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ABSTRACT

We give a new heuristic for all of the main terms in the integral moments of various families of
primitive L-functions. The results agree with previous conjectures for the leading order terms. Our
conjectures also have an almost identical form to exact expressions for the corresponding moments of
the characteristic polynomials of either unitary, orthogonal, or symplectic matrices, where the moments
are de0ned by the appropriate group averages. This lends support to the idea that arithmetical L-
functions have a spectral interpretation, and that their value distributions can be modeled using
Random Matrix Theory. Numerical examples show good agreement with our conjectures.
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1. Introduction and statement of results

Random Matrix Theory (RMT) has recently become a fundamental tool for
understanding L-functions. Montgomery [38] showed that the two-point corre-
lations between the non-trivial zeros of the Riemann �-function, on the scale of the
mean zero spacing, are similar to the corresponding correlations between the
eigenvalues of random unitary matrices in the limit of large matrix size [37] and
conjectured that these correlations are, in fact, identical to each other. There is
extensive numerical evidence [41] in support of this conjecture. Rudnick and
Sarnak [45] extended Montgomery’s analysis to all n-point correlations, and to the
zeros of other principal L-functions. Katz and Sarnak [29] introduced the idea of
studying zero distributions within families of L-functions (see also [42, 44]) and
have conjectured that these coincide with the eigenvalue distributions of the
classical compact groups. In this context symmetries of an L-function family
determine the associated classical group. We shall here be concerned with the
distribution of values taken by L-functions, either individually (that is, along the
appropriate critical line), or with respect to averages over families. Speci0cally, we
shall calculate the integral moments of these distributions.
Keating and Snaith [30] suggested that the value distribution of the Riemann

�-function (or any other principal L-function) on its critical line is related to that
of the characteristic polynomials of random unitary matrices. This led them to a
general conjecture for the leading-order asymptotics of the moments of this
distribution in the limit of large averaging range. Their conjecture agrees with a
result of Hardy and Littlewood [19] for the second moment and a result of Ingham
[21] for the fourth moment (see, for example [48]). It also agrees with conjectures,
based on number-theoretical calculations, of Conrey and Ghosh [11] and Conrey
and Gonek [12] for the sixth and eighth moments. General conjectures for the
leading-order asymptotics of the moments of L-functions within families, based on
random-matrix calculations for the characteristic polynomials of matrices from the
orthogonal and unitary-symplectic groups, were developed by Conrey and Farmer
[8] and Keating and Snaith [31]. These are also in agreement with what is known,
and with previous conjectures.
Our purpose here is, for the integral moments of a family of primitive

L-functions, to go beyond the leading order asymptotics previously investigated:
we give conjectures for the full main terms. We propose a re0ned de0nition of
‘conductor’ of an L-function, which to leading order is the (logarithm of) the
‘usual’ conductor. We 0nd that often, but not always, the mean values can be
expressed as polynomials in the conductor. Importantly, our conjectures show a
striking formal similarity with analogous expressions for the characteristic
polynomials of random matrices. This provides a strong measure of the depth of
the connection between L-functions and RMT. We also perform numerical
calculations which show very good agreement with our conjectures. Non-primitive
families can also be handled by our methods, but we do not treat those here.
The conjectures we develop here can also be obtained by techniques of multiple

Dirichlet series, as described by Diaconu, Goldfeld and HoHstein [14]. In their
formulation, one considers Dirichlet series in several complex variables. The mean
values we conjecture would then follow from a plausible conjecture about the
polar divisors of the function. An interesting feature of their approach is that for
higher moments it seems to predict lower order terms of the form cT A with
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1
2 < A < 1, while in this paper we conjecture that our main terms are valid with an
error of size OðT 1=2þ"Þ. The cubic moment of quadratic Dirichlet L-functions is a
speci0c case for which there is a conjectured lower order term [49] which possibly
could be tested numerically.
There are many theorems dealing with moments of L-functions in particular

families. The technique to prove these theorems usually involves invoking an
approximate functional equation and averaging the coeIcients of the L-function
over the family. The averaging process behaves like a harmonic detection device.
This harmonic detector usually presents itself as a formula with a relatively simple
part and a somewhat more complicated part that is smaller in the 0rst
approximation. In the theorems in the literature it is often the case that the
simple part of the harmonic detector is suIciently good to determine the 0rst or
second moment of the family. The terms involved here are usually called the
‘diagonal’ terms. But invariably the more complicated version is needed to
determine the asymptotics of the third or fourth moments; in these situations one
has gone ‘beyond the diagonal’. In at least one situation (the fourth moment of
cusp form L-functions) it has been necessary to identify three separate stages of
more subtle harmonic detection: the 0rst featuring diagonal term contributions
and the second and third featuring contributions to the main terms by two
diHerent types of oH-diagonal terms. We believe that as one steps up the moments
of a family then at every one or two steps a new type of oH-diagonal contribution
will emerge. The whole process is poorly understood; we only have glimpses of a
mechanism but no clear idea of how or why it works.
It is remarkable that all of these complicated harmonic detection devices ultimately

lead to very simple answers, as detailed in this paper. It is also remarkable that there
are only three or four diHerent types of symmetries; families with the same symmetry
type often have diHerent harmonic detectors, with diHerent wrinkles at each new
stage of oH-diagonal, but somehow lead to answers which are structurally the
same. It would be worthwhile to understand how this works.
Finally, we comment that the recipe we develop in this paper only uses the

simplest diagonal harmonic detectors. Our formulas are expressed as combinator-
ial sums arising only from diagonal terms. We are well aware of the oH-diagonal
pieces, and we do not understand how they cancel and combine. What we do
understand and what we are presenting here is a conjecture for the 0nal simple
answer that should emerge after all of the complicated cancellations between the
increasingly subtle oH-diagonal terms are taken into account. The reader needs to
be aware of this to understand the goals and contents of this paper.
The paper is organized as follows. In the remainder of this section we give a

detailed comparison between L-functions and characteristic polynomials of
unitary matrices, summarize our previous work on the leading terms in the
mean values of L-functions, and describe the more general moments considered in
this paper. This allows us to state our main results and conjectures, which are
given in x 1.5. We then give a detailed comparison with known results for the
Riemann �-function.
In x 2 we give a detailed derivation of our conjectures in the case of moments on

the critical line of a single L-function. We 0rst write the conjecture in terms of a
function de0ned by an in0nite sum, and then write it as an Euler product and
identify the leading-order poles. The local factors are also written in a concise
form which is more suitable for computation. Both the L-function and random
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matrix calculations lead to expressions involving a sum over a set of partitions.
These sums can be written in a concise form involving contour integrals, as
described in x 2.5. We also show that the original results of Keating and Snaith
[30, 31] for the leading order term can be re-derived from the present work. In
addition, we express the arithmetic factor in the moments of the Riemann
zeta-function in an explicit form.
In x 3 we describe a particular notion of a family of L-functions which can be

used to give a uni0ed treatment of all of the mean values we have considered.
These families are central to our method of conjecturing mean values and we give
a detailed description of the method in x 4. As explicit examples we give the
details of the calculations for L-function families with Unitary, Symplectic, and
Orthogonal symmetry.
In x 5 we give numerical approximations for the coeIcients in our conjectured

mean values. We then report on numerical calculations of representative cases of
the conjectures. Good agreement is found.
The calculations of the random matrix averages, which are based in part on [3]

and [4], are complicated but elementary. Those results have been presented in [9].
In subsequent papers we will also present a fuller discussion of the terms which
appear in our conjectures, give some more general conjectures, and describe the
algorithms behind our numerical calculations.

Acknowledgements. The authors are grateful to the Isaac Newton Institute
for its hospitality during the program ‘Random Matrix Approaches in Number
Theory’. They thank P. Forrester, R. Heath-Brown, C. Hughes, N. Katz,
P. Michel, and P. Sarnak for many helpful discussions.

1.1. Properties of L-functions

We present the de0nition and key properties of L-functions. These properties
are familiar, but a summary will be useful in our discussion of mean values and for
the comparison with the characteristic polynomials of random matrices.
The de0nition of an L-function that we give below is a slight modi0cation of

what has come to be called the ‘Selberg class’ [46, 10, 40] of Dirichlet series. Let
s ¼ 
 þ it with 
 and t real. An L-function is a Dirichlet series

LðsÞ ¼
X1
n¼1

an
ns ; ð1:1:1Þ

with an �" n
" for every " > 0, which has three additional properties.

Analytic continuation. The series LðsÞ continues to a meromorphic function of
0nite order with at most 0nitely many poles, and all poles are located on the

 ¼ 1 line.
Functional equation. There is a number " with j"j ¼ 1, and a function �LðsÞ of

the form

�LðsÞ ¼ P ðsÞQs
Yw
j¼1
Jðwjs þ �jÞ; ð1:1:2Þ

where Q > 0, wj > 0, <�j > 0, and P is a polynomial whose only zeros in 
 > 0
are at the poles of LðsÞ, such that

�LðsÞ :¼ �LðsÞLðsÞ ð1:1:3Þ
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is entire, and

�LðsÞ ¼ "�Lð1
 sÞ; ð1:1:4Þ

where �LðsÞ ¼ �LðsÞ and s denotes the complex conjugate of s.
The number 2

Pw
j¼1 wj is called the degree of the L-function, and this is

conjectured to be an integer. It is conjectured furthermore that each wj can be
taken to equal 12, so w equals the degree of the L-function.
For the calculations we do in this paper, it is convenient to write the functional

equation in asymmetric form:

LðsÞ ¼ "XLðsÞLð1
 sÞ; ð1:1:5Þ

where XLðsÞ ¼ �Lð1
 sÞ=�LðsÞ: Also we de0ne the ‘Z-function’ associated to an
L-function:

ZLðsÞ :¼ "
1=2X

1=2
L ðsÞLðsÞ; ð1:1:6Þ

which satis0es the functional equation

ZLðsÞ ¼ ZLð1
 sÞ: ð1:1:7Þ

Note that here we de0ne ZL as a function of a complex variable, which is slightly
diHerent from the standard notation. Note also that ZLð12 þ itÞ is real when t is
real, XLð 12 Þ ¼ 1, and jXLð 12þ itÞj ¼ 1 if t is real.
Euler product. For 
 > 1 we have

LðsÞ ¼
Y
p

Lpð1=psÞ; ð1:1:8Þ

where the product is over the primes p, and

Lpð1=psÞ ¼
X1
k¼0

apk

pks
¼ exp

X1
k¼1

bpk

pks

 !
; ð1:1:9Þ

where bn � n� with � < 1
2.

Note that LðsÞ � 1 is the only constant L-function, the set of L-functions is
closed under products, and if LðsÞ is an L-function then so is Lðs þ iyÞ for any
real y. An L-function is called primitive if it cannot be written as a non-trivial
product of L-functions, and it can be shown, assuming Selberg’s orthonormality
conjectures, that any L-function has a unique representation as a product of
primitive L-functions. See [10]. It is believed that L-functions only arise from
arithmetic objects, such as characters [13], automorphic forms [24, 25], and
automorphic representations [2, 5]. Very little is known about L-functions beyond
those cases which have been shown to be arithmetic.
There are several interesting consequences of the above properties, and many

conjectures which have been established in a few (or no) cases. We highlight some
additional properties of L-functions and then discuss their random matrix
analogues.
Location of zeros. Since �LðsÞ is entire, LðsÞ must vanish at the poles of the

J-functions in the �L factor. These are known as the trivial zeros of the
L-function. By the functional equation and the Euler product, the only other
possible zeros of LðsÞ lie in the critical strip 06 
6 1. By the argument principle,
the number of non-trivial zeros with 0 < t < T is asymptotically ðW="ÞT logT ,
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where W ¼
P

wj. The Riemann Hypothesis for LðsÞ asserts that the non-trivial
zeros of LðsÞ lie on the critical line 
 ¼ 1

2. The much weaker (but still deep)
assertion that LðsÞ 6¼ 0 on 
 ¼ 1 has been proven for arithmetic L-functions [27],
which can be viewed as a generalization of the prime number theorem.
Average spacing of zeros. By the zero counting result described above, the

average gap between consecutive zeros of LðsÞ with imaginary part around T is
"=ðW logT Þ.
Zeros of derivatives. If the Riemann Hypothesis is true then all zeros of the

derivative � 0ðsÞ lie on the critical line, while all zeros of � 0ðsÞ lie to the right of the
critical line [36].
Critical values. The value Lð 12 Þ is called the critical value of the L-function. The

signi0cance of s ¼ 1
2 is that it is the symmetry point of the functional equation.

The mean values we study in this paper are averages of (powers of) critical values of
L-functions, where the average is taken over a ‘family’ of L-functions. Examples of
families and their corresponding mean values are given in x 1.3.
(Note. If the set f�jg is stable under complex conjugation and the an are real,

then " is commonly called the sign of the functional equation. If the sign is 
1
then LðsÞ has an odd order zero at s ¼ 1

2; more generally, if the sign is not 1 then
Lð 12 Þ ¼ 0. When Lð 12 Þ vanishes, it is common to use the term ‘critical value’ for
the 0rst non-zero derivative Lð jÞð 12 Þ, but in this paper we use ‘critical value’ to
mean ‘value at the critical point’.)
Log conductor. We measure the ‘size’ of an L-function by its log conductor,

de0ned as cðLÞ ¼ condðLÞ ¼ jX 0
Lð 12 Þj. The conductor of an L-function has a

conventional meaning in many contexts, and the log conductor is a simple
function of the (logarithm of the) usual conductor. Other authors use similar
names, such as ‘analytic conductor’, for similar quantities. By the argument
principle, the density of zeros near the critical point is 2"cðLÞ
1.
Approximate functional equation. A standard tool for studying analytic

properties of L-functions is an approximate functional equation for LðsÞ, which
expresses the L-function as a sum of two Dirichlet series involving the Dirichlet
coeIcients of L multiplied by a smoothing function. See, for example, [26, 5.3].
For the purposes of the heuristics that we develop, we use a sharp cutoH and do
not concern ourselves with the remainder,

LðsÞ ¼
X
m<x

am
ms þ "XLðsÞ

X
n<y

an
n1
s

þ remainder: ð1:1:10Þ

Here the product xy depends on parameters in the functional equation. The name
comes from the fact that the right side looks like LðsÞ if x is large, and like
"XLðsÞLð1
 sÞ if x is small, which suggests the asymmetric form of the
functional equation.
The approximate functional equation is the starting point of our approach to

conjecturing the moments of L-functions. This is described in xx 2.1 and 4.1.

1.2. Properties of characteristic polynomials

With the exception of the Euler product, all of the properties of L-functions
have a natural analogue in the characteristic polynomials of unitary matrices. We
note each property in turn.
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Let

LðsÞ ¼ LAðsÞ ¼ detðI 
 A�sÞ ¼
YN
n¼1

ð1
 se
i�nÞ ð1:2:1Þ

denote the characteristic polynomial of an N � N matrix A. Throughout the paper
we assume that A is unitary (that is, A�A ¼ I where A� is the Hermitian conjugate of
A), so the eigenvalues of A lie on the unit circle and can be denoted by ei�n .
(Note. In our previous paper [9] we used a diHerent de0nition of the

characteristic polynomial.)
We can express LðsÞ in expanded form:

LðsÞ ¼
XN
n¼0

ans
n; ð1:2:2Þ

which corresponds to the Dirichlet series representation for L-functions.
Analytic continuation. Since LðsÞ is a polynomial, it is an entire function.
Functional equation. Since A is unitary, we have

LAðsÞ ¼ ð
1ÞN detA� sN detðI 
 As
1Þ; ð1:2:3Þ
and so, writing

detA ¼ ei( ð1:2:4Þ
(where unitarity implies that ( 2 R), we have

LAðsÞ ¼ ð
1ÞN detA�sNLA� ðs
1Þ
¼ ð
1ÞNe
i(sN LAðs
1Þ: ð1:2:5Þ

This plays the same role for LðsÞ as the functional equation for L-functions: it
represents a symmetry with respect to the unit circle (s ¼ rei* ! s
1 ¼ r
1e
i*).
Also let

ZAðsÞ ¼ ðð
1ÞNei(Þ1=2s
N=2LAðsÞ; ð1:2:6Þ
in direct analogy to (1.1.6), the sign of the functional equation " being identi0ed
with ð
1ÞNe
i( ¼ ð
1ÞN detA�. The functional equation becomes

ZAðsÞ ¼ ZAðs
1Þ: ð1:2:7Þ
Note that this implies that Z is real on the unit circle, and in analogy to the XL

factor from an L-function, the factor s
N=2 equals 1 at the critical point s ¼ 1, and
has absolute value 1 on the unit circle.
Location of zeros. Since A is unitary, its eigenvalues all have modulus 1, so the

zeros of LðsÞ lie on the unit circle (that is, the Riemann Hypothesis is true). The
unit circle is the ‘critical line’ for LðsÞ.
Average spacing of zeros. Since the N � N matrix A has N eigenvalues on the

unit circle, the average spacing between zeros of LAðsÞ is 2"=N .
Zeros of derivatives. Since the zeros of LðsÞ lie on the unit circle, the zeros of

the derivative L0 lie inside the unit circle. This follows from the general fact that
the zeros of the derivative of a polynomial lie in the convex hull of the zeros of
the polynomial.
Critical values. The critical point for LðsÞ is the symmetry point of the

functional equation s ¼ 1 ¼ ei�0, and Lð1Þ is the critical value.
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Conductor. In analogy with the case of L-functions, we de0ne the conductor of
L to be the (absolute value of the) derivative of the factor in the asymmetric form
of the functional equation, evaluated at the critical point s ¼ 1. That is, the
conductor of L is N . Also in analogy to the case of L-functions, the density of
zeros on the unit circle is 2"=N .
When modeling a family of L-functions, we choose N so that L and L have the

same conductor. Equivalently, L and L have the same density of zeros near the
critical point.
Approximate functional equation. Substituting the polynomial (1.2.2) into the

functional equation (1.2.5), we have

XN
n¼0

ans
n ¼ ð
1ÞNe
i(

XN
n¼0

ans
N
n; ð1:2:8Þ

and so

an ¼ ð
1ÞNe
i( aN
n: ð1:2:9Þ

Hence, when N is odd, we have

LðsÞ ¼
XðN
1Þ=2

m¼0
ams

m þ ð
1ÞNe
i(sN
XðN
1Þ=2

n¼0
ans


n; ð1:2:10Þ

which corresponds to the approximate functional equation for L-functions. When
N is even, there is an additional term: aN=2s

N=2.
Although we use the approximate functional equation in our calculations for

L-functions, in our previous paper [9] we use other methods for the characteristic
polynomials. In principle, it would be possible to use the approximate functional
equation and compute averages of products of the coeIcients an. Such a cal-
culation would, presumably, mirror that for the L-functions. This would appear to
be more cumbersome than the approach taken in [9], but might merit further
investigation.
The above discussion applies to any unitary matrix. We also consider matrices

which, in addition to being unitary, are either symplectic or orthogonal. We use
these three ensembles of matrices to model families of L-functions. While the
notion of ‘family of L-functions’ has not yet been made precise, we give several
natural examples in the next section.
Associated to each family is a ‘symmetry type’ which identi0es the matrix

ensemble that will be used to model the family. This correspondence is most easily
seen in terms of the sign of the functional equation, which is analogous to the
determinant of the matrix. If A is unitary symplectic, then detA ¼ 1 (that is,
( ¼ 0), and if A is orthogonal, then detA ¼ �1. Correspondingly, the functional
equations for L-functions with unitary symmetry involve a (generally complex)
phase factor, whereas for L-functions with symplectic symmetry this phase factor
is unity, and in the case of orthogonal symmetry it is either þ1 or 
1.
While the sign of the functional equation can sometimes suggest the symmetry

type of the family, in general it requires a calculation to determine the symmetry
type. One possible calculation is to determine the moments of the family near the
critical point, as described in this paper. Comparison with the corresponding
random matrix average can then be used to determine the symmetry type.
Another possibility is to determine the density of the low-lying zeros of the family.
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1.3. Example families and moments of L-functions

We now give examples of families of primitive L-functions and describe the
associated mean values. The families we consider here are of a special form, which
is described in x 3. In preparation for the comparison with random matrices in the
next section, we will classify the example families according to their symmetry
type: Unitary, Orthogonal, and Symplectic. For the Orthogonal symmetry type we
recognize three cases: SO, O
, and O, corresponding respectively to Orthogonal
families in which the functional equation has " ¼ 1, or " ¼ 
1, or " ¼ �1 equally
often. Note that each family is a partially ordered set, and the order is determined
by a quantity called the ‘conductor’ of the L-function. The mean values given
below are conjectural for all but a few small values of k. For a general discussion
of these mean values and some more examples, see [8].

Unitary examples.
(1) fLðs þ iyÞ j y> 0g, ordered by y, where LðsÞ is any primitive L-function.

These are the only known continuous families of L-functions (Sarnak’s rigidity
conjecture).
(2) fLðs; ,Þ j q a positive integer; , a primitive character mod qg ordered by q.

An example conjectured mean value for integer k isðT
0
j�ð12þ itÞj2k dt ¼ T PkðlogT Þ þ OðT 1=2þ"Þ; ð1:3:1Þ

for some polynomial Pk of degree k2 with leading coeIcient gkak=k
2!, where

ak ¼
Y
p

1
 1
p

� �k2X1
m¼0

Jðm þ kÞ
m!JðkÞ

� �2
p
m

¼
Y
p

1
 1
p

� �ðk
1Þ2 Xk
1
j¼0

k 
 1
j

� �2
p
j ð1:3:2Þ

and

gk ¼ k2!
Yk
1
j¼0

j!

ðk þ jÞ! : ð1:3:3Þ

(The placement of k2! is to ensure that gk is an integer [8].) The above conjecture
has been proven for k ¼ 1; 2. See [1, 7, 19, 20, 21, 32, 39]. When k ¼ 2 our
conjectured error term of OðT 1=2þ"Þ has only been obtained in the case of a
smooth weight function [22].

Symplectic examples.
(3) fLðs; ,dÞ j d a fundamental discriminant, ,dðnÞ ¼ ðd=nÞg ordered by jdj.
(4) fLðs; sym2fÞ j f 2 SkðJ0ð1ÞÞ; k a positive even integerg, ordered by k.

An example conjectured mean value isX
jdj6D

�
Lð12; ,dÞk ¼ 6

"2
DQkðlogDÞ þ OðD1=2þ"Þ; ð1:3:4Þ
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where
P� is over fundamental discriminants, ,dðnÞ ¼ ðd=nÞ is the Kronecker

symbol, and the sum is over all real, primitive Dirichlet characters of conductor up
to D. Here Qk is a polynomial of degree 1

2 kðk þ 1Þ, with leading coeIcient
gkak=ð 12 kðk þ 1ÞÞ!, where

ak ¼
Y
p

ð1
 1=pÞkðkþ1Þ=2

1þ 1=p
ð1
 1=

ffiffiffi
p

p Þ
k þ ð1þ 1=
ffiffiffi
p

p Þ
k

2
þ 1

p

 !
ð1:3:5Þ

and

gk ¼ ð12kðk þ 1ÞÞ!
Yk
j¼1

j!

ð2jÞ! : ð1:3:6Þ

The main term of this conjecture has been proven for k ¼ 1; 2; 3, and the case of
k ¼ 4 is almost within reach of current methods. See [17, 28, 47].

