Math 313/331: Spring2016:
sim | @williams.edu

n211= (*C cookies, 5 People functionx)
Ccookies5people[numC_] := Module[{},
(* numC is the number of cookies to divide among 5 people =x)
X = Sum]|
Sum[Sum[Sum[Sum[If[al + a2 + a3 + a4 + a5 == numC, 1, @], {a5, 0, numC}],
{a4, 6, numC}], {a3, @, numC}], {a2, @, numC}], {al, @, numC}];

Return[x];

15
in214= Timing [Ccookies5people [40]]
ouzia- {122.726, 135751}

ws- Ccookies5peopleSlightlyFaster[numC_] := Module[{},

X = Sum]|

Sum[Sum[Sum[If[al+a2+a3+a4 < numC, 1, 0], {a4, O, numC}],
{a3, 0, numC}], {a2, @, numC}], {al, O, numC}];

Return[x];

15
inz16= Timing [Ccookies5peopleSlightlyFaster[40]]
out2ie= {2.66762, 135751}

wie- Ccookies5peoplefaster [numC_] := Module[{},
X = Sum[Sum[Sum[Sum[1l, {a4, @, numC - (al+a2+a3)}], {a3, 0,
numC - (al +a2)}], {a2, 6, numC - al}], {al, @, numC}];
Return[x];
15
inz1g= Timing [Ccookies5peoplefaster[200]]
ou21gl= {6.61444, 70058751}

2 | BasicCoding.nb

n210- CcookiesPpeople [numC_, numP_] := Module[{},
(*numC is number of cookies, numP is number of people x)
count = 0; (» sets the number of successes to 0x)
(* key
idea: count from @ to (numC+1)” (numP-1)-1 in base numC+1 x)
(» the digits are going to be 0, 1, ..., numC %)
(* if the sum is at most numC then
can give the remaining cookies to new personx)
(» IntegerDigits converts n to a list of numP-1 digits x)
(» the second argument is the base,
the third pads 0 digits in front «x)
(» this counts POORLY, but advantage is
don't need to know number of peoplex)
For[n = @, n < (humC+ 1)~ (numP -1) -1, n++,
{
x = IntegerDigits[n, numC + 1, numP - 1];
If[Sum[x[[i]], {i, 1, numP -1}] < numC, count = count + 1];

s

Print[count];

15

in221= Timing[CcookiesPpeople[49, 5]]
135751
outz21= {18.3301, Null}

w2- FOP[C = 1, ¢ < 20, c++, Print[Ccookies5peoplefaster[c]]]

BasicCoding.nb | 3

4845
5985
7315

8855

15
35
70
126
210
330
495
715
1001
1365
1820
2380
3060
3876
4845
5985
7315
8855

10626

15
35
70
126
210
330
495
715
1001
1365
1820

4 | BasicCoding.nb

2380
3060
3876
4845
5985
7315
8855
10626

10626

nisop= Print [Hyperlink ["http://oeis.org/A000332"]]
http://oeis.org/A000332

THE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

founded in 1964 by N.]. A. Sloane

5,15,35,70,126,210,330,495,715,1001,1365,1820 Search ‘ Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:5,15,35,70,126,210,330,495,715,1001,1365,1820

Displaying 1-1 of 1 result found. page 1
Sort: relevance | references | number | modified | created ~ Format: long | short | data
A000332 Binomial coefficient binomial(n.4) = n*(n-1)*(n-2)*(n-3)/24. =]

284
(Formerly M3853 N1578)

e, o, o, o, 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2330, 3060, 3876,
4845, 5985, 7315, 8855, 10626, 12650, 14950, 17550, 28475, 23751, 27405, 31465, 35960, 48920,
46376, 52360, 58905, 66045, 73815, 82251, 91398, 101270, 111930, 123410 (list: graph: refs: listen: history:
text: internal format)

