In[211] := (* C cookies, 5 People function *)
Ccookies5people[numC_] := Module[{},
 (* numC is the number of cookies to divide among 5 people *)
 x = Sum[
 Sum[Sum[Sum[Sum[
 If[a1 + a2 + a3 + a4 + a5 = numC, 1, 0],
 {a5, 0, numC}],
 {a4, 0, numC}],
 {a3, 0, numC}],
 {a2, 0, numC}],
 {a1, 0, numC}];
 Return[x];
];
In[214] := Timing[Ccookies5people[40]]
Out[214] = {122.726, 135751}

In[215] := Ccookies5peopleSlightlyFaster[numC_] := Module[{},
 x = Sum[
 Sum[Sum[Sum[Sum[1,
 {a4, 0, numC - (a1 + a2 + a3)}],
 {a3, 0, numC}],
 {a2, 0, numC}],
 {a1, 0, numC}];
 Return[x];
];
In[218] := Timing[Ccookies5peopleSlightlyFaster[40]]
Out[218] = {2.66762, 135751}

In[216] := Ccookies5peoplefaster[numC_] := Module[{},
 x = Sum[
 Sum[Sum[Sum[1, {a4, 0, numC - (a1 + a2 + a3)}],
 {a3, 0, numC - (a1 + a2)}],
 {a2, 0, numC - a1}],
 {a1, 0, numC}];
 Return[x];
];
In[219] := Timing[Ccookies5peoplefaster[200]]
Out[219] = {6.61444, 70058751}
\textbf{In[219]} = CcookiesPpeople[numC_, numP_] := Module[{},
(*numC is number of cookies, numP is number of people *)
count = 0; (* sets the number of successes to 0*)
(* key
idea: count from 0 to (numC+1)^{(numP-1)-1 in base numC+1 *)
(* the digits are going to be 0, 1, ..., numC *)
(* if the sum is at most numC then
 can give the remaining cookies to new person*)
(* IntegerDigits converts n to a list of numP-1 digits *)
(* the second argument is the base,
 the third pads 0 digits in front *)
(* this counts POORLY, but advantage is
don't need to know number of people*)
For[n = 0, n \leq (numC + 1)^{(numP - 1) - 1}, n++,
{
 x = IntegerDigits[n, numC + 1, numP - 1];
 If[Sum[x[[i]], {i, 1, numP - 1}] \leq numC, count = count + 1];
}
Print[count];
];

\textbf{In[221]} = Timing[CcookiesPpeople[40, 5]]

135751

\textbf{Out[221]} = {18.3301, Null}

\textbf{In[222]} = For[c = 1, c \leq 20, c++, Print[Ccookies5peoplefaster[c]]]
CODE TO LOOK AT FRACTIONS
FROM 1 thru 9, each digit once
list = {};
For[j = 1, j ≤ 9, j++, list = AppendTo[list, j]];
permlist = Permutations[list];
For[n = 1, n ≤ 9!, n++,
 {
 x = permlist[[n]];
 If[(x[[1]] / (10 x[[2]] + x[[3]])) +
 (x[[4]] / (10 x[[5]] + x[[6]])) +
 (x[[7]] / (10 x[[8]] + x[[9]])) == 2, Print[x]];
}];

Subset problem: Set of N distinct elements
Take any subset, A (N)
Take a subset of A (N), B (A (N)). How many ways can you do this?

Clear[n];
subsetfunction[n_] := Module[{},
 count = 0;
 list = {};
 For[j = 1, j ≤ n, j++, list = AppendTo[list, j]];
 sublist = Subsets[list, n];
 For[m = 1, m ≤ Length[sublist],
 m++, count = count + 2^Length[sublist[[m]]]];
 (*Print[count];*)
 Return[count];
};

For[num = 0, num ≤ 10, num++, Print[num, " ", subsetfunction[num]]]
Math / Stat 341 : Fall 2015 :
sjm1 @williams.edu

(* Computing a 5-0 trump split among two hands *)
desk = {}; (* initialize deck to empty *)
(* assign five 1s to the deck; the 1s represent the trump suit *)
(* then we assign 21 0s, these are the non-trump *)
(* taking time and coding well can save you a LOT of trouble *)
For[n = 1, n ≤ 5, n++, desk = AppendTo[deck, 1]];
For[n = 6, n ≤ 26, n++, desk = AppendTo[deck, 0]];
Length[deck] (* makes sure got 26 cards *)
(* should have this in the program so we make sure we use the right deck, and thus will paste it below! *)
trumpsplit[numdo_] := Module[{},
 count = 0;
 deck = {}; (* initialize deck to empty *)
 For[n = 1, n ≤ 5, n++, deck = AppendTo[deck, 1]];
 For[n = 6, n ≤ 26, n++, deck = AppendTo[deck, 0]];
 For[n = 1, n ≤ numdo, n++, (* main loop of code *)
 hand = RandomSample[deck, 13]; (* randomly choose 13 cards *)
 numtrump = Sum[hand[[k]], {k, 1, 13}];
 (* note numtrump is 0 or 5 if we have a 5-0 split *)
 If[numtrump = 0 || numtrump = 5, count = count + 1];
]; (* end of n loop *)
 Print["Two theories: 2(1/2)^5 gave ", 6.25, ", other gave 3.913%."];
 Print["We observe ", 100. count/numdo, ","];
]

