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APPLICATIONS OF THE L-FUNCTIONS RATIOS CONJECTURES

J. B. CONREY AnD N. C. SNAITH

ABSTRACT

In upcoming papers by Conrey, Farmer and Zirnbauer there appear conjectural formulas for averages, over a
family, of ratios of products of shifted L-functions. In this paper we will present various applications of these
ratios conjectures to a wide variety of problems that are of interest in number theory, such as lower order terms
in the zero statistics of L-functions, mollified moments of L-functions and discrete averages over zeros of the
Riemann zeta function. In particular, using the ratios conjectures we easily derive the answers to a number of
notoriously difficult computations.
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1. Introduction

Applications of random matrix theory in number theory began with Montgomery’s pair
correlation conjecture [36]. In this paper Montgomery conjectured that, in the limit for large
height up the critical line, any local statistic of the zeros of the Riemann zeta function is given
by the corresponding statistic for eigenvalues from the GUE ensemble of random matrix theory
[34]. A local statistic is one that involves only correlations between zeros separated on a scale
of a few mean spacings. Odlyzko checked the statistics numerically for the pair correlation and
the nearest neighbour spacing distribution and found spectacular agreement [37]. At leading
order the zero statistics and eigenvalues statistics are identical; asymptotically no factors of
an arithmetical nature appear. However, it is clear that arithmetical contributions play a role
in lower order terms, and Bogomolny and Keating [3] identified these in the case of the pair
correlation function.

Katz and Sarnak [27] proposed that local statistics of zeros of families of L-functions could be
modelled by the eigenvalues of matrices from the classical compact groups with Haar measure.
In this way each family of L-functions is believed to have a symmetry type: unitary, symplectic
or orthogonal. Iwaniec, Luo and Sarnak [24] calculated the leading asymptotics for the one-level
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densities (using test functions whose Fourier transforms have limited support) for families of
L-functions with each symmetry type and found agreement with random matrix theory. Again
these leading terms had no arithmetic part.

More recently, random matrix theory has been applied to the moments of L-functions
averaged over a family. These are global, rather than local, statistics. A characteristic feature of
a global statistic is that an arithmetic factor appears in the leading order term. In the original
papers [29, 30] the leading term was a product of the corresponding moment of a characteristic
polynomial from random matrix theory and a seemingly independent Euler product.

Often in random matrix theory one can calculate such global statistics exactly for any
finite matrix size N. In particular, when evaluating moments of characteristic polynomials
one obtains an exact asymptotic expansion in NV as N — oo. We now understand conjecturally
the analogue for moments of L-functions and, in particular, how the arithmetic and random
matrix factors interact in the lower order terms. For any family of L-functions we can conjecture
[10] an asymptotic expansion for any moment which we believe is accurate essentially to the
square root of the size of the family.

A natural way to generalize these moment formulae is to consider averages of ratios of
products of L-functions or characteristic polynomials. In two forthcoming papers [11, 12]
there appear conjectural formulas for averages, over a family, of ratios of products of shifted
L-functions. Those papers contain several applications of these conjectures, as well as theorems
proving the random matrix analogues of these conjectures. In [13] and [5], different proofs of
the random matrix theorems are given, although not for the full range of the main parameter,
the dimension of the matrix.

The point is that these ratios conjectures are useful for calculating both local and global
statistics. In fact, quoting from [4], ‘The averages of products and ratios of characteristic
polynomials are more fundamental characteristics of random matrix models than the correla-
tion functions.” We would argue that the same can be said for L-functions. From the ratios
conjectures not only can you obtain all n-level correlations, but also essentially any local or
global statistic. An important feature on the number theory side is that this includes all lower
order terms, in particular it shows the arithmetic contribution present in local statistics.