Orthogonal examples.
(5) fLðs; fÞ j f 2 SkðJ0ðNÞÞ; N fixed; k a positive even integerg, ordered by k.
(6) fLðs; fÞ j f 2 SkðJ0ðNÞÞ; k fixed; N a positive integerg, ordered by N.

An example conjectured mean value isX
f2H2ðqÞ

Lfð12; fÞ
k ¼ 1

3qRkðlog qÞ þ Oðq1=2þ"Þ; ð1:3:7Þ

whereH2ðqÞ is the collection ofHecke newforms of weight 2 and squarefree level q. Here
Rk is a polynomial of degree

1
2 kðk 
 1Þ, with leading coeIcient gkak=ð 12 kðk 
 1ÞÞ!,

where

ak ¼
Y
p-q

1
 1
p

� �kðk
1Þ=2

� 2

"

ð"
0
sin2 �

ei�ð1
 ei�=
ffiffiffi
p

p Þ
1 
 e
i�ð1
 e
i�=
ffiffiffi
p

p Þ
1

ei� 
 e
i�

 !k

d� ð1:3:8Þ

and

gk ¼ 2k
1ð12kðk
 1ÞÞ!
Yk
1
j¼1

j!

ð2jÞ! : ð1:3:9Þ

Themain term of this conjecture has been proven for k ¼ 1; 2; 3; 4, in the case that q is
prime. See [15, 16, 34]. Also see IviNcc [23] for the analogousmean values forMaass forms.
The above examples are merely meant to give a Oavor of the types of families

which are of current interest.
The above cases, and their random matrix analogues, have been extensively

discussed from the perspective of the leading terms in the asymptotic expansions.
See [8, 30, 31]. In the present paper we extend that work to include all of the
terms in the above mean values (that is, all coeIcients in the conjectured
polynomials), which we recover from a more general mean value involving a
product of L-functions whose arguments are free parameters. In the next two
sections we describe these more general mean values, discuss their random matrix
analogues, and then state our results and conjectures.
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1.4. Shifted moments

A key point in this paper is that the structure of mean values of L-functions is
more clearly revealed if one considers the average of a product of L-functions,
where each L-function is evaluated at a location slightly shifted from the critical
point. The example mean values given in the previous section can be obtained by
allowing the shifts to tend to zero.
Let * ¼ ð*1; . . . ; *2kÞ, where throughout the paper we assume j<*jj < 1

2, and
suppose that gðtÞ is a suitable weight function. The mean values we consider are

IkðL; *; gÞ ¼
ð1


1
ZLð12þ *1 þ itÞ . . .ZLð12 þ *2k þ itÞgðtÞ dt; ð1:4:1Þ

and, with * ¼ ð*1; . . . ; *kÞ,

SkðF ; *; gÞ ¼
X
L2F

ZLð12þ *1Þ . . .ZLð12 þ *kÞgðcðLÞÞ: ð1:4:2Þ

In the 0rst case it is assumed that LðsÞ is a primitive L-function, and in the second F
is a family of primitive L-functions partially ordered by log conductor cðLÞ.
We refer to g as a ‘suitable’ weight function, but we leave that term unde0ned.

An example of a suitable weight function is gðxÞ ¼ fðx=T Þ, where f is real, non-
negative, bounded, and integrable on the positive real line.
The random matrix analogs of the above expressions are

JkðUðNÞ; *Þ ¼
ð
UðNÞ

ZAðe
*1Þ . . .ZAðe
*2kÞ dA; ð1:4:3Þ

where * ¼ ð*1; . . . ; *2kÞ and the average is over Haar measure on UðNÞ, and

JkðGðNÞ; *Þ ¼
ð
GðNÞ

ZAðe
*1Þ . . .ZAðe
*kÞ dA; ð1:4:4Þ

where GðNÞ is USpð2NÞ, O
ð2NÞ, or SOð2NÞ and * ¼ ð*1; . . . ; *kÞ. Note that
O
ð2NÞ is de0ned as the collection of orthogonal 2N � 2N matrices with
determinant 
1. Haar measure on USpð2NÞ and Oð2NÞ determines the weighting
for the averages.
In the next section we compare our conjectures for the L-function mean values

with exact formulae for the random matrix averages.

1.5. Main results and example conjectures

We state our main results and conjectures here. We give example conjectures
for the full main term in shifted mean values of number-theoretic interest; these
examples illustrate our methods and cover the three symmetry types of families of
L-functions. We also give a corresponding theorem about the random matrix
analogue of these mean values for each of the three compact matrix ensembles.
We present our results in pairs: a conjecture for an L-function mean value,

followed by a theorem, quoted from [9], for the corresponding average of
characteristic polynomials. For each pair the parts of each formula match
according to the scheme described in x 1.2. In particular, the scaling of the large
parameter is determined by equating log conductors. In the random matrix
formula the integrand contains a term ð1
 e�zm
z‘Þ
1, which has a simple pole at
z‘ ¼ �zm. In the L-function formula this corresponds to the term containing all of
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the arithmetic information, which is of the form �ð1þ zi � zjÞ times an Euler
product, and so also has a simple pole at zi ¼ �zj.
The formulae are written in terms of contour integrals and involve the

Vandermonde:

Pðz1; . . . ; zmÞ ¼
Y

16 i<j6m

ðzj 
 ziÞ: ð1:5:1Þ

We also set eðzÞ ¼ e2"iz.

Conjecture 1.5.1. Suppose gðtÞ is a suitable weight function. Thenð1


1
j�ð12 þ itÞj2kgðtÞ dt ¼

ð1

1

Pk log
t

2"

� �
ð1þ Oðt
1=2þ"ÞÞgðtÞ dt; ð1:5:2Þ

where Pk is the polynomial of degree k2 given by the 2k-fold residue

PkðxÞ ¼ ð
1Þk

k!2
1

ð2"iÞ2k
þ
. . .

þ
Gðz1; . . . ; z2kÞP2ðz1; . . . ; z2kÞQ2k

j¼1 z
2k
j

� eðx=2Þ
Pk

j¼1zj
zkþj dz1 . . . dz2k; ð1:5:3Þ

where one integrates over small circles about zi ¼ 0, with

Gðz1; . . . ; z2kÞ ¼ Akðz1; . . . ; z2kÞ
Yk
i¼1

Yk
j¼1

�ð1þ zi 
 zkþjÞ; ð1:5:4Þ

and Ak is the Euler product

AkðzÞ ¼
Y
p

Yk
i¼1

Yk
j¼1

1
 1

p1þzi
zkþj

� �

�
ð1
0

Yk
j¼1

1
 eð�Þ
p1=2þzj

� �
1
1
 eð
�Þ

p1=2
zkþj

� �
1
d�: ð1:5:5Þ

More generally,

Ikð�; *; gÞ ¼
ð1


1
Pk

�
log

t

2"
; *


ð1þ Oðt
1=2þ"ÞÞgðtÞ dt; ð1:5:6Þ

where

Pkðx; *Þ ¼ ð
1Þk

k!2
1

ð2"iÞ2k
þ
. . .

þ
Gðz1; . . . ; z2kÞP2ðz1; . . . ; z2kÞQ2k

j¼1
Q2k

i¼1ðzj 
 *iÞ

� eðx=2Þ
Pk

j¼1zj
zkþj dz1 . . . dz2k; ð1:5:7Þ

with the path of integration being small circles surrounding the poles *i.

A general version of the above conjecture is given in Conjecture 2.5.4.

THEOREM 1.5.2. In the notation of x 1.4 we have

JkðUðNÞ; 0Þ ¼
Yk
1
j¼0

j!

ðk þ jÞ!
Yk
i¼1

ðN þ i þ jÞ
 !

: ð1:5:8Þ
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More generally, with

Gðz1; . . . ; z2kÞ ¼
Yk
i¼1

Yk
j¼1

ð1
 e
ziþzjþkÞ
1;

we have

JkðUðNÞ; *Þ ¼ ð
1Þk

k!2
1

ð2"iÞ2k
þ
. . .

þ
Gðz1; . . . ; z2kÞP2ðz1; . . . ; z2kÞQ2k

i¼1
Q2k

j¼1ðzj 
 *iÞ

� eðN=2Þ
Pk

j¼1zj
zkþjdz1 . . . dz2k: ð1:5:9Þ

Comments on the formulae. (1) Let *i ! 0 in the second part of Conjecture
1.5.1 to obtain the 0rst part of Conjecture 1.5.1.
(2) The structures of JkðUðNÞ; *Þ and Pkðx; *Þ are identical in that the

functions Gðz1; . . . ; z2kÞ have simple poles at zi ¼ zkþj.
(3) The local factors of Akð*Þ are polynomials in p
1 and p
*i , for i ¼ 1; . . . ; k,

as seen from Theorem 2.6.2. Since Akð*Þ comes from a symmetric expression, it is
also a polynomial in p*iþk , for i ¼ 1; . . . ; k. This is discussed in x 2.6. Note also that
ak in (1.3.2) equals Akð0; . . . ; 0Þ, as shown in x 2.7.
(4) That PkðxÞ is actually a polynomial of degree k2 can be seen by considering

the order of the pole at zj ¼ 0. We wish to extract from the numerator of the
integrand, the coeIcient of

Q
z2k
1i , a polynomial of degree 2kð2k 
 1Þ. The

Vandermonde determinant squared is a homogeneous polynomial of degree
2kð2k 
 1Þ. However, the poles coming from the �ð1þ zi 
 zkþjÞ cancel k2 of the
Vandermonde factors. This requires us, in computing the residue, to take, in the
Taylor expansion of expð 12x

Pk
1 zj 
 zkþjÞ, terms up to degree k2.

(5) The fact that Pkðlogðt=2"ÞÞ is a polynomial in logðt=2"Þ of degree k2

corresponds nicely to the formula for JkðUðNÞ; 0Þ, which is a polynomial of degree
k2 in N . Equating the density of the Riemann zeros at height t with the density of
the random matrix eigenvalues suggests the familiar equivalence N ¼ logðt=2"Þ. In
this paper we view this as equating conductors.
(6) The leading term of PkðxÞ coincides with the leading term conjectured by

Keating and Snaith (see x 2.7). The full polynomial PkðxÞ agrees, when k ¼ 1 and
k ¼ 2, with known theorems (see xx 1.6 and 1.7).
(7) We can recover the polynomial Pk in (1.3.1) from Pk by taking gðtÞ ¼ ,½0;T �ðtÞ

in the conjecture.

(8) The multiple integrals in Theorem 1.5.2 and Conjecture 1.5.1 can be
written as combinatorial sums. See x 2 where a detailed derivation of our
conjecture is given.
(9) Our conjecture concerning the order of the error term is based on our

numerical calculations (see x 5) and examination of examples in the literature.

Conjecture 1.5.3. Suppose gðuÞ is a suitable weight function with support
in either ð0;1Þ or ð
1; 0Þ, and let XdðsÞ ¼ jdj1=2
sXðs; aÞ where a ¼ 0 if d > 0
and a ¼ 1 if d < 0, and

Xðs; aÞ ¼ "s
1=2J
� 1þ a 
 s

2


.
J
� s þ a

2



: ð1:5:10Þ
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That is, ,dðsÞ is the factor in the functional equation

Lðs; ,dÞ ¼ "dXdðsÞLð1
 s; ,dÞ:

Summing over fundamental discriminants d we haveX
d

�
Lð12; ,dÞkgðjdjÞ ¼

X
d

�
Qkðlog jdjÞð1þ Oðjdj
1=2þ"ÞÞgðjdjÞ ð1:5:11Þ

where Qk is the polynomial of degree 1
2 kðk þ 1Þ given by the k-fold residue

QkðxÞ ¼ ð
1Þkðk
1Þ=22k
k!

1

ð2"iÞk
þ
. . .

þ
Gðz1; . . . ; zkÞPðz21; . . . ; z2kÞ2Qk

j¼1 z
2k
1
j

� eðx=2Þ
Pk

j¼1zj dz1 . . . dzk; ð1:5:12Þ

where

Gðz1; . . . ; zkÞ ¼ Akðz1; . . . ; zkÞ
Yk
j¼1

Xð12þ zj; aÞ
1=2
Y

16 i6 j6 k

�ð1þ zi þ zjÞ; ð1:5:13Þ

and Ak is the Euler product, absolutely convergent for j<zjj < 1
2, de�ned by

Akðz1; . . . ; zkÞ ¼
Y
p

Y
16 i6 j6 k

1
 1

p1þziþzj

� �

� 1

2

Yk
j¼1

1
 1

p1=2þzj

� �
1
þ
Yk
j¼1

1þ 1

p1=2þzj

� �
1
 !

þ 1

p

 !

� 1þ 1
p

� �
1
: ð1:5:14Þ

More generally, if F is the family of real primitive Dirichlet L-functions then

SkðF ; *; gÞ ¼
X
d

�
Qkðlog jdj; *Þð1þ Oðjdj
1=2þ"ÞÞgðjdjÞ; ð1:5:15Þ

in which

Qkðx; *Þ ¼ ð
1Þkðk
1Þ=22k
k!

1

ð2"iÞk

�
þ
. . .

þ
Gðz1; . . . ; zkÞPðz21; . . . ; z2kÞ2

Qk
j¼1 zjQk

i¼1
Qk

j¼1ðzj 
 *iÞðzj þ *iÞ

� eðx=2Þ
Pk

j¼1zj dz1 . . . dzk; ð1:5:16Þ

where the path of integration encloses the �*i.

THEOREM 1.5.4. In the notation of x 1.4 we have

JkðUSpð2NÞ; 0Þ ¼ 2kðkþ1Þ=2
Yk
j¼1

j!

ð2jÞ!

 ! Y
16 i6 j6 k

ðN þ 1
2ði þ jÞÞ: ð1:5:17Þ
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More generally, with

Gðz1; . . . ; zkÞ ¼
Y

16 i6 j6 k

ð1
 e
zi
zjÞ
1

we have

JkðUSpð2NÞ; *Þ ¼ ð
1Þkðk
1Þ=22k
k!

1

ð2"iÞk

�
þ
. . .

þ
Gðz1; . . . ; zkÞPðz21; . . . ; z2kÞ2

Qk
j¼1 zjQk

i¼1
Qk

j¼1ðzj 
 *iÞðzj þ *iÞ

� eN
Pk

j¼1zjdz1 . . . dzk; ð1:5:18Þ

where the contours of integration enclose the �*i.

Comments. (1) When comparing Theorem 1.5.4 with Conjecture 1.5.3,
equating log conductors (that is, the density of zeros) gives the equivalence

2N ¼ condðdÞ :¼ logðjdj="Þ þ ðJ 0=JÞð 14þ aÞ: ð1:5:19Þ

The conductor we use here should be contrasted with the ‘usual’ conductor asso-
ciated with Dirichlet L-functions: logðjdj="Þ 
 logð2Þ. We believe this diHerence is
signi0cant, so we discuss it brieOy.
The following manipulations show that our conductor arises naturally. In the

derivation of the conjecture, one encounters the function Xdð 12 þ zÞ
1=2, which can
we rewritten in several ways:

Xdð12þ zÞ
1=2 ¼ eðlog d�zÞ=2Xð12 þ z; aÞ
1=2

¼ eðcondðdÞ�zÞ=2GðzÞ; ð1:5:20Þ

where GðzÞ ¼ 1þ Oðz3Þ. In the statement of the conjecture we used the 0rst line
of (1.5.20), incorporating the product over Xð 12 þ z; aÞ
1=2 into the factor
Gðz1; . . . ; zkÞ. If we chose instead to use the second line of (1.5.20), then the
conjecture would be written as a sum over QkðcondðdÞÞ. One would still 0nd that
Qk is a polynomial of degree

1
2 kðk þ 1Þ. Since GðzÞ ¼ 1þ Oðz3Þ, the 0rst three

leading terms in that polynomial would not explicitly depend on the factor Xd

from the functional equation, although the lower degree terms would. This
phenomenon does not occur for moments of L-functions in t-aspect.
(2) The function Qk in (1.3.4) can be recovered from Qk above by taking

gðjdjÞ ¼ ,½0;D�ðjdjÞ, and using the estimate
P�


D<d<01 ¼ 3D="2 þ OðD1=2þ"Þ; the
same estimate holds for positive d.
(3) A heuristic derivation of Conjecture 1.5.3 is given in x 4.4.
(4) The leading term of Qk coincides with the leading term conjectured by

Keating and Snaith [31]. The calculation is analogous to the one given in x 2.7.

Conjecture 1.5.5. Suppose q is squarefree, let HnðqÞ be the set of newforms
in SnðJ0ðqÞÞ, and let

Xn;qðsÞ ¼
� q

4"2


1=2
s Jð 12
 s þ 1
2nÞ

Jðs 
 1
2 þ 1

2nÞ
ð1:5:21Þ
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be the factor in the functional equation LfðsÞ ¼ "n;qXn;qðsÞLfð1
 sÞ for the
L-functions associated to f 2 HnðqÞ. ThenX

f2HnðqÞ
Lfð12Þ

k hf; f i
1 ¼
X

f2HnðqÞ
Rk n; qð Þ hf; f i
1ð1þ OðnqÞ
1=2þ"Þ ð1:5:22Þ

as nq ! 1, where Rkðn; qÞ is given by the k-fold residue

Rk ¼ ð
1Þkðk
1Þ=22k
1
k!

1

ð2"iÞk
þ
. . .

þ
Gðz1; . . . ; zkÞPðz21; . . . ; z2kÞ2Qk

j¼1 z
2k
1
j

�
Yk
j¼1

Xn;qð12 þ zjÞ
1=2dz1 . . . dzk; ð1:5:23Þ

where

Gðz1; . . . ; zkÞ ¼ Akðz1; . . . ; zkÞ
Y

16 i<j6 k

�ð1þ zi þ zjÞ ð1:5:24Þ

and Ak is the Euler product which is absolutely convergent for j<zjj < 1
2, with

j ¼ 1; . . . ; k, de�ned by

Akðz1; . . . ; zkÞ

¼
Y
p-q

Y
16 i<j6 k

1
 1

p1þziþzj

� �

� 2

"

ð"
0
sin2 �

Yk
j¼1

ei� 1
 ei�=p1=2þzj
� �
1
 e
i� 1
 e
i�=p1=2þzj

� �
1
ei� 
 e
i�

d�: ð1:5:25Þ

To state the more general version of Conjecture 1.5.5, involving a sum of
products of Lfð 12þ ujÞ, it is natural also to consider the sums over even f and odd
f separately. See Conjectures 4.5.1 and 4.5.2.

THEOREM 1.5.6. In the notation of x 1.4 we have

JkðSOð2NÞ; 0Þ ¼ 2kðkþ1Þ=2
Yk
1
j¼1

j!

ð2jÞ!

 ! Y
06 i<j6 k
1

ðN þ 1
2ði þ jÞÞ: ð1:5:26Þ

More generally, with

Gðz1; . . . ; zkÞ ¼
Y

16 ‘<m6 k

ð1
 e
zm
z‘Þ
1 ð1:5:27Þ

we have

JkðSOð2NÞ; *Þ ¼ ð
1Þkðk
1Þ=22k
k!

1

ð2"iÞk

�
þ
. . .

þ
Gðz1; . . . ; zkÞPðz21; . . . ; z2kÞ2

Qk
j¼1 zjQk

i¼1
Qk

j¼1ðzj 
 *iÞðzj þ *iÞ

� eN
Pk

j¼1zjdz1 . . . dzk ð1:5:28Þ
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and

JkðO
ð2NÞ; *Þ ¼ i
k ð
1Þkðk
1Þ=22k
k!

1

ð2"iÞk

�
þ
. . .

þ
Gðz1; . . . ; zkÞPðz21; . . . ; z2kÞ2

Qk
j¼1 *jQk

i¼1
Qk

j¼1ðzj 
 *iÞðzj þ *iÞ

� eN
Pk

j¼1zjdz1 . . . dzk: ð1:5:29Þ

Comments. (1) The value of Rkðn; qÞ does not actually depend on f 2 HnðqÞ.
We write (1.5.22) in this manner to stress that Rkðn; qÞ is the expected value of
Lfð 12 Þ

k.
(2) To compare Theorem 1.5.6 and Conjecture 1.5.5, equating conductors gives

the equivalence

2N ¼ condðn; qÞ :¼ logðq=4"2Þ þ ðJ 0=JÞðn=2Þ
¼ logðqn=8"2Þ þ Oðn
1Þ: ð1:5:30Þ

One can express the conjectured mean value in terms of the conductor in the
following way. In (1.5.23) we can write

Xn;qð12 þ zjÞ
1=2 ¼ eðcondðn;qÞ�zjÞ=2GðzjÞ; ð1:5:31Þ

where GðzjÞ ¼ 1þ Oðz3Þ. As in Conjecture 1.5.3, we can express Rkðn; qÞ as a
polynomial in the conductor, the 0rst three terms of which do not depend on the
Xn;q factor in the functional equation.
(3) All of our conjectures naturally contain a factor of the formQ
Xð 12 � zjÞ
1=2; it just happens that in some cases Xð 12 � zjÞ can be closely

approximated by a simple function of the conductor. It is interesting that this
same factor occurs in all of the random matrix moments. In that case XðsÞ ¼ s
M ,
where M ¼ N or 2N , so in the formula for the moments there occursQ

Xðe�zjÞ
1=2 ¼ eðM=2Þ
P

�zj .

1.6. Second moment of the Riemann zeta-function

Now we consider the second moment of the Riemann zeta-function in detail,
putting our results in the context of the literature.
Ingham’s result [21] on the second moment can be stated asðT

0
�ðs þ *Þ�ð1
 s 
 ;Þ dt

¼
ðT
0
ð�ð1þ * 
 ;Þ þ <;
*�ð1þ ; 
 *ÞÞð1þ Oðt
1=2þ"ÞÞ dt ð1:6:1Þ

where s ¼ 1
2 þ it and < ¼ <ðtÞ ¼ jtj=2"; this is valid for j*j; j;j < 1

2. If we let * and
; approach 0 here, we obtain Ingham’s theoremðT

0
j�ð12 þ itÞj2 dt ¼

ðT
0

�
log

t

2"
þ 2�

�
dt þ OðT 1=2þ"Þ: ð1:6:2Þ

Our conjecture is compatible with these results, because, when k ¼ 1, the function
Gð*1; *2Þ that appears in Conjecture 1.5.1 equals �ð1þ *1 
 *2Þ. Computing the
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residue, we 0nd that

P1ðxÞ ¼ 1

4"2

þ þ
�ð1þ z1 
 z2Þðz2 
 z1Þ2

z21z
2
2

eðx=2Þðz1
z2Þ dz1 dz2

¼ x þ 2�: ð1:6:3Þ

The second moment with a diHerent weighting is now given; this theorem is a
slight variation of the theorem of Kober presented by Titchmarsh in [48] and was
inspired by the numerical calculations described in x 5.1.

THEOREM 1.6.1. Let

Ið*; ;; =Þ ¼
ð1
0
�ð12 þ it þ *Þ�ð12 
 it 
 ;Þe
=t dt: ð1:6:4Þ

Then, for any > > 0, j*j; j;j6 1
2 
 > and j arg =j6 1

2" 
 >, we have

Ið*; ;; =Þ ¼
ð1
0

�ð1þ * 
 ;Þ þ t

2"

� �*
;

�ð1
 * þ ;Þ
 !

e
=t dt

þ C=ð*; ;Þ þ Oð= log 1==Þ ð1:6:5Þ

uniformly in *, ; and = where C=ð*; ;Þ � log 1== uniformly in * and ; and where
C=ð*;
*Þ ¼ 
2"�ð2*Þ.

