
Math 313 /331 : Spring 2016 :
sjm1@williams.edu

In[211]:= (*C cookies, 5 People function*)

Ccookies5people[numC_] := Module[{},

(* numC is the number of cookies to divide among 5 people *)

x = Sum[

Sum[Sum[Sum[Sum[If[a1 + a2 + a3 + a4 + a5 ⩵ numC, 1, 0], {a5, 0, numC}],

{a4, 0, numC}], {a3, 0, numC}], {a2, 0, numC}], {a1, 0, numC}];

Return[x];

];

In[214]:= Timing[Ccookies5people[40]]

Out[214]= {122.726, 135 751}

In[215]:= Ccookies5peopleSlightlyFaster[numC_] := Module[{},

x = Sum[

Sum[Sum[Sum[If[a1 + a2 + a3 + a4 ≤ numC, 1, 0], {a4, 0, numC}],

{a3, 0, numC}], {a2, 0, numC}], {a1, 0, numC}];

Return[x];

];

In[216]:= Timing[Ccookies5peopleSlightlyFaster[40]]

Out[216]= {2.66762, 135 751}

In[161]:= Ccookies5peoplefaster[numC_] := Module[{},

x = Sum[Sum[Sum[Sum[1, {a4, 0, numC - (a1 + a2 + a3)}], {a3, 0,

numC - (a1 + a2)}], {a2, 0, numC - a1}], {a1, 0, numC}];

Return[x];

];

In[218]:= Timing[Ccookies5peoplefaster[200]]

Out[218]= {6.61444, 70 058 751}

In[219]:= CcookiesPpeople[numC_, numP_] := Module[{},
(*numC is number of cookies, numP is number of people *)

count = 0; (* sets the number of successes to 0*)
(* key
idea: count from 0 to (numC+1)^(numP-1)-1 in base numC+1 *)

(* the digits are going to be 0, 1, ..., numC *)

(* if the sum is at most numC then
can give the remaining cookies to new person*)
(* IntegerDigits converts n to a list of numP-1 digits *)

(* the second argument is the base,
the third pads 0 digits in front *)

(* this counts POORLY, but advantage is
don't need to know number of people*)
For[n = 0, n ≤ (numC + 1)^(numP - 1) - 1, n++,
{

x = IntegerDigits[n, numC + 1, numP - 1];
If[Sum[x[[i]], {i, 1, numP - 1}] ≤ numC, count = count + 1];
}];
Print[count];
];

In[221]:= Timing[CcookiesPpeople[40, 5]]

135 751

Out[221]= {18.3301, Null}

In[222]:= For[c = 1, c ≤ 20, c++, Print[Ccookies5peoplefaster[c]]]

5

15

35

70

126

210

330

495

715

1001

1365

1820

2380

3060

3876

2 BasicCoding.nb

4845

5985

7315

8855

5

15

35

70

126

210

330

495

715

1001

1365

1820

2380

3060

3876

4845

5985

7315

8855

10 626

5

15

35

70

126

210

330

495

715

1001

1365

1820

BasicCoding.nb 3

2380

3060

3876

4845

5985

7315

8855

10 626

10 626

In[150]:= Print[Hyperlink["http://oeis.org/A000332"]]

http://oeis.org/A000332

CODETOLOOKATFRACTIONS

FROM1 thru 9, each digit once

4 BasicCoding.nb

http://oeis.org/A000332

In[244]:= list = {};

For[j = 1, j ≤ 9, j++, list = AppendTo[list, j]];

permlist = Permutations[list];

For[n = 1, n ≤ 9!, n++,

{

x = permlist[[n]];

If[(x[[1]]/(10 x[[2]] + x[[3]])) +

(x[[4]]/(10 x[[5]] + x[[6]])) +

(x[[7]]/(10 x[[8]] + x[[9]])) ⩵ 2, Print[x]];

}];

Subset
problem : Set of N distinct elements
Take any subset, A (N)
Take a subset of A (N),B (A (N)).How
manyways can you do this?

In[265]:= Clear[n];

subsetfunction[n_] := Module[{},
count = 0;
list = {};
For[j = 1, j ≤ n, j++, list = AppendTo[list, j]];
subsetlist = Subsets[list, n];
For[m = 1, m ≤ Length[subsetlist],
m++, count = count + 2^Length[subsetlist[[m]]]];
(*Print[count];*)
Return[count];
];

In[267]:= For[num = 0, num ≤ 10, num++, Print[num, " ", subsetfunction[num]]]

BasicCoding.nb 5

0 1

1 3

2 9

3 27

4 81

5 243

6 729

7 2187

8 6561

9 19 683

10 59 049

Math /Stat 341 : Fall 2015 :

sjm1@williams.edu
(* Computing a 5-0 trump split among two hands *)

deck = {}; (* initialize deck to empty *)

(* assign five 1s to the deck; the 1s represent the trump suit *)

(* then we assign 21 0s, these are the non-trump *)

(* taking time and coding well can save you a LOT of trouble *)

For[n = 1, n ≤ 5, n++, deck = AppendTo[deck, 1]];

For[n = 6, n ≤ 26, n++, deck = AppendTo[deck, 0]];

Length[deck] (* makes sure got 26 cards *)

(* should have this in the program so we make sure we use the right deck,

and thus will paste it below! *)

26

6 BasicCoding.nb

trumpsplit[numdo_] := Module{},

count = 0;

deck = {}; (* initialize deck to empty *)

For[n = 1, n ≤ 5, n++, deck = AppendTo[deck, 1]];

For[n = 6, n ≤ 26, n++, deck = AppendTo[deck, 0]];

For[n = 1, n ≤ numdo, n++, (* main loop of code *)

{

hand = RandomSample[deck, 13]; (* randoml1y choose 13 cards *)

numtrump = Sum[hand[[k]], {k, 1, 13}];

(* note numtrump is 0 or 5 if we have a 5-0 split *)

If[numtrump ⩵ 0 || numtrump ⩵ 5, count = count + 1];

(* count is our counter, counts how often have 5-0 *)

(* we use || for or; would use && for and use two equal signs for comparison*)

}]; (* end of n loop *)

Print["Two theories: 2(1/2)^5 gave ", 6.25, "%, other gave 3.913%."];

Print"We observe ", 100. count  numdo, ".";

;

Timing[trumpsplit[1000 000]]

Two theories: 2(1/2)^5 gave 6.25%, other gave 3.9%.