In this paper we will present various applications of these ratios conjectures. In Section 2 we
give the precise statement and sketch the derivations of some examples of the ratios conjecture
for each of the three symmetry types: unitary, symplectic and orthogonal. These examples,
which have one or two L-functions in the numerator and denominator, cover most of the
cases that we need in the applications in this paper, but the conjectures are more general in
that they can involve any number of L-functions [11]. Theorems 2.7 and 2.10 give auxiliary
formulae useful in calculating the most basic local statistic, the one-level density. In Section 3
we then show how the ratios conjecture can be used to compute the one-level density of the
simplest family of L-functions with symplectic symmetry, namely Dirichlet L-functions with
real quadratic characters. We state a similar result for the orthogonal family associated with
quadratic twists of the Ramanujan 7-function. In the following section we consider lower order
terms in the pair correlation of the zeros of the Riemann zeta function. As mentioned above,
Bogomolny and Keating were the first to find these lower order terms; their heuristic method
involved a careful analysis of the Hardy—Littlewood conjectures for prime pairs. The strength
of our method is that it allows us to avoid such detailed considerations.

The next two sections consider averages of mollified L-functions. Mollifiers are used to
obtain information about small values of L-functions, in particular zeros. Mollifiers were first
introduced in the context of the Riemann zeta function to bound the number of zeros in a
vertical strip to the right of the half-line (that is, zero density results). Subsequently Selberg,
and then Levinson, obtained lower bounds for the proportion of zeros satisfying the Riemann
Hypothesis by mollifying zeta in the neighbourhood of the critical line. Recent uses have
focused on obtaining non-vanishing results at the central point for families of L-functions. All
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of these results involve complicated analysis, for example Levinson’s asymptotic evaluation
of the mollified second moment of zeta takes nearly fifty pages. Before embarking on such
a calculation it would be useful to know ahead of time what the answer is. In Section 5 we
show how to obtain these answers quickly. For each of the families that we have introduced we
calculate the mollified second moment of arbitrary linear combinations of derivatives and reveal
the simple structure of the result. In all cases where these have been rigourously calculated
(only accomplished when the mollifier is sufficiently short), these results are in agreement. In
Section 6 we show how to mollify any moment of the Riemann zeta function and give detailed
expressions in the case of the fourth moment; none of these, apart from the second moment,
have been calculated without using the ratios conjecture. It is interesting to note that unlike
other averages considered in this paper, there does not seem to be a random matrix analogue
of mollifying as there is nothing that naturally corresponds to a partial Dirichlet series.

Another kind of average which gives useful information about the distribution of zeros is
a discrete moment summing the zeta function, or its derivatives, at or near the zeros. In
Section 7 we consider moments of |[¢'(p)| and |((p + a)|. Using the ratios conjecture we show
how to obtain all of the lower order terms for these averages. While the leading order terms had
previously been conjectured or proved, it was not known how to obtain these lower order terms.

In Section 8 we show how to use the ratios conjecture to reproduce the asymptotic formulae
used to obtain non-vanishing results for various families. In addition we sketch how one should
go about proving that the proportion of non-vanishing for the kth derivative L®*)(1/2,y)
approaches 100% as k — oo for the family of all Dirichlet L-functions; by contrast, in [35] a
convincing argument is made that one cannot do better than 2/3 non-vanishing for A% (1/2, x),
where A is the completed L-function, without mollifying a higher power than the second.

In short, there are a number of difficult computations which the ratios conjectures simplify
significantly. A few of these computations have the property that they could be made into
theorems by proceeding alternatively; some are purely conjectural. However, even for those
that could be proved by other methods, knowing the answer ahead of time is useful as a guide
along the way, a check at the end and even in deciding whether to commence what could be a
painful calculation.

Throughout this paper we assume the Riemann Hypothesis for all the L-functions that arise.