We restate the case ; ¼ 
* as follows.

COROLLARY 1.6.2. For any �xed * with j*j < 1
2, we have

lim
=!0

ð1

0
j�ð12 þ * þ itÞj2e
=t dt

�


ð1

0
�ð1þ 2*Þ þ t

2"

� �2*
�ð1
 2*Þ

� �
e
=t dt

�
¼ 
"�ð2*Þ 
 ð2"Þ2*�ð1
 2*ÞJð1
 2*Þ sin "*
¼ 
2"�ð2*Þ: ð1:6:6Þ

Note that

lim
x!0

ð�ð1þ xÞ þ w
xJð1
 xÞ�ð1
 xÞÞ ¼ ð2� þ logwÞ: ð1:6:7Þ

Thus, letting * ! 0, gives the following corollary.

COROLLARY 1.6.3.

lim
=!0

ð1
0
j�ð12 þ itÞj2e
=t dt 


ð1
0

2� þ log t

2"

� �� �
e
=t dt

� �
¼ ": ð1:6:8Þ

Remark. We discovered this corollary after seeing the numerical results of
x 5.1. This result also follows from a result of Hafner and IviNcc [18].

1.7. Fourth moment of the Riemann zeta-function

Now we consider the fourth moment of the Riemann zeta-function in detail.
Our discussion here builds upon work of Atkinson [1], Heath-Brown [20], Conrey
[7], and Motohashi [39].
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Examining Motohashi’s results in detail, considerð1

1

�ðs þ u1Þ . . . �ðs þ ukÞ�ð1
 s þ v1Þ . . . �ð1
 s þ vkÞgðtÞ dt ð1:7:1Þ

for a function gðtÞ which is analytic in a horizontal strip j=ðtÞj < c and decays
suIciently rapidly. Motohashi obtains an exact formula for these moments for
k ¼ 1 and k ¼ 2. We reformulate Motohashi’s theorem (k ¼ 2) in our context. Let

CðvÞ ¼ ð2"Þv=ð2 cos 12"vÞ ð1:7:2Þ
and let

Gsðu; vÞ ¼ Jðs 
 uÞ=Jðs 
 vÞ: ð1:7:3Þ

Then, in notation analogous to Motohashi’s, the k ¼ 2 case of (1.7.1) equals

Lr þ Ld þ Lc þ Lh; ð1:7:4Þ

where Lr is the (residual) main term which we are interested in here:

Lrðu; vÞ ¼
ð1


1
Wðt; u; vÞgðtÞ dt; ð1:7:5Þ

with

W ðt; u; vÞ ¼ Cð0ÞðGsð0; 0Þ þ G1
sð0; 0ÞÞZðu1; u2; v1; v2Þ
þ Cðu1 þ v1ÞðGsðu1; v1Þ þ G1
sðu1; v1ÞÞZð
v1; u2;
u1; v2Þ
þ Cðu1 þ v2ÞðGsðu1; v2Þ þ G1
sðu1; v2ÞÞZð
v2; u2; v1;
u1Þ
þ Cðu2 þ v1ÞðGsðu2; v1Þ þ G1
sðu2; v1ÞÞZðu1;
v1;
u2; v2Þ
þ Cðu2 þ v2ÞðGsðu2; v2Þ þ G1
sðu2; v2ÞÞZðu1;
v2; v1;
u2Þ
þ Cðu1 þ u2 þ v1 þ v2ÞðGsðu1; v1ÞGsðu2; v2Þ
þ G1
sðu1; v1ÞG1
sðu2; v2ÞÞZð
v1;
v2;
u1;
u2Þ; ð1:7:6Þ

where s ¼ 1
2 þ it, and

Zðu1; u2; v1; v2Þ ¼ �ð1þ u1 þ v1Þ�ð1þ u1 þ v2Þ�ð1þ u2 þ v1Þ�ð1þ u2 þ v2Þ
�ð2þ u1 þ u2 þ v2 þ v2Þ

:

ð1:7:7Þ

This formula may be obtained from Motohashi’s work [39, pp. 174--178] by a
careful analysis of his terms together with appropriate use of the functional
equation in the form

JðsÞ�ðsÞ ¼ ð2"Þs

2 cos "s=2
�ð1
 sÞ ð1:7:8Þ

and some trigonometric identities.
If we use the approximation

Jðs þ *Þ
Jðs þ ;Þ ¼ ðijsjÞ*
;ð1þ Oð1=jsjÞ; ð1:7:9Þ

we have, using < ¼ jtj=ð2"Þ,

CðuÞðGsðuÞ þ G1
sðuÞÞ ¼ <
uð1þ Oð1=<ÞÞ ð1:7:10Þ
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and

Cðu þ vÞðGsðuÞGsðvÞ þ G1
sðuÞG1
sðvÞÞ ¼ <
u
vð1þ Oð1=<ÞÞ: ð1:7:11Þ

We then have

W ðt; u; vÞ ¼ ðZðu1; u2; v1; v2Þ
þ <
u1
v1Zð
v1; u2;
u1; v2Þ þ <
u1
v2Zð
v2; u2; v1;
u1Þ
þ <
u2
v1Zðu1;
v1;
u2; v2Þ þ <
u2
v2Zðu1;
v2; v1;
u2Þ
þ <
u1
u2
v1
v2Zð
v1;
v2;
u1;
u2ÞÞð1þ Oð1=<ÞÞ: ð1:7:12Þ

By the formulae in xx 2.2 and 2.5, the above agrees with the k ¼ 2 case of
Conjecture 1.5.1.
A residue computation shows that our conjecture can be restated asðT
0
j�ð12þ itÞj4 dt ¼

ðT
0

1

2

1

ð2"iÞ2
þ þ

t

2"

� �xþy

� �ð1þ xÞ4�ð1þ yÞ4

�ð1þ x 
 yÞ�ð1þ y 
 xÞ�ð2þ 2x þ 2yÞ dx dy dt

þ OðT 1=2þ"Þ; ð1:7:13Þ

where we integrate around small circles centered on the origin. This is in contrast
to Conjecture 1.5.1, which when k ¼ 2 expresses the formula in terms of four
contour integrals. It may be that our formulae can be similarly simpli0ed for all k,
but we have not succeeded in doing so.

2. Moments in t-aspect

The principle behind our method of conjecturing mean values is that the
Dirichlet series coeIcients of L-functions have an approximate orthogonality
relation when averaged over a family. These orthogonality relations are used to
identify the main terms in the mean values.
In this section we give a detailed account of the case of moments of a single

primitive L-function. We describe the recipe for conjecturing the mean values,
applying it 0rst to the case of the Riemann �-function, and then to a general
primitive L-function. In the remainder of this section we manipulate the formulas
into a more usable form, and also obtain a generalization of Conjecture 1.5.1.
Later in x 3 we recast our principles in a more general setting and consider the
averages of various families of L-functions.

2.1. The recipe

The following is our recipe for conjecturing the 2kth moment of an L-function:
(1) Start with a product of 2k shifted L-functions:

Zðs; *1; . . . ; *2kÞ ¼ Zð12 þ *1Þ . . .Zð12þ *2kÞ ð2:1:1Þ

(here we have written the Z-function, but the examples below will show that the
method applies to either the L- or the Z-function).
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(2) Replace each L-function with the two terms from its approximate
functional equation, ignoring the remainder term. Multiply out the resulting
expression to obtain 22k terms.
(3) Keep the 2k

k

� �
terms for which the product of ,-factors from the functional

equation is not rapidly oscillating. Use (2.2.9) to simplify the non-oscillating ,-
factors.
(4) In each of those 2k

k

� �
terms, keep only the diagonal from the sum.

(5) Extend the sums to run over all positive integers, and call the total
Mðs; *1; . . . ; *2kÞ.
(6) The conjecture isð1


1
Zð12þ it; *1; . . . ; *2kÞgðtÞ dt

¼
ð1

1

Mð12þ it; *1; . . . ; *2kÞð1þ Oðt
1=2þ"ÞÞgðtÞ dt; ð2:1:2Þ

for all " > 0, where g is a suitable weight function. In other words, Zðs; *Þ and
Mðs; *Þ have the same expected value if averaged over a suIciently large range.

Notes. (1) In order to see the structure of these mean values, it is necessary to
include the shifts *j. One can obtain the moments of Lð 12 þ itÞ by allowing the
shifts to tend to 0. Because of the shifts *j we avoid higher-order poles in
our expressions.
(2) The recipe applies to either the L-function or the Z-function, and we give

examples of both cases. The Z-function case can be directly obtained from the L-
function, although the reverse is not true in general.
(3) For the approximate functional equations in the recipe, one can ignore the

range of summation because it will just be extended to in0nity in the 0nal step.
(4) We do not de0ne what is meant by a ‘suitable weight function’, but it is

acceptable to take gðtÞ ¼ gT ðtÞ ¼ fðt=T Þ for a 0xed integrable function f . In
particular, one can take f to be the characteristic function of the interval ½0; 1�,
obtaining the mean value

Ð T
0 Zð 12 þ it; *Þ dt. From this one can recover a fairly

general weighted integral by partial integration.
(5) The error term Oðt
1=2þ"Þ 0ts with known examples and numerical

evidence. See x 5.
(6) The above procedure is a recipe for conjecturing all of the main terms in the

mean value of an L-function. It is not a heuristic, and the steps cannot be
justi0ed. In particular, some steps can throw away terms which are the same size
as the main term, and other steps add main terms back in. Our conjecture is that
all of those errors cancel.

2.2. Moments of the Riemann �-function

We illustrate our recipe in the case of the Riemann zeta-function. In this section
we consider the most familiar case of moments of �ð 12 þ itÞ. In x 2.3 we relate this
to moments of Zð 12 þ itÞ and repeat the calculation for the Z-function of an
arbitrary primitive L-function.
Consider

Zðs; *Þ ¼ �ðs þ *1Þ . . . �ðs þ *kÞ�ð1
 s 
 *kþ1Þ . . . �ð1
 s 
 *2kÞ; ð2:2:1Þ
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where * ¼ ð*1; . . . ; *2kÞ. Note that this is slightly diHerent notation than given in
(2.1.1). Our goal is a formula forð1


1
Zð12 þ it; *ÞgðtÞ dt: ð2:2:2Þ

For each �-function we use the approximate functional equation

�ðsÞ ¼
X
m

1

ms þ ,ðsÞ
X
n

1

n1
s
þ remainder: ð2:2:3Þ

Recall that we ignore the remainder term and the limits on the sums. Multiplying
out the resulting expression we obtain 22k terms, and the recipe tells us to keep
those terms in which the product of ,-factors is not oscillating rapidly.
If s ¼ z þ it with z bounded (but not necessarily real) then

,ðsÞ ¼
� t

2"


1=2
s
eitþ"i=4

�
1þ O

�
1

t

��
ð2:2:4Þ

and

,ð1
 sÞ ¼
� t

2"


s
1=2
e
it
"i=4

�
1þ O

�
1

t

��
; ð2:2:5Þ

as t ! þ1. We use the above formulas to determine which products of ,ðsÞ and
,ð1
 sÞ are oscillating.
One term which does not have an oscillating factor is the one where we use the

‘0rst part’ of each approximate functional equation, for it does not have any
,-factors. With s ¼ 1

2 þ it, that term isX
m1;...;mk
n1;...;nk

m
s
*1
1 . . .m
s
*k

k n
s
1þ*kþ1
1 . . .ns
1þ*2k

k

¼
X

m1;...;mk
n1;...;nk

m

1=2
*1
1 . . .m


1=2
*k

k n

1=2þ*kþ1
1 . . .n


1=2þ*2k
k

� n1 . . .nk

m1 . . .mk


it
: ð2:2:6Þ

According to the recipe we keep the diagonal from the above sum, which isX
m1...mk¼n1...nk

m

1=2
*1
1 . . .m


1=2
*k

k n

1=2þ*kþ1
1 . . .n


1=2þ*2k
k : ð2:2:7Þ

If we de0ne

Rðs;*Þ ¼
X

m1...mk¼n1...nk

1

msþ*1
1 . . .msþ*k

k n
s
*kþ1
1 . . .ns
*2k

k

; ð2:2:8Þ

where the sum is over all positive m1; . . . ;mk; n1; . . . ; nk such that
m1 . . .mk ¼ n1 . . .nk, then Rð 12 ;*Þ is the 0rst piece which we have identi0ed as
contributing to the mean value. (The sum in equation (2.2.8) does not converge
for s ¼ 1

2. See Theorem 2.4.1 for its analytic continuation.)
Note that the variable s in equation (2.2.8) should not be viewed the same as

the variable s ¼ 1
2þ it from the previous equations. We are employing a trick of

beginning with an expression involving s and 1
 s, noting that we will later be
setting s ¼ 1

2, so instead we consider an expression only involving s, which later
will be set equal to 1

2. This same trick will appear in x 4.1 when we consider more
general mean values.
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Now consider one of the other terms, say the one where we use the second part
of the approximate functional equation from �ðs þ *1Þ and the second part from
�ð1
 s 
 *kþ1Þ. By (2.2.4) and (2.2.5),

,ðs þ *1Þ,ð1
 s 
 *kþ1Þ # t

2"

� �
*1þ*kþ1

; ð2:2:9Þ

which is not rapidly oscillating. Using this and proceeding as above, we see that
the contribution from this term will be� t

2"



*1þ*kþ1
Rð12;*kþ1; *2; . . . ; *k; *1; *kþ2; . . . ; *2kÞ: ð2:2:10Þ

More generally, note that

,ðs þ ;1Þ . . .,ðs þ ;JÞ,ð1
 s 
 �1Þ . . .,ð1
 s 
 �KÞ

#
� t

2"e



iðJ
KÞt
eiðJ
KÞ"=4 t

2"

� �

P

;jþ
P

�j

; ð2:2:11Þ

which is rapidly oscillating (because of the it in the exponent) unless J ¼ K.
Thus, the recipe tell us to keep those terms which involve an equal number of
,ðs þ *jÞ and ,ð1
 s 
 *kþjÞ factors. This gives a total of

2k

k

� �
¼
Xk
j¼0

k

j

� �2
terms in the 0nal answer.
We now describe a typical term of the conjectural formula. First note that

the function Rðs;*1; . . . ; *k; *kþ1; . . . ; *2kÞ is symmetric in *1; . . . ; *k and in
*kþ1; . . . ; *2k, so we can rearrange the entries so that the 0rst k are in increasing
order, as are the last k. Thus, the 0nal result will be a sum of terms indexed by
the 2k

k

� �
permutations 
 2 S2k such that


ð1Þ < . . . < 
ðkÞ and 
ðk þ 1Þ < . . . < 
ð2kÞ:

We denote the set of such permutations by Q. Second, note that the product of an
equal number of ,ðs þ *jÞ and ,ð1
 s 
 *kþjÞ, as in (2.2.9), can be written as

t

2"

� �ð
*1
...
*kþ*kþ1þ...þ*2kÞ=2 t

2"

� �ð*
ð1Þþ...þ*
ðkÞ
*
ðkþ1Þ
...
*
ð2kÞÞ=2
: ð2:2:12Þ

For example, (2.2.9) is the case 
ð1Þ ¼ k þ 1, 
ðk þ 1Þ ¼ 1, and 
ðjÞ ¼ j otherwise.
If we set

W ðz; *; 
Þ ¼ y

2"

� 
ð*
ð1Þþ...þ*
ðkÞ
*
ðkþ1Þ
...
*
ð2kÞÞ=2
Rðx;*
ð1Þ; . . . ; *
ð2kÞÞ; ð2:2:13Þ

for z ¼ x þ iy with x and y real, then combining all terms we have

Mðz;*Þ :¼ y

2"

� 
ð
*1
...
*kþ*kþ1þ...þ*2kÞ=2X

2Q

W ðz; *; 
Þ: ð2:2:14Þ
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The recipe has produced the conjectureð1


1
Zð12 þ it; *ÞgðtÞ dt ¼

ð1

1

Mð12þ it; *Þð1þ Oðt
1=2þ"ÞÞgðtÞ dt; ð2:2:15Þ

with Zðs; *Þ given in (2.2.1) and Mðs;*Þ given above.
Note that the exponent of ðt=2"Þ in (2.2.13) has half the *j with a þ sign and

the other half with a 
 sign, and the same holds for Rðs; *Þ. This allows an
alternate interpretation of Q as the set of ways of choosing k elements from
f*1; . . . ; *2kg.
The general case of Conjecture 1.5.1 is stated in terms of the Z-function. We

can recover the mean value of the Z-function directly from that of the L-function
(in this case, the �-function). By the functional equation and (2.2.4) we see that

Zðs þ *1Þ . . .Zðs þ *2kÞ

¼ t

2"

� �ð*1þ...þ*k
*kþ1
...
*2kÞ=2
ð1þ Oð1=tÞÞ

� �ðs þ *1Þ . . . �ðs þ *kÞ�ð1
 s 
 *kþ1Þ . . . �ð1
 s 
 *2kÞ: ð2:2:16Þ

The factor ðt=2"Þð*1þ...þ*k
*kþ1
...
*2kÞ=2 can be absorbed into the weight function
gðtÞ, so we obtain the conjectureð1


1
Zðs þ *1Þ . . .Zðs þ *2kÞgðtÞ dt

¼
ð1

1

X

2Q

W ðs; *; 
Þð1þ Oðt
1=2þ"ÞÞgðtÞ dt; ð2:2:17Þ

where s ¼ 1
2 þ it.

In the next subsection we directly obtain the above conjecture for the
Z-function of a general primitive L-function, and in the remainder of this section
we perform various manipulations to put these in the form of Conjecture 1.5.1.

2.3. Moments of a primitive L-function

Consider the primitive L-function

LðsÞ ¼
X1
n¼1

an
ns ¼

Y
p

Lp

1

ps

� �
; ð
 > 1Þ: ð2:3:1Þ

We assume a functional equation of the special form �LðsÞ ¼ �LðsÞLðsÞ ¼ "�Lð1
 sÞ,
where

�LðsÞ ¼ Qs
Yw
j¼1
Jð12s þ �jÞ; ð2:3:2Þ

with f�jg stable under complex conjugation. Note that we have wj ¼ 1
2, which is

conjectured to hold for arithmetic L-functions. We also assume

LpðxÞ ¼
X1
n¼0

apnx
n ¼

Yw
j¼1

ð1
 �p; jxÞ
1; ð2:3:3Þ
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where w is the degree of L and where j�p; jj ¼ 0 or 1. Again this is conjectured to hold
for arithmetic L-functions.
We are going to evaluate the moments of the Z-function

ZLðsÞ ¼ "
1=2XðsÞ
1=2Lðs; Þ

where

XðsÞ ¼ �Lð1
 sÞ
�LðsÞ

¼ Q1
2sYw
j¼1

Jð 12 ð1
 sÞ þ �jÞ
Jð 12 s þ �jÞ

: ð2:3:4Þ

We will have to determine when products of XðsÞ and Xð1
 sÞ are not rapidly
oscillating. By Stirling’s formula

Jð
 þ itÞ ¼ e
"t=2t

1=2
� t

e


it
eði"=2Þð

1=2Þ

�
�
1
 i

t

�
1

12

 


2
þ 
2

2

�
þ O

�
1

t2

��
ð2:3:5Þ

we obtain

XðsÞ ¼ Q1
2s
� t

2


wð1=2
sÞ� t

2"e




P

=ð�jÞ
ewðitþi"=4Þ

�
1þ O

�
1

t

��
; ð2:3:6Þ

as t ! þ1. Note that the above expression can be simpli0ed because we have
assumed

P
=ð�jÞ ¼ 0.

Now we are ready to produce a conjecture for

IkðL; *1; . . . ; *2k; gÞ ¼
ð1


1
ZLðs þ *1Þ . . .ZLðs þ *2kÞgðtÞ dt: ð2:3:7Þ

with s ¼ 1
2 þ it.

By the de0nition of Z,

Y2k
j¼1

ZLðs þ *jÞ ¼
Y2k
j¼1

"
1=2Xðs þ *jÞ
1=2
Y2k
j¼1

Lðs þ *jÞ: ð2:3:8Þ

According to the recipe, we replace each Lðs þ itÞ by its approximate functional
equation and multiply out the product obtaining 22k terms. A typical term is a
product of 2k sums arising from either the 0rst piece or the second piece of the
approximate functional equation. Consider a term where we have ‘ factors from
the 0rst piece of the approximate functional equation and 2k 
 ‘ factors from the
second piece. To take one speci0c example, suppose it is the 0rst ‘ factors where
we choose the 0rst piece of the approximate functional equation, and the last
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2k 
 ‘ factors where we take the second piece:

"
kXð12 þ *1 þ itÞ
1=2 . . .Xð12þ *‘ þ itÞ
1=2
X
n1

an1

n
1=2þ*1þit
1

. . .
X
n‘

an‘

n
1=2þ*‘þit
‘

� "2k
‘Xð12 þ *‘þ1 þ itÞ1=2 . . .Xð12þ *2k þ itÞ1=2

�
X
n‘þ1

an‘þ1

n
1=2
*‘þ1
it
‘þ1

. . .
X
n2k

an2k

n
1=2
*2k
it
2k

¼ "k
‘ Xð 12 þ *1 þ itÞ . . .Xð 12þ *‘ þ itÞ
Xð 12 þ *‘þ1 þ itÞ . . .Xð 12 þ *2k þ itÞ

 !
1=2

�
X
n1

. . .
X
n2k

an1 . . . an‘
an‘þ1 . . . ank

n
1=2þ*1
1 . . .n

1=2þ*‘

‘ n
1=2
*‘þ1
‘þ1 . . .n

1=2
*2k
2k

n1 . . .n‘

n‘þ1 . . .n2k

� �
it

: ð2:3:9Þ

The recipe tells us to retain only the expressions of this sort where the factor
involving X is not oscillating. By (2.3.6) the requirement is that ‘ ¼ k (and in
particular 2k has to be even), and we have

Xð 12 þ *1 þ itÞ . . .Xð 12þ *k þ itÞ
Xð 12 þ *kþ1 þ itÞ . . .Xð 12þ *2k þ itÞ

 !
1=2

¼ Q2=wt

2

 !ðw=2Þð*1þ...þ*k
*kþ1
...
*2kÞ�
1þ O

�
1

t

��
: ð2:3:10Þ

Now the recipe tells us to keep the diagonal from the remaining sums, which in
(2.3.9) is the terms where n1 . . .n‘ ¼ n‘þ1 . . .n2k. So in the same way as the
�-function case in the previous section we let

Rðs; *Þ ¼
X

n1...nk¼nkþ1...n2k

an1 . . . ank
ankþ1 . . . ank

nsþ*1
1 . . .nsþ*k

k n
s
*kþ1
kþ1 . . .ns
*2k

2k

; ð2:3:11Þ

and

W ðz; *; 
Þ ¼ Q2=wy

2

 !ðw=2Þð*
ð1Þþ...þ*
ðkÞ
*
ðkþ1Þ
...
*
ð2kÞÞ

Rðx;*
ð1Þ; . . . ; *
ð2kÞÞ;

ð2:3:12Þ

for 
 2 Q, the set of permutations of f1; . . . ; 2kg with 
ð1Þ < . . . < 
ðkÞ and

ðk þ 1Þ < . . . < 
ð2kÞ. Then

Mðz;*Þ ¼
X

2Q

Wðz; *; 
Þ; ð2:3:13Þ

and we arrive at the conjecture

IkðL; *1; . . . ; *2k; gÞ ¼
ð1


1
Mð12 þ it; *Þð1þ Oðt
1=2þ"ÞÞgðtÞ dt; ð2:3:14Þ

which is the same form as we obtained in (2.2.17).
We will now examine the expressions in these conjectures in detail, rewriting

them in a more explicit form.
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2.4. The arithmetic factor in the conjectures

We retain the notation of the previous subsection. In particular, LðsÞ is a
primitive L-function having the properties listed at the beginning of x 2.3 and
Rðs;*Þ is given in (2.3.11).