We observe 3.9166.

{11.2945, Null}

(* Getting exactly two kings *)

twokings[numdo_] := Module{},

deck = {}; (* initialize deck to empty *)

(* 1 is a king, 0 non-king *)

For[n = 1, n ≤ 4, n++, deck = AppendTo[deck, 1]];

For[n = 5, n ≤ 52, n++, deck = AppendTo[deck, 0]];

count = 0; (* initialize num of successes to 0 *)

For[n = 1, n ≤ numdo, n++,

{

hand = RandomSample[deck, 5]; (* 5 card hand *)

numkings = Sum[hand[[k]], {k, 1, 5}];

If[numkings ⩵ 2, count = count + 1];

}]; (* end of n loop *)

Print"Theory predicts prob exactly two kings is ",

100.0 Binomial[4, 2] Binomial[48, 3]  Binomial[52, 5], ".";

Print"Observed probability is ", 100.0 count  numdo, ".";

;

Timing[twokings[1000 000]]

Theory predicts prob exactly two kings is 3.99298.

Observed probability is 3.9965.

{6.94204, Null}

BasicCoding.nb 7

Length[deck]

52

(* calculating probability of a full house, queens and kings *)

(* probability is VERY small so must do a lot of simulations! *)

(* sadly the more you want to compute, the worse Mathematica is *)

(* this is not a hard code, don't really need the special fns here *)

(* would want to shift to another language that is better *)

fullkingqueens[numdo_] := Module{},

deck = {}; (* initialize deck to empty *)

(* 10 is a queen, 1 is a king, 0 non-king *)

For[n = 1, n ≤ 4, n++, deck = AppendTo[deck, 1]];

For[n = 5, n ≤ 8, n++, deck = AppendTo[deck, 10]];

For[n = 9, n ≤ 52, n++, deck = AppendTo[deck, 0]];

count = 0; (* initialize num of successes to 0 *)

For[n = 1, n ≤ numdo, n++,

{

hand = RandomSample[deck, 5]; (* 5 card hand *)

numkings = Sum[hand[[k]], {k, 1, 5}];

(* want full house of Qs and Ks *)

(* sum is either 23 or 32! *)

If[numkings ⩵ 32 || numkings == 23, count = count + 1];

}]; (* end of n loop *)

Print"Theory predicts prob full house (Qs and Ks) is ",

100.0 Binomial[2, 1] Binomial[4, 3] Binomial[4, 2]  Binomial[52, 5], ".";

Print"Observed probability is ", 100.0 count  numdo, ".";

;

Timing[fullkingqueens[10000 000]]

Theory predicts prob full house (Qs and Ks) is 0.00184689.

Observed probability is 0.00168.

{71.9165, Null}

Timing[fullkingqueens[40000 000]]

Theory predicts prob full house (Qs and Ks) is 0.00184689.

Observed probability is 0.0018925.

{298.945, Null}

8 BasicCoding.nb

fullhouse[numdo_] := Module{},

count = 0; (* this is our count variable, records successes *)

deck = {}; (* initializing deck; cards are 1, 10, 100, 1000, ... *)

Forn = 1, n ≤ 13, n++,

Forj = 1, j ≤ 4, j++,

deck = AppendTodeck, 10^n - 1

; (* end of for loops, deck created *)

For[n = 1, n ≤ numdo, n++,

{

hand = RandomSample[deck, 5]; (* randomly chooses 5 cards *)

value = Sum[hand[[k]], {k, 1, 5}]; (* sums the value of cards *)

(* next few lines is a nice trick. if our hand is 10002011 this means *)

(* we have one number repeated twice, the 1000; and have one 1, one 10, *)

(* and one 10000000. notice how easy it is to check! the only way to have *)

(* a full house is to have one 2 and one 3 among digits, or the product of *)

(* non-zero digits is a 6. Easier to do MemberQ to check on 2, 3 but show both *)

valuelist = IntegerDigits[value];

If[

MemberQ[valuelist, 2] ⩵ True && MemberQ[valuelist, 3] ⩵ True, count = count + 1];

(* this is how to do as a product of digits *)

(* ----------------- *)(*

trimlist = {};

For[j = 1, j ≤ Length[valuelist], j++,

If[valuelist[[j]] > 1, trimlist = AppendTo[trimlist,valuelist[[j]]]

]];

If[Product[trimlist[[j]],{j,1,Length[trimlist]}] ⩵ 6, count = count+1];

--------------- *)

}]; (* end of n loop *)

Print"Prob of a full house: ", 100.0 Binomial[13, 2]

Binomial[2, 1] Binomial[4, 3] Binomial[4, 2]  Binomial[52, 5], "%.";

Print"Observed prob: ", 100.0 count  numdo, "%.";

;

Timing[fullhouse[2000 000]]

Prob of a full house: 0.144058%.

Observed prob: 0.14615%.

{69.4828, Null}

BasicCoding.nb 9