2. Ratios conjectures

2.1. A unitary example

An example of a basic conjecture for the zeta-function follows. This was the example that
Farmer first considered when formulating his initial conjecture about averages of ratios of zeta
functions with shifts. With s = 1/2 + it, let

T
((s+a)((1—-s+p)
Re(a, B,7,0 ::J
AnB )= | =+ )
Farmer [16] conjectured that for a, 8,7,d < 1/1og T,

a ~ (@+0)B+7) ap@-B0—a)
el f3.9) T(a+ﬂ)(v+5) T (a+B)(y+9)’ (2.2)

as T — oo, provided that Rv,$é > 0. Our ratios conjecture gives us a recipe for computing a
more precise conjecture for Re.
Briefly, we use the approximate functional equation

¢(s) = Z — + x(s) Z % + remainder, (2.3)

n<X nlY

dt. (2.1)

“~d1021”7 — 2006/12/4 — pace 3 — +#43



145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
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where s = o + it, x(s) = 2°m* Lsin(s7/2)I'(1 — s) and XY = t/(27), for the zeta functions in
the numerator and ordinary Dirichlet series expansions for those in the denominator:

o0
% _yo (2.4)
n=1
We only use the pieces which have the same number of x(s) as x(1 —s) and we integrate
term-by-term, retaining only the diagonal pieces. We then complete all of the sums that we
arrive at.
Thus, the term from the ‘first’ part of the two approximate functional equations gives T
times

Z p(h)p(k) H Z u(p")p(p®) (2.5)
e ml/2+apl/2+Bp1/247 |;1/2+6 e P72 Q) m+(1/2+B)n+(1/2+n)h+(A/2+6)k
ym= P +m= +n

The only possibilities for h and k here are 0 and 1. Thus, we easily find that the right-hand
sum above is equal to

1 (1 1 L1 ) . 26)
(1 _ W) p1+ﬁ+'y p1+a+6 p1+'\/+5 ) .
thus, the product over primes is

CI+a+8)C(1+~v+9)
CA+a+8)C(1+8+7)

A((O&,ﬂ,’}/,é), (27)

where

(1 - Iﬁ) (1 - p1+15+w - p1+1a+6 + p1+1w+6)
Ac(aaﬁa’%é) = H
(1 7o) (1 = 7o)
P pITAFY pIFats
The other term comes from the second piece of each approximate functional equation and is
similar to the first piece except that « is replaced by —(0, and 8 is replaced by —a. Also,
because of the y-factors in the functional equation, we have an extra factor of

(s +a)x(1— s+ 8) = (%)aﬁ (1 +0 (ﬁ')) (2.9)

Thus, the more precise ratios conjecture gives the following conjecture.

(2.8)

CONJECTURE 2.1 (Conrey, Farmer and Zirnbauer [11]). With constraints on «, 3, v and §
as described below at (2.11), we have

[T es+a)(l—5+5)
RC(O"ﬁ’”’&)_L (rii-sto)

T
[ (et

CAtatoc ity @b (2.10)

+<i)“5<ﬂ—a—6kﬂ+v+®
27 Q=B+l —a+7)
where A, is defined at (2.8).

Ac(=B, —a, 7, 6)> dt+ O (T1/2+6) ,

In the following sections we have similar conjecture for ratios of L-functions averaged over
various families. In these families the L-functions are indexed by an integer d and we consider
averages for d < X. In all of these examples we constrain the shifts as follows. For « a generic
shift in the numerator (o and ( in the above example) and § a generic shift in the denominator,
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we require
1 1
- - - 2.11
1 < Ra < 1 ( a)
1
2.11
logC < RS < = 7 (2.11b)
Sa,J0 <. C1° (for every € > 0), (2.11¢)

where C' = T in the above example and C' = X in the case of discrete families of L-functions.
In conjectures that refer to these conditions the error terms are believed to be uniform in the
above range of parameters.

REMARK 2.2. Equation (2.11b) can be relaxed if for each shift in the denominator going
to zero there is a corresponding shift in the numerator going to zero at the same rate.

REMARK 2.3. The bound of 1/4 on the absolute values of the real parts of the shifts are
to prevent divergence of the Euler products that appear in the ratios conjectures.

REMARK 2.4. Because of the uniformity in the parameters «, 3, v and § we can differentiate
our conjectural formulas with respect to these parameters and the results are valid with the
same range and error terms.

For obtaining lower order terms in pair correlation in Section 4, we need the following.