THEOREM 2.4.1. Suppose j*jj < = for j ¼ 1; . . . ; 2k. Then Rðs;*1; . . . ; *2kÞ
converges absolutely for 
 > 1

2þ = and has a meromorphic continuation to

 > 1

4 þ =. Furthermore,

Rðs;*1; . . . ; *2kÞ ¼
Yk
i; j¼1

�ð2s þ *i 
 *kþjÞAkðs;*1; . . . ; *2kÞ ð2:4:1Þ

where

Akðs;*1; . . . ; *2kÞ ¼
Y
p

 Yk
i; j¼1

ð1
 p
2s
*iþ*kþjÞ
!
Bpðs;*1; . . . ; *2kÞ ð2:4:2Þ

with

Bpðs;*1; . . . ; *2kÞ ¼
ð1
0

Yk
j¼1

Lp

eð�Þ
psþ*j

� �
Lp

eð
�Þ
ps
*kþj

� �
d�: ð2:4:3Þ

Proof. We assumed j�p; jj6 1, so we have the Ramanujan bound
an 6 dwðnÞ � n". That implies absolute convergence of Rðs;*Þ for 
 > 1

2þ = þ ".
Since the coeIcients of Rðs;*Þ are multiplicative, as is the condition

n1 . . .nk ¼ nkþ1 . . .n2k, we can write Rðs;*Þ as an Euler product:

Rðs;*1; . . . ; *2kÞ ¼
X

n1...nk¼nkþ1...n2k

an1 . . . ank
ankþ1 . . . an2k

nsþ*1
1 . . .ns
*2k

k

¼
Y
p

X
Pk

j¼1ej¼
Pk

j¼1ekþj

ape1 . . . apek apekþ1 . . . ape2k

pe1ðsþ*1Þ . . . pe2kðs
*2kÞ

¼
Y
p

 
1þ japj2

Xk
i; j¼1

1

p2sþ*i
*kþj
þ
X1
j¼2

cp jð*1; . . . ; *2kÞ
p2js

þ . . .

!

¼
Yk
i; j¼1

�ð2s þ *i 
 *kþjÞ

�
Y
p

 
1þ ðjapj2 
 1Þ

Xk
i; j¼1

1

p2sþ*i
*kþj

þ
X1
j¼2

c 0
p jð*1; . . . ; *2kÞ

p2js
þ . . .

!

¼
Yk
i; j¼1

�ð2s þ *i 
 *kþjÞAkðs;*1; . . . ; *2kÞ; ð2:4:4Þ

say. Above cp j and c 0
p j are just shorthand for the (complicated) coeIcients in the

Euler product. Estimating them trivially and using the fact that japj2 is 1 on
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average (which is conjectured to hold for primitive elements of the Selberg class),
we 0nd that Akðs;*Þ is analytic in a neighborhood of 
 ¼ 1

2.
Finally, we have

Akðs;*1; . . . ; *2kÞ ¼
Y
p

Yk
i; j¼1

ð1
 p
2s
*iþ*kþjÞBpðs;*1; . . . ; *2kÞ ð2:4:5Þ

where

Bpðs;*1; . . . ; *2kÞ ¼
X

Pk
j¼1ej¼

Pk
j¼1ekþj

ape1 . . . apek apekþ1 . . . ape2k

pe1ðsþ*1Þ . . . pe2kðs
*2kÞ

¼
ð1
0

X
e1;...;e2k

ape1 . . . apek apekþ1 . . . ape2k

pe1ðsþ*1Þ . . . pe2kðs
*2kÞ

� e

��Xk
j¼1

ej 

Xk
j¼1

ekþj

�
�

�
d�

¼
ð1
0

Yk
j¼1

X1
ej¼0

apej

pejðsþ*jÞ
eðej�Þ

Yk
j¼1

apekþj

pekþjðs
*kþjÞ
eð
ekþj�Þ d�

¼
ð1
0

Yk
j¼1

Lp

eð�Þ
psþ*j

� �
Lp

eð
�Þ
ps
*kþj

� �
d�; ð2:4:6Þ

as claimed. �

To summarize, the conjecture for the general mean value IkðL; *1; . . . ; *2k; gÞ
involves the function Mðs;*Þ, which can be written as

Mðs;*Þ ¼
X

2Q

W ðs;*
ð1Þ; . . . ; *
ð2kÞÞ; ð2:4:7Þ

where we have written W ðs;*
ð1Þ; . . . ; *
ð2kÞÞ for Wðs;*Þ. And by Theorem 2.4.1,

W ðs;*1; . . . ; *2kÞ ¼ Q2=wt

2

 !ðw=2Þ
Pk

j¼1*j
*kþj

Akðs;*1; . . . ; *2kÞ

�
Yk
i; j¼1

�ð2s þ *i 
 *kþjÞ: ð2:4:8Þ

One can see the above elements in Conjecture 1.5.1; in particular, the form of
Bpðs;*Þ, and AkðzÞ in that conjecture equals Akð 12 ; *Þ given above. The overall
structure is slightly diHerent because Conjecture 1.5.1 is expressed as a multiple
contour integral, as opposed to a sum over permutations. In the next subsection
we show how to write the sum over permutations in a compact form. In the
following subsection we return to the functions Ak and write them in a more
explicit form.

2.5. Concise form of permutation sums

As we have seen, our methods naturally lead to an expression involving a sum
over permutations. In this section we describe how to write those sums in a
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compact form involving contour integrals. Similar combinatorial sums arise from
our matrix ensemble calculations, and we have previously stated our main results
and conjectures in this compact form.
Note that in both of these lemmas, the terms in the sum on the left side have

singularities. However, examining the right side of the formula makes it clear that
those singularities all cancel.

LEMMA 2.5.1. Suppose F ða; bÞ ¼ F ða1; . . . ; ak; b1; . . . ; bkÞ is a function of 2k
variables, which is symmetric with respect to the �rst k variables and also
symmetric with respect to the second set of k variables. Suppose also that F is
regular near ð0; . . . ; 0Þ. Suppose further that fðsÞ has a simple pole of residue 1 at
s ¼ 0 but is otherwise analytic in a neighborhood about s ¼ 0. Let

Kða1; . . . ; ak; b1; . . . bkÞ ¼ F ða1; . . . ; . . . ; bkÞ
Yk
i¼1

Yk
j¼1

fðai 
 bjÞ: ð2:5:1Þ

If for all 16 i; j6 k, *i 
 *kþj is contained in the region of analyticity of fðsÞ thenX

2Q

Kð*
ð1Þ; . . . ; *
ðkÞ;*
ðkþ1Þ . . .*
ð2kÞÞ

¼ ð
1Þk

k!2
1

ð2"iÞ2k

�
þ
. . .

þ
Kðz1; . . . ; zk; zkþ1; . . . ; z2kÞPðz1; . . . ; z2kÞ2Q2k

i¼1
Q2k

j¼1ðzi 
 *jÞ
dz1 . . . dz2k; ð2:5:2Þ

where one integrates about small circles enclosing the *j, and where Q is the set of
2k
k

� �
permutations 
 2 S2k such that 
ð1Þ < . . . < 
ðkÞ and 
ðk þ 1Þ < . . . < 
ð2kÞ.

The above lemma applies to the Unitary case, which has been the subject of
this section. The next lemma is useful in the Symplectic and Orthogonal cases,
which will be addressed beginning in x 4.4.

LEMMA 2.5.2. Suppose F is a symmetric function of k variables, regular near
ð0; . . . ; 0Þ, and fðsÞ has a simple pole of residue 1 at s ¼ 0 and is otherwise
analytic in a neighborhood of s ¼ 0, and let

Kða1; . . . ; akÞ ¼ F ða1; . . . ; akÞ
Y

16 i6 j6 k

fðai þ ajÞ ð2:5:3Þ

or

Kða1; . . . ; akÞ ¼ F ða1; . . . ; akÞ
Y

16 i<j6 k

fðai þ ajÞ: ð2:5:4Þ

If *i þ *j are contained in the region of analyticity of fðsÞ thenX
Ej¼�1

KðE1*1; . . . ; Ek*kÞ ¼ ð
1Þkðk
1Þ=2

ð2"iÞk
2k

k!

þ
. . .

þ
Kðz1; . . . ; zkÞ

�
Pðz21; . . . ; z2kÞ2

Qk
j¼1 zjQk

i¼1
Qk

j¼1ðzi 
 *jÞðzi þ *jÞ
dz1 . . . dzk; ð2:5:5Þ
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and X
Ej¼�1

�Yk
j¼1

Ej

�
KðE1*1; . . . ; Ek*kÞ

¼ ð
1Þkðk
1Þ=2

ð2"iÞk
2k

k!

þ
. . .

þ
Kðz1; . . . ; zkÞ

�
Pðz21; . . . ; z2kÞ2

Qk
j¼1 *jQk

i¼1
Qk

j¼1ðzi 
 *jÞðzi þ *jÞ
dz1 . . . dzk; ð2:5:6Þ

where the path of integration encloses the �*j.

The proofs of the lemmas come from the following result.

LEMMA 2.5.3. Suppose that F ða; bÞ ¼ F ða1; . . . ; am; b1; . . . ; bnÞ is symmetric in
the a variables and in the b variables and is regular near ð0; . . . ; 0Þ. Suppose
fðsÞ ¼ s
1 þ c þ . . . and let

Gða1; . . . ; am; b1; . . . bnÞ ¼ F ða1; . . . ; . . . ; bnÞ
Ym
i¼1

Yn
j¼1

fðai 
 bjÞ:

Let Qm;n be as de�ned above. ThenX

2Qm;n

Gð*
ð1Þ; . . . ; *
ðmÞ;*
ðmþ1Þ . . .*
ðmþnÞÞ

¼ ð
1ÞðmþnÞ

m!n!

X

2"mþn

Resðz1;...;zmþnÞ¼ð*
ð1Þ;...;*
ðmþnÞÞ
Gðz1; . . . ; zmþnÞPðz1; . . . ; zmþnÞ2Qmþn

i¼1
Qmþn

j¼1 ðzi 
 *jÞ
:

Proof. It suIces to prove that

Resðz1;...;zmþnÞ¼ð*
ð1Þ;...;*
ðmþnÞÞ
Pðz1; . . . ; zmþnÞ2Qmþn
i¼1

Qmþn
j¼1 ðzi 
 *jÞ

¼ ð
1Þmþn

since each such term will appear m!n! times. Consider the case where 
 is the
identity permutation. Then the residue isQ

j<kð*k 
 *jÞ2Q
j 6¼kð*j 
 *kÞ

¼ ð
1Þmþn;

the answer will be the same for any permutation 
.
The residue above can be expressed as ð2"iÞ
m
n times an m þ n fold integral,

each path of which encircles all of the poles of the integrand; note that the value
of such an integral may be calculated by summing the residues and note that
there is no singularity when zj ¼ zk because of the factor ðzk 
 zjÞ2 in the
numerator. �

To obtain the form of Conjecture 1.5.1 from the formulas at the end of xx 2.3
and 2.4, apply Lemma 2.5.1 with Kð*1; . . . ; *2kÞ ¼ W ð 12 ;*1; . . . ; *2kÞ. That is,
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fðzÞ ¼ �ð1þ zÞ and

F ð*1; . . . ; *2kÞ ¼ Q2=wt

2

 !ðw=2Þ
Pk

j¼1*j
*kþj

Akð12;*1; . . . ; *2kÞ

¼ exp w log

�
Q2=wt

2

�
� 1
2

Xk
j¼1

*j 
 *kþj

 !
� Akð12;*1; . . . ; *2kÞ: ð2:5:7Þ

We arrive at the general case of Conjecture 1.5.1.

Conjecture 2.5.4. Suppose LðsÞ is a primitive L-function having the
properties listed at the beginning of x 2.3, and the mean value IkðL; *1; . . . ; *2k; gÞ
is given in (2.3.7). Then

IkðL; *1; . . . ; *2k; gÞ ¼
ð1

1

Pk w log
�Q2=wt

2



; *

 !
ð1þ Oðt
1=2þ"ÞÞgðtÞ dt; ð2:5:8Þ

where Pkðx; *Þ and Gðz1; . . . ; z2kÞ are as stated in Conjecture 1.5.1, except that Ak

is the Euler product

AkðzÞ ¼
Y
p

Yk
i¼1

Yk
j¼1

1
 1

p1þzi
zkþj

� �ð1
0

Yk
j¼1

Lp

eð�Þ
p1=2þzj

� �
Lp

eð
�Þ
p1=2
zkþj

� �
: ð2:5:9Þ

Note that for theRiemann �-function,w ¼ 1 andQ ¼ 1=
ffiffiffi
"

p
andLpðxÞ ¼ ð1
 xÞ
1,

so Conjecture 1.5.1 is a special case of the above. Also note that w logð 12Q
2=wtÞ is

the mean density of zeros of Lð 12 þ itÞ, or equivalently the log conductor, as
expected.
It remains to express the arithmetic factor Ak in a more explicit form, which we

do in the next section.

2.6. Explicit versions of the arithmetic factor

The factor Akðs; *Þ in the 2kth moment of a primitive L-function can be
expressed in a simple form.
Recall, see Theorem 2.4.1, that Ak is the Euler product

Akðs;*Þ ¼
Y
p

Bpðs;*1; . . . ; *2kÞ
Yk
i¼1

Yk
j¼1

1
 1

p2sþ*i
*kþj

� �
; ð2:6:1Þ

where

Bpðs;*1; . . . ; *2kÞ ¼
ð1
0

Yk
j¼1

Lp

eð�Þ
psþ*j

� �
Lp

eð
�Þ
ps
*kþj

� �
d�: ð2:6:2Þ
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LEMMA 2.6.1. If LpðxÞ ¼ ð1
 �pxÞ
1 with j�pj ¼ 1 then

Bpðs;*1; . . . ; *2kÞ ¼
Yk
i¼1

Yk
j¼1

1
 1

p2sþ*i
*kþj

� �
1

�
Xk
m¼1

Y
i 6¼m

�Yk
j¼1

�
1
 1

p2sþ*j
*kþi

��.
ð1
 p*kþi
*kþmÞ: ð2:6:3Þ

COROLLARY 2.6.2. If LpðxÞ ¼ ð1
 �pxÞ
1 with j�pj ¼ 0 when p jN and j�pj ¼
1 otherwise, then

Akðs;*1; . . . ; *2kÞ ¼
Y
p -N

Xk
m¼1

Y
i6¼m

�Yk
j¼1

�
1
 1

p2sþ*j
*kþi

��.
ð1
 p*kþi
*kþmÞ

�
Y
pjN

Yk
i¼1

Yk
j¼1

1
 1

p2sþ*i
*kþj

� �
: ð2:6:4Þ

In particular, if LðsÞ ¼ Lðs; ,Þ with , a Dirichlet character of conductor N, where
the Riemann �-function is the case N ¼ 1, then

A1ðs;*1; *2Þ ¼
Y
pjN

1
 1

p2sþ*1
*2

� �
; ð2:6:5Þ

A2ðs;*1; *2; *3; *4Þ ¼ �ð4s þ *1 þ *2 
 *3 
 *4Þ
1

�
Y
pjN

Y2
i¼1

Y2
j¼1

1
 1

p2sþ*i
*2þj

� �
; ð2:6:6Þ

and

A3ðs;*1; . . . ; *6Þ

¼
Y
p-N

ð1
 p

P3

1*i
*3þi p*1 þ p*2 þ p*3ð Þ p
*4 þ p
*5 þ p
*6ð Þp
4s

þ p

P3

1*i
*3þið p*1 þ p*2 þ p*3ð Þ p
*1 þ p
*2 þ p
*3ð Þ

þ p*4 þ p*5 þ p*6ð Þ p
*4 þ p
*5 þ p
*6ð Þ 
 2Þp
6s


 p

P3

1*i
*3þi p
*1 þ p
*2 þ p
*3ð Þ p*4 þ p*5 þ p*6ð Þp
8s

þ p
2
P3

1*i
*3þip
12sÞ

�
Y
pjN

Y3
i¼1

Y3
j¼1

1
 1

p2sþ*i
*3þj

� �
: ð2:6:7Þ

For k> 3 it is not possible to express Ak as a 0nite product of �-functions.
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Proof of Lemma 2.6.1. Using LpðxÞ ¼ ð1
 �pxÞ
1 and setting

qj ¼
�p

psþ*j
and qkþj ¼

�p
ps
*kþj

for j ¼ 1; . . . ; k; ð2:6:8Þ

we have

Bpðs;*1; . . . ; *2kÞ ¼
ð1
0

Yk
j¼1

1
 eð�Þqj
� �
1

1
 eð
�Þqkþj

� �
1
d�

¼ ð
1ÞkQk
j¼1 qj

ð1
0
eðk�Þ

Yk
j¼1

eð�Þ 
 1=qj
� �
1

eð�Þ 
 qkþj

� �
1
d�

¼ ð
1ÞkQk
j¼1 qj

1

2"i

þ
zk
1

Yk
j¼1

z 
 1=qj
� �
1

z 
 qkþj

� �
1
dz; ð2:6:9Þ

where the path of integration is around the unit circle. Since jqjj < 1, by the
residue theorem we have a contribution from the poles at qkþ1; . . . ; q2k, giving

Bpðs;*1; . . . ; *2kÞ ¼ ð
1ÞkQk
j¼1 qj

Xk
m¼1

qk
1kþm

Yk
i¼1

qkþm 
 q
1i

� �
1Y
i6¼m

qkþm 
 qkþið Þ
1

¼
Xk
m¼1

Yk
i¼1

1
 qiqkþmð Þ
1
Y
i 6¼m

1
 qkþiq

1
kþm

� �
1
: ð2:6:10Þ

Since Yk
i; j¼1

ð1
 qiqkþjÞ
Yk
i¼1

1
 qiqkþmð Þ
1¼
Y
j 6¼m

Yk
i¼1

ð1
 qiqkþjÞ; ð2:6:11Þ

factoring out Yk
i; j¼1

ð1
 qiqkþjÞ
1; ð2:6:12Þ

we have

Bpðs;*Þ ¼
Yk
i; j¼1

ð1
 qiqkþjÞ
1
 !Xk

m¼1

Y
i6¼m

Qk
j¼1ð1
 qjqkþiÞ
1
 qkþiq


1
kþm

: ð2:6:13Þ

Since

qjqkþi ¼ p
2s
*jþ*kþi and qkþiq

1
kþm ¼ p*kþi
*kþm; ð2:6:14Þ

we obtain the formula in the lemma. �

Notice that the special case N ¼ 1, that is, the Riemann � function, reads in
Corollary 2.6.2,

Akðs;*1; . . . ; *2kÞ ¼
Y
p

Xk
m¼1

Y
i6¼m

�Yk
j¼1

�
1
 1

p2sþ*j
*kþi

��.
ð1
 p*kþi
*kþmÞ: ð2:6:15Þ
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Each local factor

Ap;kðs;*Þ ¼
Xk
m¼1

Y
i6¼m

�Yk
j¼1

�
1
 1

p2sþ*j
*kþi

��.
ð1
 p*kþi
*kþmÞ ð2:6:16Þ

is actually a polynomial in p
2s, p
*j and p*kþj , for j ¼ 1; . . . ; k. That this is so in p
2s

and p
*j is readily apparent from (2.6.16). The fact that it is also a polynomial in

p*kþj follows from (2.4.2) and (2.4.3), from which

Ap;kðs;*1; . . . ; *k; *kþ1; . . . ; *2kÞ
¼ Ap;kðs;
*kþ1; . . . ;
*2k;
*1; . . . ;
*kÞ: ð2:6:17Þ

Setting ;1 ¼ 
*kþ1; . . . ; ;k ¼ 
*2k, one has, from the above discussion, that Ap;k is a

polynomial in p
;j , that is, in p*kþj , for j ¼ 1; . . . ; k. Finally, use the fact that if an

analytic function of several variables is of polynomial growth in each variable

separately, then it must be a polynomial.

2.7. Recovering the leading order for moments of �

Conjecture 1.5.1 contains, as a special case, a conjecture for the leading order
term for the moments of the Riemann zeta-function. In this section we show that
the leading order terms derived from Conjecture 1.5.1 agree with the leading order
terms which have previously been conjectured by other methods.
As described in x 1.3, it is conjectured that the mean values of the Riemann

zeta-function take the formðT
0
j�ð12 þ itÞj2k dt ¼ T PkðlogT Þ þ OðT 1=2þ"Þ; ð2:7:1Þ

where PkðlogT Þ is a polynomial in logT of degree k2. Conrey and Ghosh

conjectured that the coeIcient of the logk
2

T term is of the form gkak=k
2!, where

ak is given by (1.3.2). Keating and Snaith used random matrix theory to
conjecture that gk is given by (1.3.3). This leading order term gkak=k

2! will be re-
derived here, starting with Conjecture 1.5.1.
Conjecture 1.5.1 implies thatðT

0
j�ð12 þ itÞj2k dt ¼

ðT
0
Pk log

t

2"

� �
dt þ OðT 1=2þ"Þ; ð2:7:2Þ

where Pk is the polynomial of degree k2 given by

PkðxÞ ¼ ð
1Þk

k!2ð2"iÞ2k
þ
. . .

þ
Akðz1; . . . ; z2kÞ

Yk
i¼1

Yk
j¼1

�ð1þ zi 
 zkþjÞ

� P2ðz1; . . . ; z2kÞQ2k
j¼1 z

2k
j

eðx=2Þ
Pk

j¼1zj
zkþj dz1 . . . dz2k: ð2:7:3Þ

Our goal is to show that the leading order term of PkðxÞ is ðgkak=k2!Þxk2 .
Using the fact that Ak is analytic in a neighborhood of ð0; . . . ; 0Þ and the

�-function has a simple pole at 1 with residue 1, after a change of variables
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we have

PkðxÞ ¼ ð
1Þk

k!2ð2"iÞ2k
þ
. . .

þ
Ak

� z1
x=2

; . . . ;
z2k
x=2


Yk
i¼1

Yk
j¼1

�
�
1þ

zi 
 zkþj

x=2



� P2ðz1; . . . ; z2kÞQ2k

j¼1 z
2k
j

e
Pk

j¼1zj
zkþj dz1 . . . dz2k

¼ ð
1Þk

k!2
Akð0; . . . ; 0Þ

ð2"iÞ2k
� x
2


k2
ð1þ Oðx
1ÞÞ

�
þ
. . .

