Sufficient Condition

Necessary Condition

Acknowledgments

On Summand Minimality of Generalized Zeckendorf Decompositions

Katherine Cordwell¹, Magda Hlavacek² SMALL REU, Williams College

ktcordwell@gmail.com mhlavacek@hmc.edu

¹University of Maryland, College Park ²Harvey Mudd College

Young Mathematicians Conference 2016

Introduction	and	Notation
0000000	000	

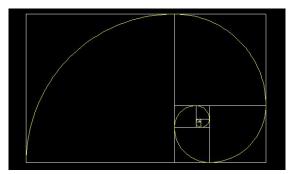
Necessary Condition

Acknowledgments

Fibonacci Sequence

$$F_{n+1} = F_n + F_{n-1}$$

1, 2, 3, 5, 8, 13, 21, ...



Fibonacci Spiral

Sufficient Condition

Necessary Condition

Acknowledgments

Zeckendorf Decompositions

Theorem (Zeckendorf)

Every positive integer has a unique representation as a sum of nonadjacent Fibonacci numbers.

Edouard Zeckendorf

Sufficient Condition

Necessary Condition

Acknowledgments

Summand Minimality

Example

- $18 = 13 + 5 = F_6 + F_4$, legal decomposition, two summands
- $18 = 13 + 3 + 2 = F_6 + F_3 + F_2$, nonlegal decomposition, three summands

Sufficient Condition

Necessary Condition

Acknowledgments

Question

Definition

The Zeckendorf decomposition is **summand minimal**, because the Zeckendorf decomposition of any positive integer n uses the fewest summands out of any decomposition of n into Fibonacci numbers.

Sufficient Condition

Necessary Condition

Acknowledgments

Question

Definition

The Zeckendorf decomposition is **summand minimal**, because the Zeckendorf decomposition of any positive integer n uses the fewest summands out of any decomposition of n into Fibonacci numbers.

Overall Question

What other recurrences are summand minimal?

Sufficient Condition

Necessary Condition

Acknowledgments

Positive Linear Recurrence Sequences

Definition

A **positive linear recurrence sequence (PLRS)** is the sequence given by a recurrence *a* of the following form:

$$a_n = c_1 a_{n-1} + \cdots + c_t a_{n-t}$$

where all $c_i \ge 0$ and $c_1, c_t > 0$.

Sufficient Condition

Necessary Condition

Acknowledgments

Positive Linear Recurrence Sequences

Definition

A **positive linear recurrence sequence (PLRS)** is the sequence given by a recurrence *a* of the following form:

$$a_n = c_1 a_{n-1} + \cdots + c_t a_{n-t}$$

where all $c_i \ge 0$ and $c_1, c_t > 0$. We use **ideal initial** conditions $a_{-(n-1)} = 0, \ldots, a_{-1} = 0, a_0 = 1$.

Sufficient Condition

Necessary Condition

Acknowledgments

Positive Linear Recurrence Sequences

Definition

A **positive linear recurrence sequence (PLRS)** is the sequence given by a recurrence *a* of the following form:

$$a_n = c_1 a_{n-1} + \cdots + c_t a_{n-t}$$

where all $c_i \ge 0$ and $c_1, c_t > 0$. We use **ideal initial** conditions $a_{-(n-1)} = 0, \ldots, a_{-1} = 0, a_0 = 1$.

Definition

We call (c_1, \ldots, c_t) the signature of the sequence.

Introduction	and	Notation
00000000	000	

Necessary Condition

Acknowledgments

Representation Notation

Definition

For some sequence $\{a_i\}$, suppose we have:

$$n=b_ka_k+b_{k-1}a_{k-1}+\cdots+b_0a_0$$

Then we call $[b_k, b_{k-1}, \ldots, b_0, \infty]$ a *representation* of *n* over $\{a_0\}$.

Introduction a	and Notation
0000000000	

Necessary Condition

Acknowledgments

Representation Notation

Definition

For some sequence $\{a_i\}$, suppose we have:

$$n=b_ka_k+b_{k-1}a_{k-1}+\cdots+b_0a_0$$

Then we call $[b_k, b_{k-1}, \ldots, b_0, \infty]$ a *representation* of *n* over $\{a_0\}$.

Example

$$18 = F_6 + F_4$$
 and $F_6 + F_3 + F_2$

We denote these two representations of 18 by:

 $[1, 0, 1, 0, 0, 0, 0, \infty]$ and $[1, 0, 0, 1, 1, 0, 0, \infty]$

Sufficient Condition

Necessary Condition

Acknowledgments

Allowable Blocks

Definition

Given a PLRS with signature (c_1, \ldots, c_t) , we say that $[b_1, \ldots, b_k]$ is an **allowable block** if $k \le t$ and $b_i = c_i$ for i < k and $0 \le b_k < c_k$.