CODETO LOOKAT FRACTIONS
FROM | thru 9, each digit once

http://oeis.org/A000332

BasicCoding.nb | 5

mpea- 118t = {};
For[j =1, j < 9, j++, list = AppendTo[list, j]];
permlist = Permutations[list];
For[n = 1, n < 9!, n++,
{
X = permlist[[n]];
IF[(x[[1]1]1/ (1@x[[2]] +x[[31])) +
(x[[4]]1/ (1@x[[5]1] +x[[6]]1)) +
(x[[7117 (1@x[[8]] + x[[9]1)) =2, Print[x]];
315

Subset
problem : Set of N distinct elements

Take any subset, A (N)

Take asubset of A (N),B (A (N)).How
many ways can you do this?

inees= Clear[n];

subsetfunction[n_] := Module[{},
count = 0;
list = {};
For[j =1, j < n, j++, list = AppendTo[list, j]];
subsetlist = Subsets[list, n];
For[m = 1, m < Length[subsetlist],
m++, count = count + 2~Length[subsetlist[[m]]]];
(*Print[count] ;)
Return[count];

15

ne67;:= For[num = @, num < 10, num++, Print[num, " ", subsetfunction[num]]]

6 | BasicCoding.nb

01

13

29

3 27

4 81

5 243

6 729

7 2187
8 6561
9 19683

10 59049

Math/Stat 341 : Fall 2015

sim| @williams.edu

(* Computing a 5-0 trump split among two hands =)

deck = {}; (* initialize deck to empty =x)

(* assign five 1s to the deck; the 1s represent the trump suit)

(» then we assign 21 O@s, these are the non-trump x)

(* taking time and coding well can save you a LOT of trouble %)

For[n=1, n < 5, n++, deck = AppendTo[deck, 1]];

For[n=6, n < 26, n++, deck = AppendTo[deck, 0]];

Length[deck] (» makes sure got 26 cards =x)

(* should have this in the program so we make sure we use the right deck,
and thus will paste it below! *)

26

BasicCoding.nb | 7

trumpsplit[numdo_] := Module[{},

count = 0;
deck = {}; (* initialize deck to empty =)
For[n=1, n < 5, n++, deck = AppendTo[deck, 1]];
For[n=6, n < 26, n++, deck = AppendTo[deck, 0]1];
For[n = 1, n < numdo, n++, (* main loop of code =*)

{

hand = RandomSample[deck, 13]; (* randomlly choose 13 cards =*)

numtrump = Sum[hand[[k]], {k, 1, 13}];

(* note numtrump is © or 5 if we have a 5-0 split x)

If[numtrump == @ || numtrump == 5, count = count +1];
(* count is our counter, counts how often have 5-0 x)
(» we use || for or; would use & for and use two equal signs for comparisonx)

}1; (* end of n loop x)
Print["Two theories: 2(1/2)~5 gave ", 6.25, "%, other gave 3.913%."];
Print["We observe ", 10@. count /numdo, "."];

B
Timing [trumpsplit[1000000]]
Two theories: 2(1/2)"5 gave 6.25%, other gave 3.9%.
We observe 3.9166.
{11.2945, Null}

(* Getting exactly two kings =)
twokings [numdo_] := Module[{},
deck = {}; (* initialize deck to empty %)
(* 1 is a king, © non-king =*)
For[n=1, n < 4, n++, deck = AppendTo[deck, 1]];
For[n =5, n < 52, n++, deck = AppendTo[deck, 0]];
count = @; (* initialize num of successes to 9 x)
For[n = 1, n < numdo, n++,
{
hand = RandomSample[deck, 5]; (* 5 card hand x)
numkings = Sum[hand[[k]], {k, 1, 5}];
If [numkings == 2, count = count + 1];
}1; (* end of n loop *)
Print[“Theory predicts prob exactly two kings is ",
100.0 Binomial[4, 2] Binomial[48, 3]/ Binomial[52, 5], “31;
Print["Observed probability is ", 100.0 count / numdo, "5