þ
P2ðz1; . . . ; z2kÞQk

i¼1
Qk

j¼1ðzi 
 zkþjÞ
� �Q2k

j¼1 z
2k
j

e
Pk

j¼1zj
zkþj dz1 . . . dz2k

¼ Akð0; . . . ; 0Þ
k!22k

2ð2"iÞ2k
xk2ð1þ Oðx
1ÞÞ

�
þ
. . .

þ
Pðz1; . . . ; z2kÞPðz1; . . . ; zkÞPðzkþ1; . . . ; z2kÞQ2k

j¼1 z
2k
j

� e
Pk

j¼1zj
zkþj dz1 . . . ; dz2k: ð2:7:4Þ

Now we need only show that Akð0; . . . 0Þ ¼ ak and the remaining factors give
gk=k

2!.
From Conjecture 1.5.1,

Akð0; . . . 0Þ ¼
Y
p

1
 1
p

� �k2ð1
0
1
 eð�Þ

p1=2

� �
k

1
 eð
�Þ
p1=2

� �
k

d�: ð2:7:5Þ

For a given p, we concentrate on the integral in the above expression, writing it as
a contour integral around the unit circle:

ð
p1=2Þk 1

2"i

þ
zk
1ðz 
 p1=2Þ
k

ðz 
 p
1=2Þk
dz: ð2:7:6Þ

After expanding the two factors in the numerator around z ¼ p
1=2 and
calculating the residue we are left with the sum

�
1
 1

p

�
2kþ1Xk
1
‘¼0

k 
 1

‘

� �
2k 
 ‘ 
 2

k 
 1

� �
p
kþ‘þ1

�
1
 1

p

�‘

: ð2:7:7Þ

Next one can perform a binomial expansion of ð1
 p
1Þ‘ and gather like powers of
p
1 to obtain

�
1
 1

p

�
2kþ1Xk
1
m¼0

 Xm
q¼0

ð
1Þq k þ q 
 m 
 1

q

� �

� k 
 1

k þ q 
 m 
 1

� �
k þ m 
 q 
 1

k 
 1

� �!
p
m: ð2:7:8Þ
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A simple manipulation of the binomial coeIcients and replacing q by m 
 q givesXm
q¼0

ð
1Þq k þ q 
 m 
 1
q

� �
k 
 1

k þ q 
 m 
 1

� �
k þ m 
 q 
 1

k 
 1

� �

¼ k 
 1
m

� �Xm
q¼0

ð
1Þm
q m

q

� �
k þ q 
 1

q

� �
; ð2:7:9Þ

and this 0nal sum over q is in fact just k
1
m

� �
(see, for example, [43]). Thus,

Akð0; . . . ; 0Þ ¼
Y
p

1
 1

p

� �ðk
1Þ2Xk
1
m¼0

k 
 1

m

� �2
p
m; ð2:7:10Þ

and this is indeed equal to ak de0ned in (1.3.2).
Now we must identify the remaining terms as gk=k

2! de0ned in (1.3.3), as
x ! 1. The method applied below as far as (2.7.14) follows closely that used for a
similar purpose in [4]. Expanding the determinants Pðz1; . . . ; zkÞ ¼ det½zm
1

j �kj;m¼1,
we obtain

lim
x!1

PkðxÞ
akx

k2
¼ 1

ðk!Þ22k2ð2"iÞ2k
þ
. . .

þ
e
Pk

j¼1zj
zkþj

�
�X

S

sgnðSÞzS01 zS12 . . . z
Sk
1
k z

Sk

kþ1 . . . z
S2k
1
2k

�
�
�X

Q

sgnðQÞzQ0

1 . . . zQk
1
k

��X
R

sgnðRÞzR0kþ1 . . . z
Rk
1
2k

�
� z
2k

1 . . . z
2k2k dz1 . . . dz2k: ð2:7:11Þ

Here Q and R are permutations of f0; 1; . . . ; k 
 1g and S is a permutation of
f0; 1; . . . ; 2k 
 1g.
Since the integrand is symmetric amongst z1; . . . ; zk and also amongst

zkþ1; . . . ; z2k, in each term of the sum over Q we permute the variables
z1; . . . ; zk so that zj appears with the exponent j 
 1, for j ¼ 1; . . . ; k. In the
sum over S the eHect is to rede0ne the permutations, and the additional sign
involved with this exactly cancels sgnðQÞ. We do the same with the sum over R,
and as a result we are left with k!2 copies of the sum over the permutation S:

lim
x!1

PkðxÞ
akx

k2
¼ 1

2k
2ð2"iÞ2k

þ
. . .

þ
e
Pk

j¼1zj
zkþj

�
X
S

sgnðSÞz
ð2k
S0Þ
1 z


ð2k
S1
1Þ
2 . . . z


ð2k
Sk
1
ðk
1ÞÞ
k

� z

ð2k
SkÞ
kþ1 z


ð2k
Skþ1
1Þ
kþ2 . . . z


ð2k
S2k
1
ðk
1ÞÞ
2k dz1 . . . dz2k: ð2:7:12Þ

Since

1

JðzÞ ¼ 1

2"i

ð
C
ð
tÞ
ze
tð
dtÞ; ð2:7:13Þ

where the path of integration C starts at þ1 on the real axis, circles the origin in
the counterclockwise direction and returns to the starting point, we can rewrite
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(2.7.12) as

lim
x!1

PkðxÞ
akx

k2

¼ ð
1Þk

2k
2

X
S

sgnðSÞðJð2k 
 S0ÞJð2k 
 S1 
 1Þ . . . Jð2k 
 Sk
1 
 ðk 
 1ÞÞ

� ð
1ÞSkJð2k 
 SkÞð
1ÞSkþ1þ1Jð2k 
 Skþ1 
 1Þ . . .
� ð
1ÞS2k
1þk
1Jð2k 
 S2k
1 
 ðk 
 1ÞÞÞ
1

¼ ð
1Þk

2k
2

1
Jð2kÞ

1
Jð2k
1Þ . . . 1

Jðkþ1Þ
1

Jð2kÞ

1

Jð2k
1Þ . . . ð
1Þk
1
Jðkþ1Þ

1
Jð2k
1Þ

1
Jð2k
2Þ . . . 1

JðkÞ

1

Jð2k
1Þ
1

Jð2k
2Þ . . . ð
1Þk
JðkÞ

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

1
Jð1Þ

1
Jð0Þ . . . 1

Jð2
kÞ

1
Jð1Þ

1
Jð0Þ . . . ð
1Þ3k
2

Jð2
kÞ

�������������

�������������
¼ ð
1Þk

2k
2

Yk
1
‘¼0

‘!

ðk þ ‘Þ!

 !

�

0
0

� �
0
1

� �
. . . 0

k
1
� �

0
0

� �

 0

1

� �
. . . ð
1Þk
1 0

k
1
� �

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

2k
1
0

� �
2k
1
1

� �
. . . 2k
1

k
1
� �


 2k
1
0

� �
2k
1
1

� �
. . . ð
1Þk 2k
1

k
1
� �

��������
��������: ð2:7:14Þ

The above is a 2k � 2k determinant, the 0rst k columns of which are identical to

the 0rst k columns of the matrix

0
0

� �
0
1

� �
. . . 0

2k
1
� �

..

. ..
. . .

. ..
.

2k
1
0

� �
2k
1
1

� �
. . . 2k
1

2k
1
� �

0BB@
1CCA: ð2:7:15Þ

The matrix (2.7.15) is lower triangular and so can easily be seen to have

determinant equal to 1. It is also the inverse of

0
0

� �

 0

1

� �
. . . 
 0

2k
1
� �


 1
0

� �
1
1

� �
. . . 1

2k
1
� �

..

. ..
. . .

. ..
.


 2k
1
0

� �
2k
1
1

� �
. . . 2k
1

2k
1
� �

0BBBBB@

1CCCCCA: ð2:7:16Þ

It so happens that matrix (2.7.16) has its k 0rst columns identical to columns

k þ 1 through 2k of the matrix in expression (2.7.14). Therefore we can multiply

expression (2.7.14) by the determinant of (2.7.15) (which is equal to 1) and this
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simpli0es the 0nal k columns of the resulting determinant signi0cantly:

lim
x!1

PkðxÞ
akx

k2

¼ ð
1Þk

2k
2

Yk
1
‘¼0

‘!

ðk þ ‘Þ!

 ! 0
0

� �
0
1

� �
. . . 0

2k
1
� �

..

. ..
. . .

. ..
.

2k
1
0

� �
2k
1
1

� �
. . . 2k
1

2k
1
� �

��������
��������

�

0
0

� �
. . . 0

k
1
� �

0
0

� �
. . . ð
1Þk
1 0

k
1
� �

..

. . .
. ..

. ..
. . .

. ..
.

2k
1
0

� �
. . . 2k
1

k
1
� �


 2k
1
0

� �
. . . ð
1Þk 2k
1

k
1
� �

��������
��������

¼ ð
1Þk

2k
2

Yk
1
‘¼0

‘!

ðk þ ‘Þ!

 !
0
0

� �
0 . . . 0 1 0 . . . 0

2 1
0

� �
1
1

� �
. . . 0 0 1 . . . 0

..

. ..
. . .

. ..
. ..

. ..
. . .
. ..

.

2k
1 k
1
0

� �
2k
2 k
1

1

� �
. . . k
1

k
1
� �

0 0 . . . 1

2k k
0

� �
2k
1 k

1

� �
. . . 2 k

k
1
� �

0 0 . . . 0

..

. ..
. . .

. ..
. ..

. ..
. . .
. ..

.

22k
1 2k
1
0

� �
22k
2 2k
1

1

� �
. . . 2k 2k
1

k
1
� �

0 0 . . . 0

��������������������

��������������������
¼ ð
1Þkðk
1Þ=2

2k
2

Yk
1
‘¼1

‘!

ðk þ ‘Þ!

 ! 22k
1 2k
1
0

� �
22k
2 2k
1

1

� �
. . . 2k 2k
1

k
1
� �

..

. ..
. . .

. ..
.

2k k
0

� �
2k
1 k

1

� �
. . . 2 k

k
1
� �

��������
��������

¼ ð
1Þkðk
1Þ=2
Yk
1
‘¼1

‘!

ðk þ ‘Þ!

 ! 2k
1
0

� �
2k
1
1

� �
. . . 2k
1

k
1
� �

..

. ..
. . .

. ..
.

k
0

� �
k
1

� �
. . . k

k
1
� �

��������
��������:

The matrix above can be decomposed as
2k
1
0

� �
2k
1
1

� �
. . . 2k
1

k
1
� �

2k
2
0

� �
2k
2
1

� �
. . . 2k
2

k
1
� �

..

. ..
. . .

. ..
.

k
0

� �
k
1

� �
. . . k

k
1
� �

0BBBBB@

1CCCCCA

¼

k
1
0

� �
k
1
1

� �
. . . k
1

k
1
� �

k
2
0

� �
k
2
1

� �
. . . k
2

k
1
� �

..

. ..
. . .

. ..
.

0
0

� �
0
1

� �
. . . 0

k
1
� �

0BBBBB@

1CCCCCA
k
0

� �
k
1

� �
. . . k

k
1
� �

k

1
� �

k
0

� �
. . . k

k
2
� �

..

. ..
. . .

. ..
.

k

kþ1

� 

k


kþ2

� 

. . . k

0

� �

0BBBBB@

1CCCCCA:

The 0rst matrix on the right side is zero in the lower right triangle, and the
second matrix on the right side is upper triangular. Thus we read that the
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determinant of the matrix on the left-hand side is ð
1Þkðk
1Þ=2. Therefore,

lim
x!1

PkðxÞ
akx

k2
¼
Yk
1
‘¼1

‘!

ðk þ ‘Þ! ; ð2:7:17Þ

and this is gk=k
2! from (1.3.3), as required.

A similar method applies to the orthogonal and symplectic cases.

3. Families of characters and families of L-functions

We will describe a particular kind of ‘family’ of primitive L-functions based on
the idea of twisting a single L-function by a family of ‘characters’. In the next
section we provide a general recipe for conjecturing the critical mean value of
products of L-functions averaged over a family and we demonstrate the recipe in
several examples.
Note that we use ‘character’ somewhat more generally than is usually covered

by that term.

3.1. Families of primitive characters

We describe sets of arithmetic functions that we call ‘families of characters’.
Let F ¼ ffg be a collection of arithmetic functions fðnÞ, and assume that for

each f 2 F the associated L-function LfðsÞ ¼
P

fðnÞ n
s is a primitive L-function
with functional equation LfðsÞ ¼ "fXfðsÞLfð1
 sÞ and an Euler product of the
form

LfðsÞ ¼
X1
n¼1

fðnÞ
ns ¼

Y
p

Yv
j¼1

ð1
 ;p; j=p
sÞ
1: ð3:1:1Þ

The quantity

cðfÞ ¼ jð"fXfÞ 0ð12Þj ð3:1:2Þ

is called the log conductor of f.
Note that if f ¼ ,, a primitive Dirichlet character of conductor q, then the log

conductor is

cð,Þ ¼
log q 
 log " þ ðJ 0=JÞð 14 Þ for , even,

log q 
 log " þ ðJ 0=JÞð 34 Þ for , odd .

8<: ð3:1:3Þ

If fðnÞ ¼ n
it then the log conductor is cðn
itÞ ¼ logðt=2"Þ þ Oðt
1Þ. Generally
the log conductor cðfÞ scales as the log of the ‘usual’ conductor of f .
In the case that F is 0nite, we require that the data Q, wj, �j in the functional

equation (1.1.2) is the same for all f 2 F . In particular, the conductor cðfÞ is the
same for all f 2 F .
In the case that F is in0nite, we require that the data Q, wj, �j in the

functional equation (1.1.2) are monotonic functions of the conductor cðfÞ.
Furthermore, we de0ne the counting function MðT Þ ¼ #ff : cðfÞ6Tg and
require that MðlogðT ÞÞ ¼ F ðT A; log T Þ þ OðTA=2þEÞ for all E > 0, where A > 0
and F ð�; �Þ is a polynomial.
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If G is a function on F , then we de0ne the expected value of G by

hGðfÞi ¼ lim
T!1

MðT Þ
1
X
f2F

cðfÞ<T

GðfÞ; ð3:1:4Þ

assuming the limit exists. In the case of a continuous family, the sum is an integral.
We require that if m1; . . . ;mk are integers then the expected value

=‘ðm1; . . . ;mkÞ ¼ hfðm1Þ . . . fðm‘Þfðm‘þ1Þ . . . fðmkÞi ð3:1:5Þ

exists and is multiplicative. That is, if ðm1m2 . . .mk; n1n2 . . .nkÞ ¼ 1, then

=‘ðm1n1;m2n2; . . . ;mknkÞ ¼ =‘ðm1; . . . ;mkÞ=‘ðn1; . . . ; nkÞ: ð3:1:6Þ

We sometimes refer to = as the ‘orthogonality relation’ of the family.
The practical use of being multiplicative is that a multiple Dirichlet series with

=‘ coeIcients factors has an Euler product:X
m1;...;m‘

=‘ðm1; . . . ;m‘Þ
ms1
1 . . .m

s‘
‘

¼
Y
p

X
e1;...;e‘

=‘ðpe1 ; . . . ; pe‘Þ
pe1s1þ...þe‘s‘

: ð3:1:7Þ

We will use the above relation in our calculations.
To summarize, a family of characters F ¼ ffg is a collection of arithmetic

functions, each of which are the coeIcients of a particular kind of L-function. The
characters are partially ordered by conductor cðfÞ, and the expected values
=‘ðm1; . . . ;mkÞ are multiplicative functions.
The following are examples of families of characters, two of which are 0nite and

two are in0nite. The term ‘0nite family’ is somewhat misleading, because
those families depend on a parameter, and the size of the family grows with the
parameter.

1. The family of t-twists. This is

F t ¼ fftðnÞ ¼ n
it : 0 < t < Tg: ð3:1:8Þ
We have

1

T

ðT
0
ðm=nÞit dt ¼

1 if n ¼ m,

ðm=nÞiT 
 1

T logðm=nÞ otherwise,

8<: ð3:1:9Þ

leading to the expected values

hftðnÞftðmÞi ¼ hn
itmiti ¼ hðm=nÞiti ¼ 1 if n ¼ m,
0 otherwise.

n
ð3:1:10Þ

Therefore the orthogonality relation is

=‘ðn1; . . . ; nkÞ ¼ =ðn1 . . .n‘ ¼ n‘þ1 . . .nkÞ: ð3:1:11Þ

2. The family of primitive Dirichlet characters. For each positive integer q
we set

F chðqÞ ¼ ff,ðnÞ ¼ ,ðnÞ : , is a primitive Dirichlet character mod qg: ð3:1:12Þ
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We have

1

q�

X
,mod q

�
,ðnÞ,ðmÞ ¼ 1 if n � mmod q and ðmn; qÞ ¼ 1,

0 otherwise,

�
ð3:1:13Þ

where the sum is over the primitive characters mod q, and q� is the number of
terms in the sum. This leads to the expected values

hf,ðnÞf,ðmÞi ¼ h,ðnÞ,ðmÞi ¼ 1 if n ¼ m and ðmn; qÞ ¼ 1,
0 otherwise.

�
ð3:1:14Þ

Since ,ðm1Þ,ðm2Þ ¼ ,ðm1m2Þ we obtain
=‘ðm1; . . . ;mkÞ ¼ =ðm1 . . .m‘ ¼ m‘þ1 . . .mk and ðm1 . . .mk; qÞ ¼ 1Þ: ð3:1:15Þ

Note that the condition in the de0nition of =‘ is not m1 . . .m‘ � m‘þ1 . . .mk mod q.
We are computing the expected value as a function of q, so one should think of
the mj as 0xed and q ! 1. The only way to have m1 . . .m‘ � m‘þ1 . . .mk mod q
for suIciently large q is to have actual equality.
Note that by our de0nition, F chðqÞ is not a family, but it is the union of two

families consisting of the even characters and the odd characters separately.

3. The family of real primitive Dirichlet characters. We de0ne

F d ¼ ffdðnÞ ¼ ,dðnÞ : ,d is a primitive real character mod d; jdj < Xg; ð3:1:16Þ
where d runs over fundamental discriminants. We have expected values

hfdðnÞfdðmÞi ¼ h,dðnÞ,dðmÞi ¼ h,dðnmÞi

¼
Q

pjnmð1þ p
1Þ
1 if nm ¼ �,

0 otherwise.

�
ð3:1:17Þ

The calculation in the case nm ¼ � is non-trivial and was 0rst done by Jutila [28].
(If one were summing over all d then the expected value when nm ¼ � would be
’ðnmÞ=nm.)
In practice one encounters more restricted families, so we let

F dðþÞ ¼ ffd : d > 0g and F dð
Þ ¼ ffd : d < 0g;
and also

F dða;N;�Þ ¼ ffd 2 F dð�Þ : d � amodNg: ð3:1:18Þ
For the family F dða;N;�Þ, evaluating the expected value of ,dðnÞ can be tricky,
so we provide some useful asymptotics.
Below we restrict ourselves to 0 < d < X, but the same asymptotics hold if one

restricts to 
X < d < 0.

THEOREM 3.1.1. Let Q ¼ gcdða;NÞ not be divisible by the square of an odd
prime. Then X

0<d<X
d�amodN

�
1 # 1

(ð4N=QÞ
X

Q

6

"2
h2ða;NÞ

Y
pj2N

p

p þ 1
: ð3:1:19Þ

Next, assume further that N is either odd or divisible by at least 8 (this
condition is related to the fact that ,dð2Þ is periodic mod 8), and say n ¼ g�, with
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ð�; NÞ ¼ 1, and with all prime factors of g being prime factors of N. ThenX
0<d<X

d�amodN

�
,dðnÞ # ,aðgÞ(ð�Þ 1

(ð4N�=QÞ
X

Q

6

"2
h2ða;NÞ

Y
pj2N�

p

p þ 1
: ð3:1:20Þ

Here h2ða;NÞ is determined according to Table 3.1.1. Consequently, for the family
F dða;N;�Þ,

h,dðnÞi ¼ ,aðgÞ
Q

pj�ð1þ p
1Þ
1 n ¼ g�,
0 otherwise.

�
ð3:1:21Þ

Proof. We 0rst outline the proof for (3.1.19). One can count odd fundamental
discriminants jdj < X by using the Dirichlet seriesX

d odd

� 1

jdjs ¼
Y
p odd

1þ 1

ps

� �
¼ �ðsÞ

�ð2sÞ 1þ 1

2s

� �
1
: ð3:1:22Þ

As in the proof of the prime number theorem, the main contribution comes from
the pole at s ¼ 1, and one has X

jdj<X
d odd

�
1 # 4

"2
X: ð3:1:23Þ

Next, assume thatN is odd and ða;NÞ ¼ 1. To count odd fundamental discriminants
in arithmetic progression, d � amodN, one imitates Dirichlet’s theorem for primes
in arithmetic progression, looking at linear combinations involving Dirichlet
characters mod N of X

d odd

� ,ðdÞ
jdjs ¼

Y
p odd

1þ ,ðpÞ
ps

� �
: ð3:1:24Þ

If one wishes to further specify d > 0 or d < 0, one can restrict to jdj � 1 mod 4 or
jdj � 3 mod 4 respectively, with , ranging over Dirichlet characters mod 4N . The
main contribution comes from the trivial character whose corresponding Dirichlet

Table 3.1.1. The function h2ða;NÞ that appears in
Theorem 3.1.1, where N ¼ 2;N0, with N0 odd.

; a h2ða;NÞ

0 a 2 Z 3/2

1 a � 0 mod 2 1
a � 1 mod 2 2

2 a � 0 mod 4 2
a � 1 mod 4 4
a � 2; 3 mod 4 0

3 a � 0; 4 mod 8 2
a � 1; 5 mod 8 4
a � 2; 3; 6; 7 mod 8 0

> 4 a � 1; 5; 8; 9; 12; 13 mod 16 4
otherwise 0
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series is X
d odd

� ,0ðdÞ
jdjs ¼

Y
p odd
p -N

1þ 1

ps

� �
¼ �ðsÞ

�ð2sÞ
Y
pj2N

1þ 1

ps

� �
1
; ð3:1:25Þ

and whose main pole is at s ¼ 1. Therefore, for N odd and ða;NÞ ¼ 1, we haveX
0<d<X

d�amodN
p odd

�
1 # 1

(ð4NÞX
6

"2

Y
pj2N

p

p þ 1
; ð3:1:26Þ

with the same result for 
X < d < 0.
Next, for N odd and ða;NÞ ¼ Q > 1, one can write, for d � amodN, d ¼ d1Q.