Necessary Condition

Acknowledgments

Allowable Blocks

Definition

Given a PLRS with signature (c_1, \ldots, c_t) , we say that $[b_1, \ldots, b_k]$ is an **allowable block** if $k \le t$ and $b_i = c_i$ for i < k and $0 \le b_k < c_k$.

Example

Signature: (1, 2, 1) Legal blocks: [0], [1, 0], [1, 1], [1, 2, 0]

Sufficient Condition

Necessary Condition

Acknowledgments

Generalized Zeckendorf Decompositions

Definition

Given a positive linear recurrence, a representation of a positive integer *n* is a **generalized Zeckendorf decomposition** (GZD) if it can be formed as a tiling of a set of allowable blocks.

Sufficient Condition

Necessary Condition

Acknowledgments

Generalized Zeckendorf Decompositions

Definition

Given a positive linear recurrence, a representation of a positive integer *n* is a **generalized Zeckendorf decomposition** (GZD) if it can be formed as a tiling of a set of allowable blocks.

Theorem (Miller et. al., Hamlin)

Given any positive linear recurrence, each positive integer n has a unique generalized Zeckendorf decomposition.

Sufficient Condition

Necessary Condition

Acknowledgments

Not All Recurrences are Summand Minimal

Recurrence: $f_n = f_{n-1} + 2f_{n-2} + f_{n-3}$

Signature: (1, 2, 1) Sequence: 1, 1, 3, 6, 13, ... Allowable blocks: [0], [1, 0], [1, 1], [1, 2, 0]

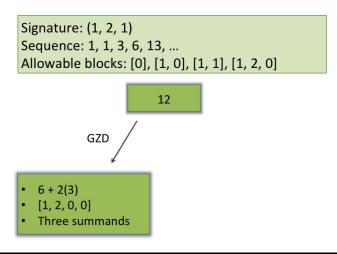
Sufficient Condition

Necessary Condition

Acknowledgments

Not All Recurrences are Summand Minimal

Recurrence: $f_n = f_{n-1} + 2f_{n-2} + f_{n-3}$



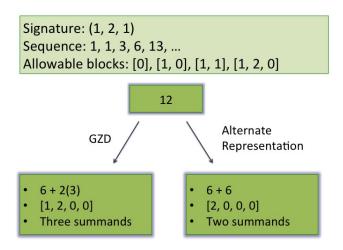
Sufficient Condition

Necessary Condition

Acknowledgments

Not All Recurrences are Summand Minimal

Recurrence: $f_n = f_{n-1} + 2f_{n-2} + f_{n-3}$



Sufficient Condition

Necessary Condition

Acknowledgments

Main Result

Theorem

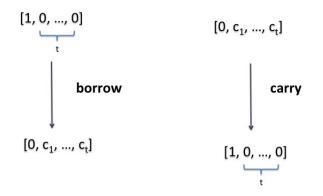
Suppose we have a PLRS with signature $(c_1, c_2, ..., c_t)$ The corresponding GZD of each positive integer n is summand minimal if and only if:

$$c_1 \geq c_2 \geq \cdots \geq c_t$$
.

Introduction and Notation	Sufficient Condition ●○○○○	Necessary Condition	Acknowledgments

Borrow and Carry

Signature: (c₁, c₂, ..., c_t)



Sufficient Condition

Necessary Condition

Acknowledgments

Proof Sketch

Theorem (\Longrightarrow)

If the signature of a recurrence is weakly decreasing, then the recurrence is summand minimal.

Sufficient Condition

Necessary Condition

Acknowledgments

Proof Sketch

Theorem (\Longrightarrow)

If the signature of a recurrence is weakly decreasing, then the recurrence is summand minimal.

Proof.

Start with any representation and use successive borrows and carries to reach the GZD. Because after borrowing we can always carry, we never increase the number of summands.

Sufficient Condition

Necessary Condition

Acknowledgments

Sufficency Example

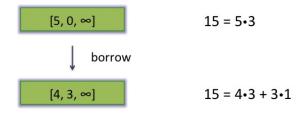
15 = 5•3

Sufficient Condition

Necessary Condition

Acknowledgments

Sufficiency Example

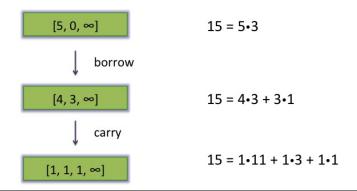


Sufficient Condition

Necessary Condition

Acknowledgments

Sufficiency Example



Introduction and Notation	Sufficient Condition	Necessary Condition ●○○○○○○○	Acknowledgments

Theorem (⇐)

If a recurrence is summand minimal, then its signature is weakly decreasing.