Timing[trumpsplit[1000000]]
Two theories: 2(1/2)^5 gave 6.25%, other gave 3.9%.
We observe 3.9166.
{11.2945, Null}

(* Getting exactly two kings *)
twokings[numdo_] := Module[{},
 deck = {}; (* initialize deck to empty *)
 (* 1 is a king, 0 non-king *)
 For[n = 1, n ≤ 4, n++, deck = AppendTo[deck, 1]];
 For[n = 5, n ≤ 52, n++, deck = AppendTo[deck, 0]];
 count = 0; (* initialize num of successes to 0 *)
 For[n = 1, n ≤ numdo, n++,
 hand = RandomSample[deck, 5]; (* 5 card hand *)
 numkings = Sum[hand[[k]], {k, 1, 5}];
 If[numkings = 2, count = count + 1];
]; (* end of n loop *)
 Print["Theory predicts prob exactly two kings is ",
 100.0 Binomial[4, 2] Binomial[48, 3] / Binomial[52, 5], ","];
 Print["Observed probability is ", 100.0 count/numdo, ","];
]

Timing[twokings[1000000]]
Theory predicts prob exactly two kings is 3.99298.
Observed probability is 3.9965.
{6.94204, Null}
(52)

(* calculating probability of a full house, queens and kings *)
(* probability is VERY small so must do a lot of simulations! *)
(* sadly the more you want to compute, the worse Mathematica is *)
(* this is not a hard code, don't really need the special fns here *)
(* would want to shift to another language that is better *)

fullkingqueens[numdo_] := Module[{},
 deck = {};
 (* initialize deck to empty *)
 (* 10 is a queen, 1 is a king, 0 non-king *)
 For[n = 1, n ≤ 4, n++, deck = AppendTo[deck, 1]];
 For[n = 5, n ≤ 8, n++, deck = AppendTo[deck, 10]];
 For[n = 9, n ≤ 52, n++, deck = AppendTo[deck, 0]];
 count = 0; (* initialize num of successes to 0 *)
 For[n = 1, n ≤ numdo, n++,
 {hand = RandomSample[deck, 5]; (* 5 card hand *)
 numkings = Sum[hand[[k]], {k, 1, 5}];
 (* want full house of Qs and Ks *)
 (* sum is either 23 or 32! *)
 If[numkings = 32 || numkings == 23, count = count + 1];
 }]; (* end of n loop *)
 Print["Theory predicts prob full house (Qs and Ks) is ",
 100.0 Binomial[2, 1] Binomial[4, 3] Binomial[4, 2] / Binomial[52, 5], "."];
 Print["Observed probability is ", 100.0 count / numdo, "."];

];

Timing[fullkingqueens[10 000 000]]

Theory predicts prob full house (Qs and Ks) is 0.00184689.
Observed probability is 0.00168.

{71.9165, Null}

Timing[fullkingqueens[40 000 000]]

Theory predicts prob full house (Qs and Ks) is 0.00184689.
Observed probability is 0.0018925.

{298.945, Null}
fullhouse[numdo_] := Module[{},
 count = 0; (* this is our count variable, records successes *)
 deck = {}; (* initializing deck; cards are 1, 10, 100, 1000, ... *)
 For[n = 1, n ≤ 13, n++,
 For[j = 1, j ≤ 4, j++,
 deck = AppendTo[deck, 10^(n-1)]
]; (* end of for loops, deck created *)
 For[n = 1, n ≤ numdo, n++,
 {hand = RandomSample[deck, 5]; (* randomly chooses 5 cards *)
 value = Sum[hand[[k]], {k, 1, 5}]; (* sums the value of cards *)
 (* next few lines is a nice trick. if our hand is 10002011 this means *)
 (* we have one number repeated twice, the 1000; and have one 1, one 10, *)
 (* and one 1000000. notice how easy it is to check! the only way to have *)
 (* a full house is to have one 2 and one 3 among digits, or the product of *)
 (* non-zero digits is a 6. Easier to do MemberQ to check on 2, 3 but show both *)
 valuelist = IntegerDigits[value];
 If[
 MemberQ[valuelist, 2] == True && MemberQ[valuelist, 3] == True, count = count+1];
 (* this is how to do as a product of digits *)
 (* ----------------- *)(* trimlist = {};
 For[j = 1, j ≤ Length[valuelist], j++,
 If[valuelist[[j]] > 1, trimlist = AppendTo[trimlist,valuelist[[j]]]
];
 If[Product[trimlist[[j]],{j,1,Length[trimlist]}] == 6, count = count+1];
 --------------- *)
]; (* end of n loop *)
 Print["Prob of a full house: ", 100.0 Binomial[13, 2]
 Print["Observed prob: ", 100.0 count/numdo, "]%."];
];

Timing[fullhouse[2000000]]

Prob of a full house: 0.144058%.
Observed prob: 0.14615%.
{69.4828, Null}