THEOREM 2.5. Assuming Conjecture 2.1, we have

¢
J'o C(S+Q)C(1 s+ p)dt

(€)oo

) (i)‘“‘ﬁguwmcu—a—mﬂ

21
P

(1= sortrs) (1= 2 + orvtrs)

(=1

2
_Z( 1+f§ﬁp 1)> )dt+O(T1/2+E)’ (2.12)

P
provided that 1/logT <« Ra, RG < i,

This theorem follows from (2.10) by differentiating with respect to a and S and setting
v =« and § = 8. To perform this calculation, it is helpful to observe that A(«, 3, «,3) = 1.
Also, when differentiating the second term on the right side of (2.10) it is useful to observe
that for a function f(z,w) which is analytic at (z,w) = (a, @),

d - fle)

dat —at )|, ~ o) (2.13)
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Page 6 of 53 J. B. CONREY AND N. C. SNAITH
2.2. Symplectic examples

As a second example we consider the family of Dirichlet L-functions L(s, x4) associated with
real, even, Dirichlet characters y4. Let

(a 6'7, Z L1/2+a Xd)L(1/2+ﬁaXd) (2.14)

d<x 1/2+77Xd)L(1/2+67Xd)

with the usual conditions (2.11) on the shifts a, 3, v and §. Let us also consider the simpler
example

L(1/2 + a, xa)
D 2 Tz ) (219)

As part of our recipe, we replace the L(s, xq) in the numerator by the approximate functional
equation

L(% +a7Xd) =

m<zx

Xa(m) + <d> T L(1/4~a/2) Xa(n) + remainder, (2.16)

mi/2te "\ 7 ) T(1/4+a/2) = nifra

where zy = d/(27), and we replace the L(s, Xd) in the denominator by their infinite series:

i uih . (2.17)
h=1

We consider each of the 2* (if there are ) factors in the numerator) pieces separately and
average term-by-term within those pieces. We only retain the terms where we are averaging
over squares; in other words we use the main part of the formula

SXd

Z a(n) = {a(n)lf(* + small 1£ n ?s a square, (2.18)
d<x sma. 1f n 1s not a square,
where X* =}, 1 is the number of fundamental discriminants below X and where
a(n) =TT 2. (2.19)

p+1
pln

After computing these ‘diagonal’ terms, we complete the sums by extending to infinity the
ranges of the summation variables; we identify these terms as ratios of products of zeta functions
multiplied by absolutely convergent Euler products. The sum of these expressions, one for each
product of pieces of the approximate functional equations, forms our conjectural answer.

Proceeding to details, let us first consider the simpler example Rp(«a; ). We restrict attention
to the ‘first’ piece of the approximate functional equation. Thus, we consider

h)Xd hm)
Z Z h1/2+'ym1/2+a (220)
d<X h,m

Retaining only the terms for which hm is square, leads us to

o ulha(hm)
X ZD h1/2+’ym1/2+a : (221)
hm=

We express this sum as an Euler product (to ‘save’ variables we now replace h by p” and
m by p™):
h+m)

H Z h(1/2+'y)+m(1/2+a) : (222)

P h+m
even

“~d1021”7 — 2006/12/4 — pace 6 — 6
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The effect of p(p™) is to limit the choices for h to 0 or 1. When h = 0 we have

o0

a(p™) P 1 p 1 1
=1+ =1+ , 2.23
; pr/FH) po Lo pmeEe (p+ 1) p' 2 (1 = o) (229
and when h = 1 there is a contribution of
S e = e e (2.21)
T R R (1) pet (1 ) |
odd

Thus, the Euler product simplifies to

¢(1+20) 1\ 1 1
C(l + o+ ’Y) 1;[ (1 - p1+a+v> (1 - (p ¥ 1)p1+2a - (p + 1)pa+7> . (2.25)

The product over primes is absolutely convergent as long as fa, oy > —1/4.
The other piece can be determined by recalling the functional equation

L(1/2 4 o, xq) = <%>_ %L(lﬂ—a,x@. (2.26)

Thus, in total we expect that the following conjecture is true.