Introduction and Notation	Sufficient Condition	Necessary Condition	Acknowledgments
		00000000	

Theorem (<==)

If a recurrence is summand minimal, then its signature is weakly decreasing.

Proof.

Two cases: $c_1 > 1$ or $c_1 = 1$.

Introduction and Notation	Sut

Necessary Condition

Theorem (⇐)

If a recurrence is summand minimal, then its signature is weakly decreasing.

Proof.

Two cases: $c_1 > 1$ or $c_1 = 1$.

If $c_1 > 1$, then the general idea is to construct a non-legal representation and show that the corresponding legal representation uses more summands.

Introduction	and	Notation
00000000		

Necessary Condition

Theorem (—)

If a recurrence is summand minimal, then its signature is weakly decreasing.

Proof.

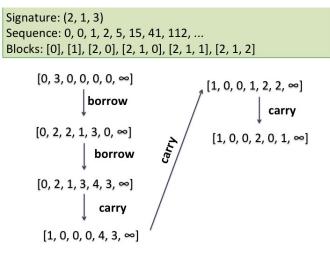
Two cases: $c_1 > 1$ or $c_1 = 1$.

If $c_1 > 1$, then the general idea is to construct a non-legal representation and show that the corresponding legal representation uses more summands. If $c_1 = 1$, then we use a growth rate argument to demonstrate the existence of a non-legal representation.

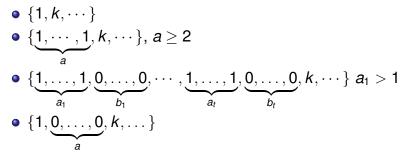
Introduction and Notation	Sufficient Condition	Necessary Condition	Acknowledgments

Case 1: *c*₁ > 1

Further subcases. One example:



Assume $c_1 = 1$. What are good subcases? Let k > 1.



Introduction and Notation	Sufficient Condition	Necessa
		000000

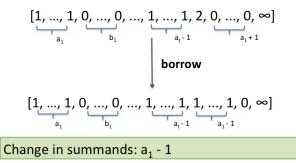
Necessary Condition

Acknowledgments

Example Construction

Signature:
$$(1, ..., 1, 0, ..., 0, ..., 1, ..., 1, k, ...), a_1 > 1$$

Non-legal representation:

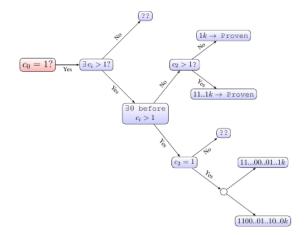


Sufficient Condition

Necessary Condition

Acknowledgments

Subcases Start to get Overwhelming



Introduction	and	Notation
00000000		

Necessary Condition

Acknowledgments

Solution: Growth Rates!

Definition

The characteristic polynomial of a recurrence with signature (c_1, c_2, \ldots, c_k) is

$$x^k - c_1 x^{k-1} - \cdots - c_k$$

Introduction	and	Notation
00000000		

Necessary Condition

Acknowledgments

Solution: Growth Rates!

Definition

The characteristic polynomial of a recurrence with signature (c_1, c_2, \ldots, c_k) is

$$x^k - C_1 x^{k-1} - \cdots - C_k.$$

Theorem

Given a PLRS with a signature of the form $(1, c_2, ...)$, the characteristic polynomial has a unique largest positive root $\alpha > 1$. For large n,

$$a_n pprox C lpha^n$$

Sufficient Condition

Necessary Condition

Acknowledgments

Counterexample: Trying to represent 2*a_n*

Theorem

For every non-weakly-decreasing signature with $c_1 = 1$, then there exists some n for which the GZD of $2a_n$ has at least 3 summands.

Sufficient Condition

Necessary Condition

Acknowledgments

Counterexample: Trying to represent 2*a_n*

Theorem

For every non-weakly-decreasing signature with $c_1 = 1$, then there exists some n for which the GZD of $2a_n$ has at least 3 summands.

If summand minimal, the GZD of $2a_n$ must have only 1 or 2 summands:

Introduction and Notation	Sufficient Condition	Necessary Condition	Acknowledgments		
Representations of 2 <i>a_n</i>					

Growth rate arguments give three specific forms:

- $2a_n = a_{n+r}$
- $2a_n = a_{n+r} + a_{n-s}$
- $2a_n = a_{n+r} + a_{n-s+1}$

for some fixed r, s.