E
Timing[twokings [1000000]]
Theory predicts prob exactly two kings is 3.99298.
Observed probability is 3.9965.
{6.94204, Null}

8 | BasicCoding.nb

Length [deck]
52

(» calculating probability of a full house, queens and kings =x)
(» probability is VERY small so must do a lot of simulations! x)
(* sadly the more you want to compute, the worse Mathematica is x)
(» this is not a hard code, don't really need the special fns here x)
(* would want to shift to another language that is better x)
fullkingqueens[numdo_] := Module[{},
deck = {}; (* initialize deck to empty x)
(» 10 is a queen, 1 is a king, @ non-king %)
For[n=1, n < 4, n++, deck = AppendTo[deck, 1]];
For[n =5, n < 8, n++, deck = AppendTo[deck, 10]];
For[n=9, n < 52, n++, deck = AppendTo[deck, 0]1];
count = @; (* initialize num of successes to 9 x)
For[n = 1, n < numdo, n++,
{
hand = RandomSample[deck, 5]; (* 5 card hand =)
numkings = Sum[hand[[k]], {k, 1, 5}];
(* want full house of Qs and Ks =x)
(* sum is either 23 or 32! x)
If[numkings == 32 || numkings == 23, count = count + 1];
}15; (* end of n loop =)
Print["Theory predicts prob full house (Qs and Ks) is ",
100.0 Binomial[2, 1] Binomial[4, 3] Binomial([4, 2]/ Binomial[52, 5], “Hj;
Print[“observed probability is ", 100.0count//numdo, “.“];

|5
Timing[fullkingqueens [10000000]]
Theory predicts prob full house (Qs and Ks) is 0.00184689.
Observed probability is ©.00168.
{71.9165, Null}

Timing[fullkingqueens [40000000]]

Theory predicts prob full house (Qs and Ks) is 0.00184689.
Observed probability is ©.0018925.

{298.945, Null}

BasicCoding.nb | 9

fullhouse[numdo_] := Module|[{},
count = @; (» this is our count variable, records successes =x)
deck = {}; (% initializing deck; cards are 1, 10, 100, 1000, ... *)
For[n = 1, n < 13, n++,
For[j =1, j < 4, J++,
deck = AppendTo[deck, 10~ (n-1)]
]]5 (+ end of for loops, deck created =)
For[n = 1, n < numdo, n++,
{
hand = RandomSample[deck, 5]; (» randomly chooses 5 cards =*)
value = Sum[hand[[k]], {k, 1, 5}]; (* sums the value of cards x)
(* next few lines is a nice trick. if our hand is 10002011 this means =x)
(* we have one number repeated twice, the 1000; and have one 1, one 10, x)
(* and one 10000000. notice how easy it is to check! the only way to have x)
(* a full house is to have one 2 and one 3 among digits, or the product of)
(* non-zero digits is a 6. Easier to do MemberQ to check on 2, 3 but show both x)
valuelist = IntegerDigits[value];

If[

MemberQ[valuelist, 2] == True && MemberQ[valuelist, 3] == True, count = count +1];
(x this is how to do as a product of digits)

(* === = *) (*

trimlist = {};
For[j = 1, j < Length[valuelist], j++,
If[valuelist[[j]] > 1, trimlist = AppendTo[trimlist,valuelist[[j]]]

115
If[Product[trimlist[[j]],{]j,1,Length[trimlist]}] == 6, count = count+1];

——————————————— *)
}1; (* end of n loop *)

Print["Prob of a full house: ", 100.0Binomial[13, 2]
Binomial[2, 1] Binomial[4, 3] Binomial[4, 2] / Binomial[52, 5], "%."|;
Print["Observed prob: ", 100.6 count /numdo, "%."];

|5
Timing[fullhouse[2000000]]
Prob of a full house: 0.144058%.
Observed prob: 0.14615%.
{69.4828, Null}