Apply the above method to d1 with 0 < d1 < X=Q, d1 � ða=QÞmod ðN=QÞ, d1
odd, and, because d is squarefree, the extra condition that ðd1; QÞ ¼ 1. Because of
this last condition, the Euler product that we need to take in (3.1.25) is not just
over odd p - ðN=QÞ but also over p - Q, that is, it is stillY

p odd
p -N

1þ 1

ps

� �
: ð3:1:27Þ

Hence, if ða;NÞ ¼ Q, X
0<d<X

d�amodN
d odd

�
1 # 1

(ð4N=QÞ
X

Q

6

"2

Y
pj2N

p

p þ 1
; ð3:1:28Þ

and we have the same result for 
X < d < 0.
Finally, we wish to take into account even d. The set of even fundamental

discriminants consists of 
4 and �8 times the odd fundamental discriminants.
Again, assume N is odd. One can count discriminants, d � amodN, lying in

the interval ð0; XÞ by counting odd discriminants lying in ð0; XÞ, together with
odd discriminants in ð
X=4; 0Þ, ð0; X=8Þ and ð
X=8; 0Þ. Overall, this gives the
same asymptotics as before, but with an extra factor of ð1þ 1=4þ 2=8Þ ¼ 3=2.
This accounts for line 1 in Table 3.1.1. The other lines in the table can be
obtained by similar considerations.
We now apply (3.1.19) to obtain (3.1.20) and (3.1.21). ConsiderX

0<d<X
d�amodN

�
,dðnÞ

. X
0<d<X

d�amodN

�
1 ð3:1:29Þ

(the following analysis also holds for 
X < d < 0).
Write N ¼ Nr1

1 � . . . �Nrm
m , the prime factorization of N , and let g ¼ Nu1

1 � . . . �Num
m .

Then

,dðnÞ ¼ ,dðN1Þu1 . . .,dðNmÞum,dð�Þ: ð3:1:30Þ

Now, if Ni is an odd prime, ,dðNiÞ ¼ ,aðNiÞ, since d � amodN, and so
d � amodNi. If Ni ¼ 2 we need to be careful because ,dð2Þ is periodic mod 8.
Now we are assuming that if N is even it is at least divisible by 8, that is, that
d � a mod 8, and thus that ,dð2Þ ¼ ,að2Þ.

PLMS 1517---5/6/2005---SRUMBAL---130540

INTEGRAL MOMENTS OF L-FUNCTIONS 75



Therefore

,dðnÞ ¼ ,aðgÞ,dð�Þ ¼ ,aðgÞ if ðd;�Þ ¼ 1,
0 otherwise,

�
ð3:1:31Þ

and one 0nds that (3.1.29) equals

,aðgÞ
X
0<d<X

d�amodN
ðd;�Þ¼1

�
1
. X

0<d<X
d�amodN

�
1: ð3:1:32Þ

Since ð�; NÞ ¼ 1, the sum in the numerator can be split into sums dmodN�.
Naively, one expects to have (ð�Þ sums, one for each residue class ðd;�Þ ¼ 1.
However, if � is even, then only half of these residue classes, namely those that
have d � 1 mod 4, contain fundamental discriminants, so one only gets (ð�Þ=2
sums. We thus consider the case that � is odd separately from the case that it is
even. Both cases end up giving the same answer.
Assume that � is odd. To apply our formula (3.1.19) to each of the (ð�Þ residue

classes mod N�, one needs to compute the various components that go into
the formula.
Given d � amodN and d � bmod �, one has via the chinese remainder theorem

d � eaamodN�. Now,Q ¼ ða;NÞ ¼ ðd;NÞ, and ðd;�Þ ¼ 1, so ðeaa;N�Þ ¼ ðd;N�Þ ¼ Q.
One also needs to evaluate h2ðeaa;N�Þ. Let N ¼ 2;N0, with N0 odd. Now � is

odd, and so h2ðeaa;N�Þ only depends on eaa mod 2;, but this is determined by
a mod N. So h2ðeaa;N�Þ ¼ h2ða;NÞ. Therefore, the numerator of (3.1.32) is
asymptotically

,aðgÞ(ð�Þ 1

(ð4N�=QÞ
X

Q

6

"2
h2ða;NÞ

Y
pj2N�

p

p þ 1
: ð3:1:33Þ

Canceling factors appearing in the asymptotics (3.1.19) of the denominator of
(3.1.32) we get

,aðgÞ
Y
pj�

p

p þ 1
: ð3:1:34Þ

If � is even, write � ¼ 2G�0, with G> 2, and �0 odd. Now, ðd;�Þ ¼ 1, so d is
odd. In all cases, according to Table 3.1.1, h2ðeaa;N�Þ is therefore 4. Furthermore,
as in the odd case, ðeaa;N�Þ ¼ Q.
Hence, one gets asymptotically for the numerator of (3.1.32)

,aðgÞ
(ð�Þ
2

1

(ð4N�=QÞ
X

Q

6

"2
4
Y
pj2N�

p

p þ 1
: ð3:1:35Þ

Since � is even, N is odd. Hence h2ða;NÞ ¼ 3=2, and the denominator of (3.1.32)
is asymptotically

1

(ð4N=QÞ
X

Q

6

"2
3

2

Y
pj2N

p

p þ 1
: ð3:1:36Þ

Canceling numerator and denominator, taking special care for powers of 2
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appearing in �, we get

,aðgÞ
2

3

Y
pj�0

p

p þ 1 ¼ ,aðgÞ
Y
pj�

p

p þ 1
: ð3:1:37Þ

�

4. The family of coe0cients of holomorphic newforms. De0ne

Fmodðk; qÞ ¼
n
fðnÞ ¼ GfðnÞ :

X
nðk
1Þ=2GfðnÞ 2 HkðqÞ

o
; ð3:1:38Þ

where HkðqÞ the set of newforms in SkðJ0ðqÞÞ. A good reference for these functions
is Iwaniec [24]. In this family the parameter tending to in0nity can be either k, or
q, or some combination.
The orthogonality relation here is somewhat subtle, and in fact there are two

natural ways to average over these characters. In both cases the starting point is
the Hecke relation

GfðmÞGfðnÞ ¼
X

djm;djn
ðd;qÞ¼1

Gfðmn=d2Þ; ð3:1:39Þ

which imply that any product

Gfðm1Þ . . .GfðmkÞ ð3:1:40Þ

can be expressed as a linear combinationX
j> 1

bjGfðjÞ ð3:1:41Þ

for some integers bj, and in fact only for j a prime power. Thus, we need only
determine the expected value of GfðpjÞ.
If one averages over HkðqÞ in the most straightforward way, then for p - q,

hGfðpjÞi ¼ p
j=2 for j even,
0 for j odd,

�
ð3:1:42Þ

and more generally, if ðn; qÞ ¼ 1,

hGfðnÞi ¼ n
1=2 if n ¼ �,
0 otherwise.

�
ð3:1:43Þ

This follows from the Selberg trace formula. However, if one averages with respect
to a weighting by the Petersson norm,X

f2HkðqÞ

h � ¼
X

f2HkðqÞ
�=hf; f i; ð3:1:44Þ

then

hGfðpjÞi ¼ 1 if j ¼ 0,
0 otherwise,

�
ð3:1:45Þ

and more generally, if ðn; qÞ ¼ 1,

hGfðnÞi ¼ 1 if n ¼ 1 ,
0 otherwise.

n
ð3:1:46Þ
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This follows from the Petersson formula (see [24]), if ðmn; qÞ ¼ 1,X
f2HkðqÞ

h
GfðmÞGfðnÞ ¼ =ðm;nÞ þ 2"ik

X1
c¼1

Sðm;n; cqÞJk
1ð4"
ffiffiffiffiffiffiffiffi
mn

p
=cqÞ

cq
: ð3:1:47Þ

Here Jk is the Bessel function and

Sðm;n; cÞ ¼
X

ad¼1mod c
e

ma þ nc

c

� 

ð3:1:48Þ

is the Kloosterman sum. Since the Petersson weighting leads to a somewhat
simpler expression, we will consider that weighting in our example. When passing
from the Petersson formula to the expected value, using the Weil bound for the
Kloosterman sum and the fact that Jk has a kth order zero at 0, we see that for
0xed m and n the sum on the right side of (3.1.47) vanishes as k ! 1 or q ! 1.
Let

=ðm1; . . . ;mkÞ ¼ hGfðm1Þ . . .GfðmkÞi: ð3:1:49Þ

So in the Petersson weighting, =ðm1; . . . ;mkÞ is the coeIcient b1 of Gfð1Þ ¼ 1 in
(3.1.41). One can use the Hecke relations to show by induction that = is
multiplicative in the sense of 3.1.6. Thus, we only need to know = on prime powers.

LEMMA 3.1.2. With respect to the Petersson weighting, if p - q then

=ðpm1 ; . . . ; pmkÞ ¼ 2

"

ð"
0
sin2 �

Yk
j¼1

sinðmj þ 1Þ�
sin �

d�

¼ 2

"

ð"
0
sin2 �

Yk
j¼1

eiðmjþ1Þ� 
 e
iðmjþ1Þ�

ei� 
 e
i�
d�: ð3:1:50Þ

For the unweighted sum we have

=ðpm1 ; . . . ; pmkÞ ¼ 4

"

ð"
0

sin2 �

1
 ð2 cos �Þ= ffiffiffi
p

p þ p
1

Yk
j¼1

sinðmj þ 1Þ�
sin �

d�: ð3:1:51Þ

If p j q then =ðpm1 ; . . . ; pmkÞ ¼ 0 unless m1 ¼ . . . ¼ mk ¼ 0.

Proof. We only give the details for (3.1.50). Beginning from

LpðxÞ ¼
X1
j¼0

GfðpjÞxj ¼ 1
 ei�p;f x
� 

1

1
 e
i�p;f x
� 

1

ð3:1:52Þ

we have

GfðpjÞ ¼
sinðj þ 1Þ�f;p
sin �f;p

¼ Ujðcos �f;pÞ

where Uj is the usual Tchebychev polynomial. Then =ðpm1 ; . . . ; pmkÞ ¼ c0 where

Um1
Um2

. . .Umk
¼
X
e> 0

ceUe: ð3:1:53Þ

If we evaluate both sides of this equation at cos � and integrate from 0 to " with
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respect to the measure ð2="Þ sin2 � d�, then the result follows from the
orthogonality of the Tchebychev polynomials with respect to this measure. �

5. The family of coe0cients of Maass newforms. This is

FMðqÞ ¼ ffðnÞ ¼ GfðnÞ :
ffiffiffi
y

p X
GfðnÞKiRð2"jnjyÞe2"inx 2 HðqÞg; ð3:1:54Þ

where HðqÞ is the set of Maass newforms on J0ðqÞ. A good reference for these
functions is Iwaniec [25]. The orthogonality relation is derived from the Kuznetsov
trace formula. See Chapter 9 of [25].

3.2. Families of L-functions

We use a family of characters to create a family of L-functions in the
following manner.
Begin with a 0xed primitive L-function

LðsÞ ¼
X1
n¼1

an
ns ¼

Y
p

Lp

1

ps

� �
ð
 > 1Þ: ð3:2:1Þ

We assume that

LpðxÞ ¼
X1
n¼0

apnx
n ¼

Yw
j¼1

ð1
 �p; jxÞ
1; ð3:2:2Þ

where w is the degree of L and where j�p; jj ¼ 0 or 1. Assume LðsÞ satis0es the
functional equation

LðsÞ ¼ "XðsÞLð1
 sÞ; ð3:2:3Þ
as described in x 1.1.
We create a family of L-functions by twisting L by a family of characters. Let

F ¼ ffg be a family of characters, with the properties described in x 3.1. The
twist of L by f is denoted by Lðs; fÞ and is given by a Rankin--Selberg
convolution:

Lðs; fÞ ¼
Y
p

Yv
i¼1

Yw
j¼1

ð1
 ;p;i�p; j=p
sÞ
1 ¼

X1
n¼1

anðfÞ
ns : ð3:2:4Þ

Note that if w ¼ 1 or v ¼ 1, as will be the case in our detailed examples,

Lðs; fÞ ¼
X1
n¼1

anfðnÞ
ns : ð3:2:5Þ

We require that Lðs; fÞ is an L-function. That is, our family of L-functions
must consist of L-functions! In particular, Lðs; fÞ satis0es a functional equation

Lðs; fÞ ¼ "fXfðsÞLð1
 s; fÞ; ð3:2:6Þ

as described in x 1.1. As part of our de0nition of ‘family’, we make a restrictive,
but natural, assumption on X f . We have XfðsÞ ¼ �fð1
 sÞ=�fðsÞ where

�fðsÞ ¼ Qs
f

Yw
j¼1
Jð12s þ �j;fÞ: ð3:2:7Þ

We assume that w is constant, and each of Qj, <ð�j;fÞ and =ð�j;fÞ is a monotonic
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function of the conductor cðfÞ. In practice this will mean that each of those
quantities will either be constant or be tending to in0nity with the conductor.
For example, the collection of all real primitive Dirichlet L-functions Lðs; ,dÞ is

not a family, because for d > 0 we have �1;d ¼ 0 and for d < 0 we have �1;d ¼ 1, so
�1;d is not a monotonic function of cð,dÞ. So we consider these two
families separately.
Finally, we will make use of an approximate functional equation of shape

Lðs; fÞ ¼
X anðfÞ

ns þ "fX fðsÞ
X anðfÞ

n1
s
þ remainder: ð3:2:8Þ

(Note. We are not claiming that the ‘remainder’ in the above equation is small;
nevertheless we will ignore the remainder in our calculations.)

4. A recipe for conjecturing moments, with examples

We give a general recipe for conjecturing the moments of a primitive family of
L-functions, and then apply the recipe to several interesting examples.

4.1. The general recipe

Suppose L is an L-function and f is a character with conductor cðfÞ, as
described in x 3. So

ZLðs; fÞ ¼ "

1=2
f X fðsÞ
1=2Lðs; fÞ; ð4:1:1Þ

which satis0es the functional equation

ZLðs; fÞ ¼ ZLð1
 s; fÞ; ð4:1:2Þ
so ZLðs; fÞ is real on the 1

2 -line. Note that "

1=2
f involves a choice of sign which

needs to be chosen consistently in the discussion below. We consider the momentX
f2F

ZLð12þ *1; fÞ . . .ZLð12 þ *k; fÞgðcðfÞÞ ð4:1:3Þ

where g is a suitable test function. The recipe below also applies to averages of
products of Lð 12þ *; fÞ. The sum is an integral when F ¼ F t.
We now give a recipe for conjecturing a formula for the above moment.
(1) Start with a product of k shifted L-functions:

Zfðs; *1; . . . ; *kÞ ¼ ZLðs þ *1; fÞ . . .ZLðs þ *k; fÞ: ð4:1:4Þ

As we will demonstrate in our examples, the recipe applies to the Z-function as
well as the L-function.
(2) Replace each L-function with the two terms from its approximate

functional equation (3.2.8), ignoring the remainder term. Multiply out the
resulting expression to obtain 2k terms. Write those terms as

ðproduct of "f factorsÞðproduct of X f factorsÞ
X

n1;...;nk

ðsummandÞ: ð4:1:5Þ

(3) Replace each product of "f -factors by its expected value when averaged
over the family.
(4) Replace each summand by its expected value when averaged over the family.
(5) Complete the resulting sums, and call the total Mðs; *1; . . . ; *2kÞ.
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(6) The conjecture isX
f2F

Zfð12; *1; . . . ; *2kÞgðcðfÞÞ

¼
X
f2F

Mfð12; *1; . . . ; *2kÞð1þ Oðeð
1=2þ"ÞcðfÞÞÞgðcðfÞÞ; ð4:1:6Þ

for all " > 0, where g is a suitable weight function.
In other words, Zfðs; *Þ and Mfðs; *Þ have the same value distribution if

averaged over a suIciently large portion of the family. Note that the dependence
of Mf on f only occurs in the product of X f factors.
As we mentioned earlier, some of the individual steps in this recipe cannot be

rigorously justi0ed. Only by using the entire recipe does one arrive at a reasonable
conjecture. In particular, we ignore oH-diagonal terms which actually make a
contribution. However, comparison with examples in the literature, random
matrix moments, and numerical data, suggests that the various errors in our
recipe all cancel. The underlying cause for this remains a mystery.
We will apply the recipe to several examples, but 0rst we do the initial steps of

the recipe in some generality.
For each ZL substitute the expression in (4.1.1). After replacing each Lðs; fÞ by

its approximate functional equation (3.2.8), multiply out the product. A typical
term is a product of k sums arising from either the 0rst piece or the second piece
of the approximate functional equation. Consider a term where we have ‘ factors
from the 0rst piece of an approximate functional equation and k 
 ‘ factors from
the second piece. To take one speci0c example, suppose it is the 0rst ‘ factors
from which we choose the 0rst piece of the approximate functional equation, and
the last k 
 ‘ factors from which we take the second piece of the approximate
functional equation:

"

‘=2
f Xfðs þ *1Þ
1=2 . . .X fðs þ *‘Þ
1=2

X
n1

an1ðfÞ
nsþ*1
1

. . .
X
n‘

an‘
ðfÞ

nsþ*‘

‘

� "
ðk
‘Þ=2
f X fðs þ *‘þ1Þ1=2 . . .Xfðs þ *kÞ1=2

X
n‘þ1

an‘þ1ðfÞ
n
1
s
*‘þ1
‘þ1

. . .
X
nk

ank
ðfÞ

n1
s
*k

k

: ð4:1:7Þ

Rearranging this expression and using the fact that X fðsÞ ¼ X fð1
 sÞ
1, we have

"
k=2
‘
f

Y‘
j¼1

X fðs þ *jÞ
1=2
Yk

j¼‘þ1
X fð1
 s 
 *jÞ
1=2

�
X

n1;...;nk

an1ðfÞ . . . an‘
ðfÞan‘þ1ðfÞ . . . ank

ðfÞ
nsþ*1
1 . . .nsþ*‘

‘ n
1
s
*‘þ1
‘þ1 . . .n1
s
*k

k

: ð4:1:8Þ

A little trick: since we will eventually set s ¼ 1
2, we replace the above expression by

"
k=2
‘
f

Y‘
j¼1

X fðs þ *jÞ
1=2
Yk

j¼‘þ1
X fðs 
 *jÞ
1=2

�
X

n1;...;nk

an1ðfÞ . . . an‘
ðfÞan‘þ1ðfÞ . . . ank

ðfÞ
nsþ*1
1 . . .nsþ*‘

‘ n
s
*‘þ1
‘þ1 . . .ns
*k

k

: ð4:1:9Þ
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It is expression (4.1.9), and the corresponding pieces from the other terms when
multiplying out the approximate functional equation, which will appear in the
0nal conjecture, evaluated at s ¼ 1

2.
Now consider the product of "f factors "

k=2
‘
f , which according to the recipe should

be replaced by its expected value. An important issue is the choice of the square root.
We believe that there is a natural choice of "

1=2
f so that the following hold.

(a) Unitary case: the "f are uniformly distributed on the unit circle, and

h"k=2
‘
f i ¼ 0 unless 12 k 
 ‘ ¼ 0. In particular, k must be even. There will be k

k=2

� 

terms in the 0nal answer.
(b) Orthogonal case: either "f ¼ 1 is constant (1 or 
1) over the family, or

"f ¼ 1 for approximately half the f and "f ¼ 
1 for the other half. Here

h"k=2
‘
f i ¼ 0 unless 12 k 
 ‘ is even. In particular, k must be even and there will be

2k
1 terms in the 0nal answer.
(c) Symplectic case: "f ¼ 1 for all f , and h"k=2
‘

f i ¼ 1 for all k and ‘. There is
no restriction and there will be 2k terms in the 0nal answer.
Note that if we are considering the L-function, instead of the Z-function, then

the issue of "
1=2
f does not arise and the calculation is somewhat easier. See (4.5.4)

and the discussion following it. Also note that in the Unitary and Orthogonal
cases, odd powers of the Z-function will average to zero, while odd powers of the
L-function will not.
The recipe now tells us to replace the summand by its expected value when

averaged over the family. That is, we replace

an1ðfÞ . . . an‘
ðfÞan‘þ1ðfÞ . . . ank

ðfÞ ð4:1:10Þ

by its expected value when averaged over the family. In practice, this will be of
the form

cðFÞ=‘ðn1; . . . ; nkÞ ð4:1:11Þ
where cðFÞ depends only on the family, and where the =‘ are multiplicative
functions, that is,

=‘ðm1n1; . . . ;mknkÞ ¼ =‘ðm1; . . . ;mkÞ=‘ðn1; . . . ; nkÞ ð4:1:12Þ
whenever ðm1 . . .mk; n1 . . .nkÞ ¼ 1.
The 0nal step is to extend the range of summation. This produces one term

in the conjecture. By considering the other terms when multiplying out the
approximate functional equations, one arrives at a conjecture for the original
mean value.
Although the above steps have produced an answer, it is not written in a

particularly usable form. There are three more steps to put the conjecture in the
form of Conjecture 1.5.1: writing the main terms as an Euler product, identifying
the polar part, and expressing the combinatorial sum as a multiple integral.
Since the =‘ are multiplicative, we can write the main term as an Euler product.

Speci0cally, X1
n1;...;nk¼1

=‘ðn1; . . . ; nkÞ
nsþ*1
1 . . .nsþ*k

k

¼
Y
p

X1
e1;...;ek¼0

=‘ðpe1 ; . . . ; pekÞ
pe1ðsþ*1Þþ...þekðsþ*kÞ

ð4:1:13Þ

assuming that <s is suIciently large.
Next we determine the leading order poles. It usually turns out that

=‘ðpe1 ; . . . ; pekÞ ¼ 0 when
P

ej ¼ 1. Thus, the 0rst poles come from those terms
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where
P

ej ¼ 2. This happens in two ways, so the rightmost poles are the same as
the poles of Y

16 i<j6 k

Y
p

�
1þ

=‘;i; jðp; pÞ
p2sþ*iþ*j



�
Yk
j¼1

Y
p

�
1þ

=‘; jðp2Þ
p2sþ2*j



: ð4:1:14Þ

In practice the 0rst factor has simple poles at 12 
 1
2 ð*i þ *jÞ, and the second factor

is either regular in a neighborhood of 
 ¼ 1
2, or else it has a simple pole at

s ¼ 1
2 
 *j. Accordingly, we factor out eitherY

16 i<j6 k

�ð2s þ *i þ *jÞ or
Y

16 i6 j6 k

�ð2s þ *i þ *jÞ: ð4:1:15Þ

The remainder is the Ak in our conjectures, and it is regular in a neighborhood
of 
 ¼ 1

2.
Having identi0ed the polar part of our main terms, we can apply the lemmas in

x 2.5 to express the sum of terms as a contour integral. The result is an expression
similar to Conjecture 1.5.1.
We have already seen this procedure in x 2.2 for the case of mean values of the

zeta-function. In the following sections we carry out example calculations for
families of each of the three symmetry types.

4.2. Unitary: moments of a primitive L-function

The recipe for mean values in x 2.1 is a special case of the general recipe. To see
this, note that if ft 2 F t then ftðnÞ ¼ n
it, so Lðs; ftÞ ¼ Lðs þ itÞ. From the
functional equation LðsÞ ¼ "XðsÞLð1
 sÞ we obtain the functional equation

Lðs; ftÞ ¼ "tX tðsÞLð1
 s; ftÞ; ð4:2:1Þ
where

"t ¼ "Xð12 þ itÞ and X tðsÞ ¼ Xðs þ itÞ
Xð 12 þ itÞ : ð4:2:2Þ

Note that these satisfy the requirements jX tð 12 þ iyÞj ¼ 1 for y real, with X tð 12 Þ ¼ 1
and j"tj ¼ 1. Also note that the log conductor of Lðs; ftÞ, de0ned as jð"tX tÞ 0ð 12 Þj,
equals jX 0ð 12 þ itÞj, in agreement with the usual notion of conductor in t-aspect.
Replacing the product of "t-factors by their expected value is the same as ‘keep

the terms where the product of the ,-factors is not oscillating’. Thus, after
multiplying out the approximate functional equations there will be 2k

k

� �
terms which

contribute. In each of those terms replacing the summand by its expected value is
the same as ‘keeping the diagonal’. Thus, we arrive at the same conjecture as before.