Introduction and Notation	Sufficient Condition	Necessary Condition	Acknowledgments
Representations of	of $2a_n$		

Growth rate arguments give three specific forms:

- $2a_n = a_{n+r}$
- $2a_n = a_{n+r} + a_{n-s}$
- $2a_n = a_{n+r} + a_{n-s+1}$

for some fixed r, s.

These recurrences have different growth rates; only one can correspond to our sequence.

For all n > N, every representation of $2a_n$ must be of the same form.

Introduction and Notation	Sufficient Condition	Necessary Condition	Acknowledgments
Last Step			

The characteristic polynomial of a truncated sequence must divide exactly one of the following characteristic polynomials:

- $x^r 2x^s 1$
- $x^r 2x^{s-1} 1$

Introduction and Notation	Sufficient Condition	Necessary Condition	Acknowledgments
Last Step			

The characteristic polynomial of a truncated sequence must divide exactly one of the following characteristic polynomials:

- *x^r* − 2
- $x^r 2x^s 1$
- $x^r 2x^{s-1} 1$

By a result of Schinzel on the factorization of these polynomials, this cannot be the case.

Introduction and Notation	Sufficient Condition	Necessary Condition	Acknowledgments
Acknowledgments			

This is joint work with Chi Huynh, Steven J. Miller, Eyvindur Palsson, Carsten Peterson, and Yen Nhi Truong Vu.

Introduction and Notation	Sufficient Condition	Necessary Condition	Acknowledgments
Acknowledgments			

This is joint work with Chi Huynh, Steven J. Miller, Eyvindur Palsson, Carsten Peterson, and Yen Nhi Truong Vu.

We would like to thank Professor Amanda Folsom for funding as well as NSF Grants DMS1265673, DMS1561945, DMS1347804, and DMS1449679.

Introduction and Notation	Sufficient Condition	Necessary Condition	Acknowledgments
Acknowledgments			

This is joint work with Chi Huynh, Steven J. Miller, Eyvindur Palsson, Carsten Peterson, and Yen Nhi Truong Vu.

We would like to thank Professor Amanda Folsom for funding as well as NSF Grants DMS1265673, DMS1561945, DMS1347804, and DMS1449679.

Thank you also to the Ohio State University and the organizers of YMC.

Sufficient Condition

Necessary Condition

Acknowledgments

Selected References

- M. Catral, P. Ford, P. E. Harris, S. J. Miller, and D. Nelson, *Notes on Monoinvariants and Minimal Fibonacci Representations*, preprint 2016.
- N. Hamlin, *Representing Positive Integers as a Sum of Linear Recurrence Sequences*, Fibonacci Quarterly **50** (2012), no. 2, 99–10
 - S. J. Miller and Y. Wang, *From Fibonacci numbers to Central Limit Type Theorems*, Journal of Combinatorial Theory, Series A **119** (2012), no. 7, 1398–1413.

A. Schinzel, Solution d'un probleme de K. Zarankiewicz sur les suites de puissances consécutives de nombres irrationnels, Colloquium Mathematicae, **9** (1972), no. 2, pages 291–296.

E. Zeckendorf, *Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas*, Bulletin de la Société Royale des Sciences de Liége **41** (1972), pages 179–182.

Sufficient Condition

Necessary Condition

Acknowledgments

Sufficency Example

Signature: (3, 2, 1) Sequence: 1, 3, 11, 40, 145 ... Start with: 160

[4, 0, 0, 0, ∞]

160 = 4•40

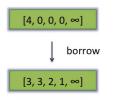
Sufficient Condition

Necessary Condition

Acknowledgments

Sufficency Example

Signature: (3, 2, 1) Sequence: 1, 3, 11, 40, 145 ... Start with: 160



160 = 4.40

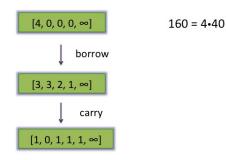
Sufficient Condition

Necessary Condition

Acknowledgments

Sufficency Example

Signature: (3, 2, 1) Sequence: 1, 3, 11, 40, 145 ... Start with: 160



Check: 1 + 3 + 11 + 145 = 160

Sufficient Condition

Necessary Condition

Acknowledgments

Case 1: $c_1 > 1$ Further example

Further subcases. One example:

Signature: $(c_1, c_2, ..., c_t)$, some $c_i > c_1$ Non-legal representation: $[0, c_1, ..., c_{i-2}, c_{i-1}+1, 0, \infty]$

Net change in summands: $c_1 - 1 \ge 1$