CONJECTURE 2.6 (Conrey, Farmer and Zirnbauer [11]). With constraints on « and 7 as
described at (2.11), we have

L(1/2 + a,x4)
Z L( 1/2+7 Xd)

d<X
(S
- dg;( <C(1+a+'y)AD( )
A\ T(1/4—a/2) ¢(1—-2a) ' s
’ (?) T(1/4+0a/2){(1—a+) ADHW)) +O(XV,(2.27)
where
1 -1 1 1
Ap(asy) =]] (1 - pl+a+7> (1 “ T o 1)pa+w) . (2.28)

p

For applications to the one-level density in the next section, we note that

L'(1/2+7r,xqa) d .
U;(—L(l/ﬂr,x:) = - Rp(a:7) L (2.29)
Now
d ((1+2a) . (1 +2r) _ ;o
EWAD(a,v) — = WAD(r,r) + Ay (r;r) (2.30)
and
d (d\ “T(1/4—a/2) ¢(1-2a) .
da <?> (/A +a/2) {1 —a+ny) %) -
(AT
—— (%) REas e -2 ap(-rin). (231

“~d1021”7 — 2006/12/4 — pace 7 — 7
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Also, Ap(r;r) =1,

1 1 1\ !
o 1}( (p+1) 12”"p+1)<15> ’ (232

and

, lo
Ap(rir) = ; (p+ 1)(pg1f2r —1) (2.33)

Thus, the ratios conjecture implies (see Remark 2.4) that the following holds.

THEOREM 2.7. Assuming Conjecture 2.6, 1/log X <« fr < i and Sr <. X17¢ we have
Z 1/2 + r, Xd)
= I L(1/2+7,xa)

— 1"‘27’ ’ ) d _7F(1/4—’r/2) '
dg}:{( 1+ 2r) -‘rAD(T,T) - (;) m((l —QT)AD(—T7T)>

+O(X/2Te), (2.34)
where Ap(a;7y) is defined in (2.28).
Now we look at the case of two L-functions in the numerator and denominator. Here we

will only work to keep the first main terms when the shifts «, 8, v and ¢ are < 1/log X and
X — oo. We consider, from the first part of the functional equation for each of the L-functions,

w(k)xa(hkmn)
S 2.35)
1 2+ 1/240,,1/24ay,1/243 " (
d<thmnh/ ’Yk/ m/ TL/

Retaining only the terms for which hkmn is square, leads us to

x w(h)p(k)a(hkmn)
X Z q R1/2+7 E1/240 1 /2+apl/245" (2.36)
hkmn=

We express this sum as an Euler product (to ‘save’ variables we now replace h by p”, etc.)

IS p(p™)pu(p®)a(phThrmam) (2.37)
Ph7247)+k(1/248) +m(1/2+a) +n(1/2+5) :

p h+k+m-+n
even

We analyze the inner sum by dividing it into the four cases according to h = 0,1 and k = 0, 1;
also it is helpful to note that

1+2y T+y
(Em L A— and SL’ e ——
mzﬂ (1= )1 —¢?) 2 = )
even odd

It is more complicated to write down the exact formula for this, complete with the arithmetic
factor Ap(a, 8;7,9d). This factor is asymptotically 1 for small values of the parameters. Since
we are interested in the first main terms here, we record that the relevant zeta factors in the
expression above are

C(1+2a)¢(1+26)¢(1+a+ B)C(1+ v +6)
CA+a+7)C1+a+8)CA+8+v)CA+5+0)
_ (@+N)(a+9)B+)(B+9)
4af(a+ B)(y +9)

0(1/log X). (2.38)
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Thus we have, from the remaining parts of the functional equation the following conjecture.

CONJECTURE 2.8 (Conrey, Farmer and Zirnbauer [11]). With «, 3,7, < 1/log X, we have

oo @@+ 0)B+)B+) o (—a+y)(—a+8)(B+7)(B+9)
Bole iy 0) = st iy v o) 1of(~a+ B)(3 + )
_ x-slatN@+8)(=F+7)(=F+9)
daB(o — B)(v +9)
_ y-a-plzat (a4 8)(=B+) (= +9) o
X 1Bt B+ 9 O(1/logX),  (2.39)
as X — oo.

