
\begin{align*}
[4, 0, 0, 0, \infty] & \quad \text{borrow} \\
[3, 3, 2, 1, \infty] & \quad \text{carry} \\
[1, 0, 1, 1, 1, \infty] & \\
\end{align*}
\]

160 = 4\cdot40

Check: 1 + 3 + 11 + 145 = 160
Case 1: $c_1 > 1$ Further example

Further subcases. One example:

Signature: (c_1, c_2, \ldots, c_t), some $c_i > c_1$
Non-legal representation: $[0, c_1, \ldots, c_{i-2}, c_{i-1} + 1, 0, \infty]$

$$[0, c_1, \ldots, c_{i-2}, c_{i-1} + 1, 0, \infty]$$

\[\downarrow \text{borrow} \]

$$[0, c_1, \ldots, c_{i-2}, c_{i-1}, c_1, \infty]$$

Net change in summands: $c_1 - 1 \geq 1$