4.3. Unitary: all Dirichlet L-functions

We apply our recipe to conjecture the averageX
,mod q

, even or odd

�
Z,ð12;*1; . . . ; *2kÞ; ð4:3:1Þ

where the sum is over either the even or the odd primitive Dirichlet characters
mod q and

Z,ðs;*1; . . . ; *2kÞ ¼ Zðs þ *1; ,Þ . . .Zðs þ *2k; ,Þ: ð4:3:2Þ
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Here Zðs þ *k; ,Þ ¼ ð",X,ðsÞÞ
1=2Lðs; ,Þ where Lðs; ,Þ ¼ ",X,ðsÞLð1
 s; ,Þ.
Note that ", ¼ <ð,Þq
1=2, which is uniformly distributed on the unit circle.
Following the general discussion in x 4.1, equation (4.1.9) specializes in this

case to

"k
‘
,

Y‘
j¼1

X,ð12 þ *jÞ
1=2
Y2k

j¼‘þ1
X,ð12 
 *jÞ
1=2

�
X

n1;...;n2k

1

n
1=2þ*1
1 . . .n

1=2
*2k
2k

,ðn1Þ . . .,ðn2kÞ: ð4:3:3Þ

According to the recipe, we replace "k
‘
, by its expected value. Since the ", are

uniformly distributed on the unit circle, the expected value is 1 if ‘ ¼ k and 0
otherwise, so we keep 2k

k

� �
terms.

Next we replace the summand by its expected value, which is

=ðn1; . . . ; n2kÞ ¼ h,ðn1Þ . . .,ðnkÞ,ðnkþ1Þ . . .,ðn2kÞi

¼ 1 if n1 . . .nk ¼ nkþ1 . . .n2k and ðn1 . . .n2k; qÞ ¼ 1,

0 otherwise.

�
ð4:3:4Þ

The above is almost identical to the conjectures obtained for the mean values,
in t-aspect, for a primitive L-function. So one obtains the same formulas as appear
in Conjectures 1.5.1 and 2.5.4, the only changes being that one omits the factors
p j q in the Euler product Ak, and one must use the factors X,ð 12� *jÞ
1=2.
Speci0cally, in Conjectures 1.5.1 and 2.5.4 a simpli0cation occurred by use of
equations (2.2.4) and (2.3.6). If those conjectures were written in terms ofQ

Xð 12� zjÞ
1=2, then the Dirichlet L-function moment conjecture would be
obtained by substituting with

Q
X,ð 12 � zjÞ
1=2: Note that we are considering the

averages over the even and odd primitive characters separately, so in the sum X,

only depends on the conductor of ,. See the comments following the theorems in
x 1.5 for more discussion on these X-factors and conductors.

4.4. Symplectic and Orthogonal: quadratic twists of a real L-function

Next we consider what happens when we average the shifts of central values of
LðsÞ twisted by the family of quadratic characters

,dðnÞ ¼ d

n

� �
;

with d < 0 a fundamental discriminant. Here ,dðnÞ ¼ d
n

� �
is the Kronecker symbol

which is a primitive Dirichlet character of conductor jdj. We will see that the
family can be either Symplectic or Orthogonal, depending on the particular
L-function that we start with.
Again, let

LðsÞ ¼
X1
n¼1

an
ns ¼

Y
p

Lpð1=psÞ ð4:4:1Þ
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be a primitive L-function and note that

Lðs; ,dÞ ¼
X1
n¼1

an
d

n

� �
=ns: ð4:4:2Þ

We assume that L is real, that is, L ¼ L, as this case is relatively easy to deal
with from a fairly general perspective. Thus,

LðsÞ ¼ "XðsÞLð1
 sÞ; ð4:4:3Þ

where " ¼ �1. The twisted L-function is expected to satisfy a functional equation
of the form

Lðs; ,dÞ ¼ "dXdðsÞLð1
 s; ,dÞ: ð4:4:4Þ

It is further expected that

XdðsÞ ¼ jdjwð1=2
sÞXðs; dÞ; ð4:4:5Þ

where there are only 0nitely many possibilities for Xðs; dÞ. By our de0nition of
‘family’ we require that the parameters in the functional equation be monotonic
functions of the conductor. Since there are only 0nitely many choices for Xðs; dÞ,
we must restrict to averages over sets of d for which Xðs; dÞ is constant (as a
function of d). In the situation described here, it is believed that there exists an
integer N , depending on L, such that "d and Xðs; dÞ only depend on the sign of d
and on ðdmodNÞ. Thus, we will consider the averagesX

d<0
d�amodN

�
Ldð12;*1; . . . ; *kÞgðjdjÞ; ð4:4:6Þ

(the following analysis holds also for d > 0) where
P� denotes a sum over

fundamental discriminants d, and

Ldðs;*1; . . . ; *kÞ ¼ ZLðs þ *1; ,dÞ . . .ZLðs þ *k; ,dÞ: ð4:4:7Þ

Note that "d ¼ "a, which may depend on the sign of d. If N is even we are
insisting further that it be divisible by at least 8.
Following the general discussion in x 4.1, equation (4.1.9) specializes in this

case to

"
k=2
‘
f

Y‘
j¼1

Xdðs þ *jÞ
1=2
Yk

j¼‘þ1
Xdðs 
 *jÞ
1=2

�
X

n1;...;nk

an1 . . . ank

nsþ*1
1 . . .ns
*k

k

,dðn1Þ . . .,dðnkÞ: ð4:4:8Þ

According to the recipe, we replace "
k=2
‘
f by its expected value. We have assumed

(by our choice of amodN) that "d ¼ "a for all d, so the expected value is "
k=2
‘
a

and we will have a contribution from all 2k terms. (That expression is more
transparent if one considers the cases "a ¼ 1 and "a ¼ 
1 separately.)
The next step in the recipe is to replace the summand by its expected value.

Since ,dðn1Þ . . .,dðnkÞ ¼ ,dðn1 . . .nkÞ, from equation (3.1.21) we have the
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expected value

h,dðn1Þ . . .,dðnkÞi ¼ ,aðgÞ
Y
pj�

�
1þ 1

p

�
1
if n1 . . .nk ¼ g�,

0 otherwise,

8><>: ð4:4:9Þ

where ðN;�Þ ¼ 1, and with all the prime factors of g also being prime factors of
N. So the contribution from the term where we use the 0rst part of the
approximate functional equation for the 0rst ‘ factors, and the second part for the
rest, is

"
k=2
‘
d

Y‘
j¼1

Xdðs þ *jÞ
1=2
Yk

j¼‘þ1
Xdðs 
 *jÞ
1=2

� Rk;Nðs;*1; . . . ; *‘;
*‘þ1; . . . ;
*kÞ ð4:4:10Þ

where

Rk;Nðs;*1; . . . ; *kÞ ¼
X
g�

,aðgÞ
X

n1...nk¼g�

an1 . . . ank

nsþ*1
1 . . .nsþ*k

k

Y
pj�

�
1þ 1

p

�
1
: ð4:4:11Þ

Adding up all 2k terms we obtain

Mðs;*1; . . . ; *kÞ ¼
X
Ei¼�1

signðfEjgÞ
Yk
j¼1

Xdð12 þ Ej*jÞ
1=2

� Rk;Nðs; E1*1; . . . ; Ek*kÞ; ð4:4:12Þ

where

signðfEjgÞ ¼ 1 if "a ¼ 1,
ð
1ÞðSEiÞ=2 if "a ¼ 
1 .

�
ð4:4:13Þ

So the recipe has produced the conjecture

X
d<0

d�amodN

�
Ldð12; *1; . . . ; *kÞgðdÞ

¼
X
d<0

d�amodN

�
Mð12;*1; . . . ; *kÞð1þ Oðjdj
1=2þ"ÞÞgðdÞ: ð4:4:14Þ

To put the conjecture in a more useful form, we now write Rk;N as an Euler
product, and then express the main term as a contour integral.
We have Rk;N ¼

Q
p Rk;N;p, which naturally separates into a product over the

primes which divide N and a product over the primes which do not divide N . The
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p-factor when p - N is

Rk;N;pðsÞ ¼ 1þ 1þ 1

p

� �
1X1
j¼1

X
e1þ...þek¼2j

Yk
i¼1

apei

peiðsþ*iÞ

 !

¼ 1þ 1
p

� �
1 1

p
þ
X1
j¼0

X
e1þ...þek¼2j

Yk
i¼1

apei

peiðsþ*iÞ

 !

¼ 1þ 1
p

� �
1 1

p
þ 1

2

Yk
j¼1

Lp

1

psþ*j

� �
þ
Yk
j¼1

Lp


1
psþ*j

� � ! !
: ð4:4:15Þ

Similarly, the p-factor when p j N is

Rk;N;p ¼
Yk
j¼1

Lp

,aðpÞ
psþ*j

� �
: ð4:4:16Þ

The above expression will enable us to locate the leading poles of Rk;N . Consider
the expansion of Rk;N;p (for p - N) in powers of 1=p. The expansion is of the form

1þ
Xk
j¼1

ap2

p2sþ2*j
þ

X
16 i<j6 k

ðapÞ2

p2sþ*iþ*j
þ Oðp
1
2sþ"Þ þ Oðp
3sþ"Þ

¼
Yk
j¼1

1þ
ap2

p2sþ*j

� �
�

Y
16 i<j6 k

�
1þ

ðapÞ2

p2sþ*iþ*j

�
� 1þ Oðp
1
2sþ"Þ þ Oðp
3sþ"Þ
� �

: ð4:4:17Þ

We assume that Y
p

�
1þ

ðapÞ2

ps

�
ð4:4:18Þ

has a simple pole at s ¼ 1. This is conjectured to be equivalent to LðsÞ being a
primitive L-function, and this is the key place where the assumption of primitivity
enters the calculation. We also assume that

Y
p

1þ
ap2

ps

� �
ð4:4:19Þ

has a pole of order = ¼ 0 or 1 at s ¼ 1.
In general, = is expected to be 0 or 1 according to whether the symmetric square

L-function of LðsÞ is analytic at s ¼ 1 or has a simple pole at s ¼ 1. If LðsÞ is a
degree 1 L-function (that is, the Riemann �-function or a Dirichlet L-function),
then = ¼ 1. If LðsÞ is associated to a GLð2Þ automorphic form, then = ¼ 0 in
general (except possibly when L is a dihedral Artin L-function associated to a
weight 1 modular form).
Note that

Q
pð1þ Oðp
1
2sÞ þ Oðp
3sÞÞ is regular for 
 > 1

3. Thus the total
order of the pole of the above product at s ¼ 1

2 when *1 ¼ . . . ¼ *k ¼ 0 is
1
2 kðk
 1Þ þ =k. Accordingly, we factor out appropriate zeta-factors and write the
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above product as

Rk;NðsÞ ¼
Y

16 i<j6 k

�ð2s þ *i þ *jÞ
Y
p

Rk;N;pðsÞ
Y

16 i<j6 k

1
 1

p2sþ*iþ*j

� �
ð4:4:20Þ

if = ¼ 0, and as

Rk;NðsÞ ¼
Y

16 i6 j6 k

�ð2s þ *i þ *jÞ
Y
p

Rk;N;pðsÞ
Y

16 i6 j6 k

1
 1

p2sþ*iþ*j

� �
ð4:4:21Þ

if = ¼ 1. In the 0rst case above the family is Orthogonal, and in the second case it
is Symplectic.
In summary, we are led to conjecture thatX
d<0

d�amodN

�
ZLð12 þ *1; ,dÞ . . .ZLð12þ *k; ,dÞgðjdjÞ

¼
X
Ei¼�1

signðfEigÞ
Yk
j¼1

Xð12 þ Ej*j; aÞ
1=2

�
X
d<0

d�amodN

�
Rk;Nð12; E1*1; . . . ; Ek*kÞjdjðw=2Þ

Pk
j¼1Ej*jð1þ Oðjdj
1=2þ"ÞÞ gðjdjÞ:

ð4:4:22Þ

The analogous sum over d > 0 leads to a similar conjecture. Here signðfEigÞ is
given in (4.4.13) and in either case we can use Lemma 2.5.2 to write the sum as a
contour integral.
In the case that LðsÞ is the Riemann zeta-function, the above reduces to

Conjecture 1.5.3.

4.5. Orthogonal: L-functions associated with cusp forms

Recall that the set of primitive newforms f 2 SnðJ0ðqÞÞ is denoted by HnðqÞ. In
this section we consider the shifted moments of LfðsÞ ¼

P1
n¼1 GfðnÞn
s near the

critical point s ¼ 1
2 averaged over f 2 HnðqÞ. Note that in the language of x 3.2

these L-functions are the twists of �ðsÞ by the family of characters HkðqÞ and
would be denoted as �ðs; fÞ. However, we use the more common notation here.
The functional equation is

LfðsÞ ¼ "fXðsÞLfð1
 sÞ; ð4:5:1Þ

where "f ¼ 
 ffiffiffi
q

p
GfðqÞ ¼ �1.

We consider the ‘harmonic average’X
f2HnðqÞ

h
Lfð12þ *1Þ . . .Lfð12 þ *kÞ ð4:5:2Þ

which attaches a weight hf; f i
1 to each summand. That is,X
f2HnðqÞ

h � ¼
X

f2HnðqÞ
�=hf; f i: ð4:5:3Þ
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Following the general discussion in x 4.1, equation (4.1.9) specializes in this case to

"k
‘
f

Yk
j¼‘þ1

Xðs 
 *jÞ
1
X

n1;...;nk

Gfðn1Þ . . .GfðnkÞ
nsþ*1
1 . . .ns
*k

k

: ð4:5:4Þ

According to the recipe, we replace "k
‘
f by its expected value. Since "f is

randomly �1, the expected value is 0 unless k 
 ‘ is even. Thus, we will have 2k
1

terms in the 0nal answer.
Next we replace Gfðn1Þ . . .GfðnkÞ by its expected value. This is given in Lemma

3.1.2. After factoring into an Euler product and summing the relevant geometric
series we see that (4.5.4) contributes

Yk
j¼1

Xðs 
 *jÞ
1=2Rð*1; . . . ; *‘;
*‘þ1; . . . ;
*kÞ;

where

Rðs; *1; . . . ; *kÞ ¼
Yk
j¼1

Xðs þ *jÞ
1=2
Y
p

2

"

ð"
0
sin2 �

�
Yk
j¼1

ei�ð1
 ei�=psþ*jÞ
1 
 e
i�ð1
 e
i�=psþ*jÞ
1

ei� 
 e
i�
d�: ð4:5:5Þ

Here remember that s will eventually be set to 1
2 and XðsÞ ¼ Xð1
 sÞ
1. Adding

up all 2k
1 terms we obtain

Mðs;*1; . . . ; *kÞ ¼
Yk
j¼1

Xðs 
 *jÞ
1=2
X
Ei¼�1Qk
j¼1Ej¼1

Rðs; E1*1; . . . ; Ek*kÞ; ð4:5:6Þ

so the recipe has produced the conjectureX
f2HnðqÞ

h
Lfð12þ *1Þ . . .Lfð12 þ *kÞ ¼

X
f2HnðqÞ

h
Mð12;*1; . . . ; *kÞð1þ OðnqÞ
1=2þ"Þ

¼ ð1þ OðnqÞ
1=2þ"ÞMð12;*1; . . . ; *kÞ: ð4:5:7Þ

Summarizing, we have the following conjecture.

Conjecture 4.5.1. With Akð*1; . . . ; *kÞ as in Conjecture 1.5.5, we haveX
f2HnðqÞ

h
Lfð12þ *1Þ . . .Lfð12 þ *kÞ

¼
Yk
j¼1

Xð12
 *jÞ
1=2
X
Ej¼�1Qk

j¼1Ej¼1

Yk
j¼1

Xð12 þ Ej*jÞ
1=2

�
Y

16 i<j6 k

�ð1þ Ei*i þ Ej*jÞAkðE1*1; . . . ; Ek*kÞð1þ OðnqÞ
1=2þ"Þ: ð4:5:8Þ
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For the purpose of considering averages of even forms or odd forms separately,
we note thatX

f2HnðqÞ

h
"fLfð12þ *1Þ . . .Lfð12 þ *kÞ

¼ Xð12 þ *1Þ
X

f2HnðqÞ

h
Lfð12 
 *1ÞLfð12 þ *2Þ . . .Lfð12þ *kÞ

¼ Xð12 þ *1ÞMð12;
*1; *2; . . . ; *kÞð1þ OðnqÞ
1=2þ"Þ: ð4:5:9Þ

By looking at the combinationsX
f2HnðqÞ

h
Lfð12þ *1Þ . . .Lfð12 þ *kÞ �

X
f2HnðqÞ

h
"fLfð12þ *1Þ . . .Lfð12 þ *kÞ ð4:5:10Þ

we see that this leads to the following.

Conjecture 4.5.2. With Akð*1; . . . ; *kÞ as in Conjecture 1.5.5, we haveX
f2HnðqÞ
f even

h
Lfð12 þ *1Þ . . .Lfð12 þ *kÞ

¼ 1

2

Yk
j¼1

Xð12 
 *jÞ
1=2
X
Ej¼�1

Yk
j¼1

Xð12 þ Ej*jÞ
1=2

�
Y

16 i<j6 k

�ð1þ Ei*i þ Ej*jÞAkðE1*1; . . . ; Ek*kÞð1þ OðnqÞ
1=2þ"Þ; ð4:5:11Þ

andX
f2HnðqÞ
f odd

h
Lfð12 þ *1Þ . . .Lfð12 þ *kÞ

¼ 1

2

Yk
j¼1

Xð12 
 *jÞ
1=2
X
Ej¼�1

Yk
j¼1

EjXð12þ Ej*jÞ
1=2

�
Y

16 i<j6 k

�ð1þ Ei*i þ Ej*jÞAkðE1*1; . . . ; Ek*kÞð1þ OðnqÞ
1=2þ"Þ: ð4:5:12Þ

The above formulae can be written as contour integrals using Lemma 2.5.2,
giving expressions analogous to those in Conjecture 1.5.5. In particular, expressing
(4.5.11) as a contour integral and then letting *j ! 0 gives Conjecture 1.5.5.

5. Numerical calculations

We compare our conjectures with some numerical calculations. The agreement
is very good. These calculations involve numerically approximating the coeIcients
in the conjectured formulae, and numerically evaluating the mean value. Both of
those calculations are interesting and we will give more details and examples in a
subsequent paper.
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5.1. Unitary: Riemann zeta-function

The coeIcients of P2ðxÞ in Conjecture 1.5.1 can be written explicitly in terms of
known constants. When k ¼ 2 the function Gð*1; *2; *3; *4Þ that appears in
Conjecture 1.5.1 equals

�ð2þ *1 þ *2 
 *3 
 *4Þ
1
Y2
i; j¼1

�ð1þ *i 
 *kþjÞ; ð5:1:1Þ

which is given in x 2.2. But

�ð1þ sÞ ¼ s
1 þ � 
 �1s þ �2
2!

s2 
 �3
3!

s3 þ . . . ð5:1:2Þ

and

�ð2þ sÞ
1 ¼ 6

"2

 36� 0ð2Þ

"4
s þ 
3"2�00ð2Þ þ 36� 0ð2Þ2

"6
s2 þ . . . : ð5:1:3Þ

In the latter, the terms up to s4 were evaluated using MAPLE. Computing the
residue in Conjecture 1.5.1 gives

P2ðxÞ ¼ 1

2"2
x4 þ 8

"4
ð�"2 
 3� 0ð2ÞÞx3

þ 6

"6

48�� 0ð2Þ"2 
 12�00ð2Þ"2 þ 7�2"4 þ 144� 0ð2Þ2 
 2 �1"

4
� �

x2

þ 12

"8
ð6�3"6 
 84�2� 0ð2Þ"4 þ 24�1� 0ð2Þ"4 
 1728� 0ð2Þ3 þ 576�� 0ð2Þ2"2

þ 288� 0ð2Þ�00ð2Þ"2 
 8�000ð2Þ"4 
 10�1�"
6 
 �2"

6 
 48��00ð2Þ"4Þx

þ 4

"10
ð
12�0000ð2Þ"6 þ 36�2�

0ð2Þ"6 þ 9�4"8 þ 21�21"
8 þ 432�00ð2Þ2"4

þ 3456�� 0ð2Þ�00ð2Þ"4 þ 3024�2� 0ð2Þ2"4 
 36�2�1"
8 
 252�2�00ð2Þ"6

þ 3��2"
8 þ 72�1�

00ð2Þ"6 þ 360�1��
0ð2Þ"6 
 216�3� 0ð2Þ"6


 864�1�
0ð2Þ2"4 þ 5�3"

8 þ 576� 0ð2Þ�000ð2Þ"4 
 20736�� 0ð2Þ3"2


 15552� 00ð2Þ� 0ð2Þ2"2 
 96��000ð2Þ"6 þ 62208� 0ð2Þ4Þ; ð5:1:4Þ

in agreement with a result implied in the work of Heath-Brown [20] (see [7] where,
using [20], the same polynomial is worked out, although there are some slight
errors). Numerically,

P2ðxÞ ¼ 0:0506605918211688857219397316048638 x4

þ 0:69886988487897996984709628427658502 x3

þ 2:425962198846682004756575310160663 x2

þ 3:227907964901254764380689851274668 x

þ 1:312424385961669226168440066229978: ð5:1:5Þ
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There are several ways that one can numerically compute the coeIcients of
P3ðxÞ, and these will be described in a future paper. We found

P3ðxÞ ¼ 0:000005708527034652788398376841445252313x9

þ 0:00040502133088411440331215332025984x8

þ 0:011072455215246998350410400826667 x7

þ 0:14840073080150272680851401518774 x6

þ 1:0459251779054883439385323798059 x5

þ 3:984385094823534724747964073429 x4

þ 8:60731914578120675614834763629x3

þ 10:274330830703446134183009522x2

þ 6:59391302064975810465713392x

þ 0:9165155076378930590178543: ð5:1:6Þ

One notices that the leading coeIcient is much smaller than the lower order
coeIcients, which means that, in numerical calculations, the lower order terms
will contribute signi0cantly. One might suppose that the coeIcients of PkðxÞ are
always positive. Unfortunately, while this is true for P1; . . . ; P4, by k ¼ 5, negative
coeIcients begin to appear (see Table 5.1.1).
Table 5.1.2 depicts ðD

C
j�ð12 þ itÞj6 dt ð5:1:7Þ

as compared to ðD
C
P3ðlogðt=2"ÞÞ dt; ð5:1:8Þ

along with their ratio, for various blocks ½C;D� of length 50000, as well as a larger
block of length 2,350,000. The data agree with our conjecture and are consistent
with a remainder of size jD 
 Cj1=2D".
One can also look at smoothed moments, for example,ð1

0
j�ð12 þ itÞj2k expð
t=T Þ dt ð5:1:9Þ

as compared to ð1
0
Pkðlogðt=2"ÞÞ expð
t=T Þ dt: ð5:1:10Þ

Table 5.1.3 compares these with T ¼ 10000, for k ¼ 4; 3; 2; 1.
For k ¼ 3; 4 the data agrees to roughly half the decimal places. This supports

our conjecture that the error term in the conjectured mean values is OðT 1=2þ"Þ.
For k ¼ 1 the numerics suggest Corollary 1.6.3.