2.3. Orthogonal examples

As a third example, we consider the orthogonal family of quadratic twists of the L-function
L associated with the unique weight 12 cusp form for the full modular group:

(5 xa) Z Xa()7*(n) _ 11 <1 B T*(pl))icd(p) N Xd(zfzz)>_ , (2.40)

p

where 7*(n) = 7(n)/n''/? and 7(n) is Ramanujan’s tau-function. For d > 0, this has functional
equation

En(s, Xa) = (%) T(s+11/2)La (s, va) = £a(1 — 5, xa)- (2.41)
Let
L La(1/2 4+ a,xa)
Ra(a;7) := %—La(lﬂﬂ,m) (2.42)
and let
Ra (0 By, 6) = Z LA(1/2 + o, xa)La(1/2+ 3, Xa) (2.43)

i La(/2+7,xa)La(1l/2 + 6, xa)

As in the symplectic example we will calculate the full expression for Ra(«;~y) and only the
leading main terms for Ra(c, 3;7,9).
Note that

1 - 1 (1 _ T @xalp) | x(;(gf)) _. i %_ (2.44)

LA(s,Xa » p*

To commence the calculation of Ra(a;7y) we replace each L-function in the numerator by the
first half of the approximate functional equation

* d 72a
LA(1/2+a,xq) = Z W + () L- Z Xa(n nl— (n) + remainder,

= 2T 6+ «) <y
(2.45)
where 2y = d?/(2m). We must then consider
pa(h)7*(m)xa(hm)
Sy el T, (2:46)

d<X h,m
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which leads to

5+ ua(h)T*(m)a(hm)X*H(1+P 3 na (") () > (2.47)

hl/2+v|1/2+a +1 ph(1/2+'y)+m(1/2+a)

h+m>0
even

hm=0

We note that pa(p) = —7*(p), ua(p?) =1, and pa(p™) =0 for m > 2, so that the product
over primes here is

@) ) TP 1 s TP
1;[ (1 + p+ 1 < 2:1 m(1+2a) p1+a+'y mX::O pm(1+2(x) + p1+2'y mX::O pm(1+2a) : (248)

We note that

i *(pP™) 2™ = % { (1 — 7 (p)x + x2) - + (1 + 7" (p)z + 1;2) _1} (2.49)

and
[e'e] 1 —1 —1
Sttt = 5 {(1 -7 (p)z + x2) - (1 +7(p)z + x2> } - (250
m=0

The ‘polar’ part of the product (2.48) is (1 + 27)/¢(1 + « + 7); we can factor these terms
out and be left with a convergent Euler product. However, we prefer at this point to factor
out some other L-functions present here with values near the 1-line and to be left with an
Euler product which is more rapidly convergent. To this end, we recall the Rankin—Selberg
convolution of L and the symmetric square L-function associated with La. We can write the
Euler product for La as

Lats) =] (1 - %)_1 (1 - %) - : (2.51)

p

where o, + @, = 7*(p) and a,@, = |a,|> = 1. The Rankin-Selberg L-function is

o0
'r®7'5 Z

where the symmetric square L-function is given by

o2 - -1 o2 -
La(sym?, s) :H( —p—f) (1—%) (1—p—f> (2.53)

p

*

C(s)La(sym?,5)((2s)7 1, (2.52)

and is an entire function of s. As a Dirichlet series, we can write

La(sym?; s) IZ T (2.54)

n=1

Thus, the product (2.48) can be expressed as

C(1+2y)La(sym? 1+ 20a)
(A+a+v)La(sym?*, 1+ a+7)

Ba(a;7), (2.55)

“~d1021”7 — 2006/12/4 — pace 10 — 410



481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

THE L-FUNCTIONS RATIOS CONJECTURES Page 11 of 53

where

Ba(a;7)
Zm) 2m+1) 1

0 T*(p T* (p) S 7_* (p oo T*(pZm)
- H ( P+ -1 ( Z:l m(1+2a) pltaty mz::(] pm(1+2a) + plt2y mz::(] pr(1+20)

*(pz) *(p’z) 1 1 :
(1 T pitety + p2F2atay T p3F3atiy 1- plFaty

X (2.56)

Note that B(r;r) = 1; this follows from the fact that 7*(p?™+1)7*(p) = 7*(p?™+2) + 7* (p*>™).
Thus, the ratios conjecture gives the following.