5.2. Symplectic: quadratic Dirichlet L-functions

We have computed the polynomials Qk of Conjecture 1.5.3 for k ¼ 1; 2; . . . ; 8,
separately for d < 0 and d > 0. Table 5.2.1 lists these polynomials for d < 0, while
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in Table 5.2.2 we consider d > 0. Again notice the small size of the
leading coeIcients.
Table 5.2.3 compares, for d < 0, conjectured moments for k ¼ 1; . . . ; 8 against

numerically computed moments,X
d<0

�
Lð12; ,dÞkgðjdjÞ ð5:2:1Þ

Table 5.1.1. Coe0cients of PkðxÞ ¼ c0ðkÞxk2 þ c1ðkÞxk2
1 þ . . .þ ck2ðkÞ, for k ¼ 4; 5; 6; 7.
Notice the relatively small size of c0ðkÞ. We believe the coe0cients to be correct to the
number of places listed, except in the cases indicated by question marks, where the
numerics have not quite stabilized. Two di3erent methods were used to compute the
coe0cients. The former, for 06 r6 7, gave us higher precision but was less e0cient, while
the latter for r6 49, was more e0cient but required using less precision.

r crð4Þ crð5Þ crð6Þ crð7Þ

0 .24650183919342276e-12 .141600102062273e-23 .512947340914913e-39 .658228478760010e-59
1 .54501405731171861e-10 .738041275649445e-21 .530673280992642e-36 .120414305554514e-55
2 .52877296347912035e-8 .177977962351965e-18 .260792077114835e-33 .106213557174925e-52
3 .29641143179993979e-6 .263588660966072e-16 .810161321577902e-31 .601726537601586e-50
4 .1064595006812847e-4 .268405453499975e-14 .178612973800931e-28 .246062876732400e-47
5 .25702983342426343e-3 .199364130924990e-12 .297431671086361e-26 .773901216652114e-45
6 .42639216163116947e-2 .111848551249336e-10 .388770829115587e-24 .194786494949524e-42
7 .48941424514215989e-1 .484279755304480e-9 .409224261406863e-22 .403076849263637e-40
8 .38785267 .16398013e-7 .35314664e-20 .69917763e-38
9 2.1091338 .43749351e-6 .25306377e-18 .1031402e-35
10 7.8325356 .92263335e-5 .15198191e-16 .13082869e-33
11 19.828068 .00015376778 .77001514e-15 .14392681e-31
12 33.888932 .0020190278 .3306121e-13 .13825312e-29
13 38.203306 .020772707 .12064042e-11 .11657759e-27
14 25.604415 .16625059 .37467193e-10 .86652477e-26
15 10.618974 1.0264668 .99056943e-9 .56962227e-24
16 .708941 4.8485893 .22273886e-7 .33197649e-22
17 17.390876 .42513729e-6 .1718397e-20
18 47.040877 .68674336e-5 .79096789e-19
19 95.116618 .9351583e-4 .32396929e-17
20 141.44446 .0010683164 .11809579e-15
21 149.35697 .010180702 .3830227e-14
22 105.88716 .080418679 .11044706e-12
23 44.1356 .52296142 .28282258e-11
24 20.108 2.7802018 .64210662e-10
25 21.27 12.001114 .12898756e-8
26 41.796708 .22869667e-7
27 116.72309 .35683995e-6
28 259.39898 .48834071e-5
29 452.491 .58391045e-4
30 601.17 .00060742037
31 573.54 .0054716438
32 374.8 .042465904
33 246.5 .28245494
34 248. 1.6013331
35 1.6e+02 ? 7.6966995
36 24.e+01 ? 31.20352
37 106.19714
38 301.91363
39 711.742
40 1370.10
41 2083.
42 2356.
43 1.9e+03
44 1.8e+03
45 3.e+03
46 3.e+03
47 8.e+01 ?
48 21.e+03 ?
49 22.e+02 ?
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versus X
d<0

�
Qkðlog jdjÞgðjdjÞ ð5:2:2Þ

where g is the smooth test function

gðtÞ ¼

1 if 06 t < 850000,

exp 1
 1
 ðt 
 850000Þ2

ð150000Þ2
� �
1 !

if 8500006 t6 1000000,

0 if 1000000 < t .

8>><>>: ð5:2:3Þ

Table 5.2.4 compares the same quantities, but for d > 0.

Table 5.1.2. Sixth moment of � versus Conjecture 1.5.1. The ‘reality’ column, that is,
integrals involving �, was computed using MATHEMATICA.

½C;D� Conjecture (5.1.8) Reality (5.1.7) Ratio

[0,50000] 7236872972.7 7231005642.3 .999189

[50000,100000] 15696470555.3 15723919113.6 1.001749

[100000,150000] 21568672884.1 21536840937.9 .998524
[150000,200000] 26381397608.2 26246250354.1 .994877

[200000,250000] 30556177136.5 30692229217.8 1.004453

[250000,300000] 34290291841.0 34414329738.9 1.003617

[300000,350000] 37695829854.3 37683495193.0 .999673
[350000,400000] 40843941365.7 40566252008.5 .993201

[400000,450000] 43783216365.2 43907511751.1 1.002839

[450000,500000] 46548617846.7 46531247056.9 .999627

[500000,550000] 49166313161.9 49136264678.2 .999389
[550000,600000] 51656498739.2 51744796875.0 1.001709

[600000,650000] 54035153255.1 53962410634.2 .998654

[650000,700000] 56315178564.8 56541799179.3 1.004024
[700000,750000] 58507171421.6 58365383245.2 .997577

[750000,800000] 60619962488.2 60870809317.1 1.004138

[800000,850000] 62661003164.6 62765220708.6 1.001663

[850000,900000] 64636649728.0 64227164326.1 .993665
[900000,950000] 66552376294.2 65994874052.2 .991623

[950000,1000000] 68412937271.4 68961125079.8 1.008013

[1000000,1050000] 70222493232.7 70233393177.0 1.000155

[1050000,1100000] 71984709805.4 72919426905.7 1.012985
[1100000,1150000] 73702836332.4 72567024812.4 .984589

[1150000,1200000] 75379769148.4 76267763314.7 1.011780

[1200000,1250000] 77018102997.5 76750297112.6 .996523
[1250000,1300000] 78620173202.6 78315210623.9 .996121

[1300000,1350000] 80188090542.5 80320710380.9 1.001654

[1350000,1400000] 81723770322.2 80767881132.6 .988303

[1400000,1450000] 83228956776.3 83782957374.3 1.006656
[0,2350000] 3317437762612.4 3317496016044.9 1.000017

Table 5.1.3. Smoothed moment of � versus Conjecture 1.5.1.

k (5.1.9) (5.1.10) DiHerence Relative diHerence

1 79499.9312635 79496.7897047 3.14156 3:952 � 10
5

2 5088332.55512 5088336.43654 23.8814 
7:628 � 10
7

3 708967359.4 708965694.5 1664.9 2:348 � 10
6

4 143638308513.0 143628911646.6 9396866.4 6:542 � 10
5
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Figure 1 depicts, for k ¼ 1; . . . ; 8 and X ¼ 10000; 20000; . . . ; 107,X

X<d<0

�
Lð12; ,dÞk ð5:2:4Þ

divided by X

X<d<0

�
Qkðlog jdjÞ: ð5:2:5Þ

Table 5.2.1. Coe0cients of QkðxÞ ¼ d0ðkÞxkðkþ1Þ=2 þ d1ðkÞxkðkþ1Þ=2 þ . . ., for k ¼ 1; . . . ; 8,
odd twists, d < 0.

r drð1Þ drð2Þ drð3Þ drð4Þ

0 .3522211004995828 .1238375103096e-1 .1528376099282e-4 .31582683324433e-9
1 .61755003361406 .18074683511868 .89682763979959e-3 .50622013406082e-7
2 .3658991414081 .17014201759477e-1 .32520704779144e-5
3 2 .13989539029 .10932818306819 .10650782552992e-3
4 .13585569409025 .18657913487212e-2
5 2 .23295091113684 .16586741288851e-1
6 .47353038377966 .59859999105052e-1
7 .52311798496e-2
8 2 .1097356195
9 .55812532
10 .19185945

r drð5Þ drð6Þ drð7Þ drð8Þ

0 .671251761107e-16 .1036004645427e-24 .886492719e-36 .337201e-49
1 .23412332535824e-13 .67968140667178e-22 .98944375081241e-33 .59511917e-46
2 .35711692341033e-11 .20378083365099e-19 .51762930260135e-30 .500204322e-43
3 .31271184907852e-9 .36980514080794e-17 .16867245856115e-27 .2664702284e-40
4 .17346173129392e-7 .45348387982697e-15 .38372675160809e-25 .1010164552e-37
5 .63429411057027e-6 .39728668850800e-13 .64746354773372e-23 .29004988867e-35
6 .15410644373832e-4 .2563279107877e-11 .84021141030379e-21 .65555882460e-33
7 .2441498848698e-3 .12372292296e-9 .85817644593981e-19 .11966099802e-30
8 .2390928284571e-2 .44915158297e-8 .70024645896E-17 .17958286298e-28
9 .127561073626e-1 .1222154548e-6 .4607034349989e-15 .22443685425e-26
10 .24303820161e-1 .2461203700e-5 .2455973970377e-13 .2357312577e-24
11 2 .333141763e-1 .3579140509e-4 .106223013225e-11 .20942850060e-22
12 .25775611e-1 .3597968761e-3 .3719625461492e-10 .15805997923e-20
13 .531596583 .230207769e-2 .1048661496741e-8 .10159435845e-18
14 2 .325832 .7699469185e-2 .2357398870407e-7 .55665248752e-17
15 21.34187 .4281359929e-2 .416315210727e-6 .25985097519e-15
16 2 .2312387714e-1 .564739434674e-5 .103134457e-13
17 .109503 .56831273239e-4 .346778002e-12
18 .2900464 .40016131254e-3 .982481680e-11
19 2 .9016 .1755324808e-2 .232784142e-9
20 2 .89361 .340409901e-2 .456549799e-8
21 2 .181 2 .2741804e-2 .7309216472e-7
22 .353555e-3 .9368893764e-6
23 .117734 .9348804928e-5
24 .20714e-1 .69517414e-4
25 2 .9671 .356576507e-3
26 2 .284 .1059852e-2
27 1.3 .8242527e-3
28 21. 2 .206921e-2
29 .181031e-1
30 .862815e-1
31 2 .14025
32 2 .91619
33 2 .942
34 2 .153e-1
35 2 .3?
36 ?
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One sees the graphs Ouctuating above and below 1. Interestingly, the graphs have
a similar shape as k varies. This is explained by the fact that large values of
Lð 12 ; ,dÞ tend to skew the moments, and this gets ampli0ed as k increases.
Figure 2 depicts the same but for 0 < d6X.
The values Lð 12 ; ,dÞ were computed using a smoothed form of the approximate

functional equation which expresses the L-function in terms of the incomplete
Gamma-function (see, for example, [35]).

Table 5.2.2. Coe0cients of QkðxÞ ¼ e0ðkÞxkðkþ1Þ=2 þ e1ðkÞxkðkþ1Þ=2 þ . . ., for k ¼ 1; . . . ; 8,
even twists, d > 0.

r erð1Þ erð2Þ erð3Þ erð4Þ

0 .3522211004995828 .1238375103096e-1 .1528376099282e-4 .31582683324433e-9
1 2 .4889851881547 .6403273133043e-1 .60873553227400e-3 .40700020814812e-7
2 2 .403098546303 .51895362572218e-2 .19610356347280e-5
3 .878472325297 2 .20704166961612e-1 .4187933734219e-4
4 2 .4836560144296e-1 .32338329823195e-3
5 .6305676273171 2 .7264209058150e-3
6 21.23114954368 2 .97413031149e-2
7 .6254058547e-1
8 .533803934e-1
9 21.125788
10 2.125417

r erð5Þ erð6Þ erð7Þ erð8Þ

0 .671251761107e-16 .1036004645427e-24 .886492719e-36 .337201e-49
1 .2024913313373e-13 .6113326104277e-22 .91146378e-33 .556982629e-46
2 .261100345555e-11 .16322243213252e-19 .437008961e-30 .43686422e-43
3 .187088892376e-9 .2605311255687e-17 .1297363095e-27 .216465856e-40
4 .8086250862418e-8 .2766415183453e-15 .2670392090e-25 .7604817313e-38
5 .2126496335545e-6 .2056437432502e-13 .404346681e-23 .201532781e-35
6 .319415704903e-5 .10957094998959e-11 .46631481394e-21 .418459324e-33
7 .21201987479e-4 .42061728711797e-10 .41831543311e-19 .698046515e-31
8 2 .33900555230e-4 .11491097182922e-8 .29548572643e-17 .951665168e-29
9 2 .775061385e-3 .21545094604323e-7 .1652770327e-15 .1073015400e-26
10 .333997849e-2 .25433712247032e-6 .73192383650e-14 .1008662234e-24
11 .22204682e-1 .1448397731463e-5 .25506469557e-12 .7945270901e-23
12 2 .1538433 2 .2179868777201e-5 .6901276286e-11 .5257922143e-21
13 2 .19794e-1 2 .54298634893e-4 .141485467e-9 .2924082555e-19
14 2.01541 .1698771341e-3 .210241720e-8 .1363867915e-17
15 24.451 .22887524e-2 .20651382e-7 .5311448709e-16
16 2 .1042e-1 .101650951e-6 .1714154659e-14
17 2 .4339429e-1 2 .16979129e-6 .453180963e-13
18 .343054 2 .37367e-5 .9644403068e-12
19 2 .1947171 .97069e-5 .160742335e-10
20 23.16910 .18351e-3 .200188929e-9
21 7.31266 2 .54878e-3 .16931900e-8
22 2 .5621e-2 .7257434e-8
23 .284e-1 2 .14329111e-7
24 .639e-1 2 .25913136e-6
25 2 .7 .6473933e-6
26 .86 .138673e-4
27 5. 2 .2339e-4
28 2 .1e2 2 .48124e-3
29 .162e-2
30 .976e-2
31 2 .83e-1
32 2 .62e-1
33 2.
34 22.
35 29.
36 30.?
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5.3. Orthogonal: twists of a GLð2Þ L-function

Let

L11ðsÞ ¼
X1
n¼1

an

n1=2þs
ð5:3:1Þ

be the L-function of conductor 11 of the elliptic curve

y2 þ y ¼ x3 
 x2: ð5:3:2Þ

The coeIcients an are obtained from the cusp form of weight 2 and level 11 given
by X1

n¼1
anq

n ¼ q
Y1
n¼1

ð1
 qnÞ2ð1
 q11nÞ2: ð5:3:3Þ

Expanding the right side using Euler’s pentagonal theorem provides an eIcient
means to compute the an.
The function L11ðsÞ satis0es an even functional equation (that is, " ¼ þ1),

111=2

2"

 !s

Jðs þ 1
2ÞL11ðsÞ ¼ 111=2

2"

 !1
s

Jð32 
 sÞL11ð1
 sÞ; ð5:3:4Þ

Table 5.2.3. Smoothed moment of Lð12; ,dÞ versus Conjecture
1.5.3, for fundamental discriminants 
1000000 < d < 0, and
k ¼ 1; . . . ; 8.

k Reality (5.2.1) Conjecture (5.2.2) Ratio

1 1460861.8 1460891. 0.99998
2 17225813.8 17226897.5 0.999937
3 316065502.1 316107868.6 0.999866
4 7378585496. 7380357447.1 0.99976
5 198754711593.6 198809762196.4 0.999723
6 5876732216291.7 5877354317291.3 0.999894
7 185524225881950. 185451557119001. 1.000392
8 6149876164696600 6141908614344770 1.0013

Table 5.2.4. Smoothed moment of Lð 12 ; ,dÞ versus Conjecture
1.5.3, for fundamental discriminants 0 < d < 1000000, and
k ¼ 1; . . . ; 8.

k Reality (5.2.1) Conjecture (5.2.2) Ratio

1 1144563.5 1144535.5 1.000024
2 9252479.6 9252229.9 1.000027
3 109917867.0 109917367.9 1.0000045
4 1622521963.4 1622508843.4 1.0000081
5 27321430060. 27320230686. 1.000043
6 501621762060.6 501542204848.7 1.000159
7 9787833470714.1 9783848274459.6 1.000407
8 199831160877919 199664775232854 1.000833
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Figure 1. Horizontal axis in each graph is X. These graphs depict the �rst eight moments,
sharp cuto3, of Lð 12 ; ,dÞ, for 
X6 d < 0; divided by the conjectured value, sampled at
X ¼ 10000; 20000; . . . ; 107. One sees the graphs 6uctuating above and below 1. Notice that
the vertical scale varies from graph to graph.
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Figure 2. Same as the previous �gure, but for 0 < d6X.
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and may be written as a product over primes

L11ðsÞ ¼ 1

1
 11
s
1=2

Y
p 6¼11

1

1
 app

s
1=2 þ p
2s : ð5:3:5Þ

Consider now quadratic twists of L11ðsÞ,

L11ðs; ,dÞ ¼
X1
n¼1

an

n1=2þs
,dðnÞ: ð5:3:6Þ

with ðd; 11Þ ¼ 1. Here L11ðs; ,dÞ satis0es the functional equation

L11ðs; ,dÞ ¼ ,dð
11Þ
Jð 32 
 sÞ
Jðs þ 1

2Þ
2"

111=2

� �2s
1
jdj2ð1=2
sÞL11ð1
 s; ,dÞ: ð5:3:7Þ

We wish to look at moments of L11ð 12 ; ,dÞ but only for those Lðs; ,dÞ that have
an even functional equation, that is, ,dð
11Þ ¼ 1. We further only look at d < 0
since in that case a theorem of Kohnen and Zagier [33] enables us to easily gather
numerical data for L11ð 12 ; ,dÞ with which to check our conjecture.
When d < 0, ,dð
1Þ ¼ 
1; hence, in order to have an even functional equation,

we require ,dð11Þ ¼ 
1, that is, d ¼ 2; 6; 7; 8; 10 mod 11. Conjectured formula
(4.4.22) combined with Lemma 2.5.2 gives an estimate for the sum over
fundamental discriminantsX


D<d<0
d¼2;6;7;8;10mod 11

�
L11ð12; ,dÞk ¼

X

D<d<0

d¼2;6;7;8;10mod 11

�
Wk log jdjð Þ þ OðD1=2þ"Þ ð5:3:8Þ

where, as in x 4.4, Wk is the polynomial of degree
1
2 kðk 
 1Þ given by the k-fold

residue

WkðxÞ ¼ ð
1Þkðk
1Þ=22k
k!

1

ð2"iÞk

�
þ
. . .

þ
R11ðz1; . . . ; zkÞPðz21; . . . ; z2kÞ2Qk

j¼1 z
2k
1
j

ex
Pk

j¼1zj dz1 . . . dzk; ð5:3:9Þ

where

R11ðz1; . . . ; zkÞ ¼ Akðz1; . . . ; zkÞ
Yk
j¼1

Jð1þ zjÞ
Jð1
 zjÞ

11

4"2

� �zj
� �1=2

�
Y

16 i<j6 k

�ð1þ zi þ zjÞ; ð5:3:10Þ

and Ak is the Euler product which is absolutely convergent for
Pk

j¼1 jzjj < 1
2,

Akðz1; . . . ; zkÞ ¼
Y
p

R11;pðz1; . . . ; zkÞ
Y

16 i<j6 k

1
 1

p1þziþzj

� �
ð5:3:11Þ
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with, for p 6¼ 11,

R11;p ¼ 1þ 1

p

� �
1� 1
p
þ 1

2

�Yk
j¼1

1

1
 app

1
zj þ p
1
2zj

þ
Yk
j¼1

1

1þ app

1
zj þ p
1
2zj

��
ð5:3:12Þ

and

R11;11 ¼
Yk
j¼1

1

1þ 11
1
zj
: ð5:3:13Þ

Numerically, it is more challenging to compute the polynomials Wk. First, usingY
16 i<j6 k

�ð1þ zi þ zjÞ ð5:3:14Þ

to estimate the sum over primes of (4.4.17) makes a poor approximation and one
would do better to use the Rankin--Selberg convolution L-function of L11ðsÞ with
itself. However, it is simpler to work with �, and we thus computed the 0rst four
moment polynomials of L11ð 12 ; ,dÞ but to low accuracy. The coeIcients of these
polynomials are given to 2 to 5 decimal place accuracy in Table 5.3.1.

In Table 5.3.2 we compare moments computed numerically with moments
estimated by our conjecture. The two agree to within the accuracy we have for
the moment polynomial coeIcients. We believe that if one were to compute the
coeIcients to higher accuracy, one would see an even better agreement with
the data.
While one can compute L11ð 12 ; ,dÞ using standard techniques (see [6]), in our

case we can exploit a theorem of Kohnen and Zagier [33] which relates L11ð 12 ; ,dÞ,
for fundamental discriminants d < 0, d � 2; 6; 7; 8; 10 mod 11, to the coeIcients
c11ðjdjÞ of a weight 3

2 modular form

L11ð12; ,dÞ ¼ H11c11ðjdjÞ2=
ffiffiffi
d

p
ð5:3:15Þ

where H11 is a constant. The weight 3
2 form in question was determined by

Table 5.3.1. Coe0cients of WkðxÞ ¼ f0ðkÞxkðk
1Þ=2 þ f1ðkÞxkðk
1Þ=2
1 þ . . .,
for k ¼ 1; 2; 3; 4.

r frð1Þ frð2Þ frð3Þ frð4Þ

0 1.2353 .3834 .00804 .0000058
1 1.850 .209 .000444
2 1.57 .0132
3 2.85 .1919
4 1.381
5 4.41
6 4.3
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Rodriguez-Villegas (private communication):X1
n¼1

c11ðnÞqn ¼ 1
2ð�1ðqÞ 
 �2ðqÞÞ

¼ 
q3 þ q4 þ q11 þ q12 
 q15 
 2q16 
 q20 . . . ð5:3:16Þ

where

�1ðqÞ ¼
X

ðx;y;zÞ2Z3
x�ymod 2

qx
2þ11y2þ11z2

¼ 1þ 2q4 þ 2q11 þ 4q12 þ 4q15 þ 2q16 þ 4q20 . . . ð5:3:17Þ

and

�2ðqÞ ¼
X

ðx;y;zÞ2Z3
x�ymod 3
y�zmod 2

qðx
2þ11y2þ33z2Þ=3 ¼ 1þ 2q3 þ 2q12 þ 6q15 þ 6q16 þ 6q20 . . . : ð5:3:18Þ

This was used to compute the c11ðjdjÞ for d < 85,000,000.
Evaluating the left side of (5.3.8) in a more traditional manner for d ¼ 
3, and

comparing with the right side, we determined

H11 ¼ 2:917633233876991: ð5:3:19Þ
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