CONJECTURE 2.9 (Conrey, Farmer and Zirnbauer [11]). With constraints on « and v as
described at (2.11), we have

Z La(1/24+ a,x4)

i La(l/2 47, xd)

-y ( C(1+2y)La(sym?, 1+ 2a)
- C(1+a+7y)La(sym?,1+a+7)

Ba(a;7)
d<X

AN TD6-0a)  C1+2)Lalym’1-2a)
i (27T) L6+ a) C(1*OL+’Y)LA(SYH12,1—a+7)BA( a,y))

+ O(X /%y, (2.57)

where Ba(«,7) is defined in (2.56).

For application to the one-level density, we note that

L)\ (1/2 47, xa)
e ot = —RA( v) (2.58)
d<ZX La(1/2 47 x4) da U
Now
d  ((1+2y)La(sym?, 1+ 2a)
do ¢(1 4+ o+ 7)La(sym?, 1+ a +7) alos7) a=y=r
! / 2
_ ¢ (1+2r) n L'\ (sym®,1+ 2r) b BA(rr) (2.59)

C(142r)  La(sym?,1+2r)

Ba(—a;7)

a=y=r

a4 (i) L(6—a) (14 27)La(sym? 1 - 20)
F'6+a)C(l1—a+v)La(sym?,1—a+)

B d\ ?"T(6—7)C(1+2r)La(sym?,1—2r)
o (%> T(6+7) La(sym?,1)

Ba(-r;r). (2.60)

Thus, the ratios conjecture implies the following.
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THEOREM 2.10. Assuming Conjecture 2.9, if 1/log X < Rr < % and Sr <. X!1~¢, then

1/2+r Xd) ('(1+2r) Li(sym2 1+ 2r)
Z La(l/247.xa) Z ( ¢(1+2r) +LA(Sym271+27“)

+ Ba(r;r)

d<X d<X

d\ 7 (6 —7) ¢(1+2r)La(sym2,1 — 2r) .
N (%) T(6+7) La(sym?, 1) BA(_’"’T)>

+ O(X /2 (2.61)
where Ba(a,7) is defined in (2.56).
We now determine the main terms when «, 8,7,5 < 1/log X and X — oo for the average

over this family of the ratio Ra(a, 3;7,0) of two L-functions over two L-functions. We are
quickly led to consider

h1/2+7k1/2+5m1/2+an1/2+ﬂ : :
hkmn=0
When we go to Euler products, we find that this expression evaluates to
1+a+ 1+2 14+~v+0)C(1+26

CA+a+7)C(L+a+0)((1+pB+7)C(1+B+0)
where A is analytic if the real parts of «, 8, v and § are smaller than 1/4 in absolute value;
moreover Aa(0,0;0,0) = 1. Thus, this part is equal to

(a+7)(a+6)(B+7)(B+9)
(a+ B)(27) (v + 6)(20)

Taking the symmetric sum of four of these terms, arising from the product of the approximate
functional equations of the two L-functions in the numerator, we find that the following holds.

+0(1/log X). (2.64)

CONJECTURE 2.11 (Conrey, Farmer and Zirbauer [11]). With «, 8,7, < 1/log X, we have

(o, B: 7, ) LA(1/2 + o, xa)La(1/2 4 3, Xa)

X* i La(l/2+7,xa) La(1/2 + 6, xa)

_(a+)(a+8)B+(B+9)
(a+ 3)(27) (v + 6)(29)
(—a+(—a+8)B+(B+9)
(—a+ B)(27)(y + 6)(20)
a+y)(a+08)(=B+)(=6+9)
(o= B)(27) (v +6)(29)

_ x-2a—28(za+N(za+ ) (=F+7)(=F+9)

(a+ B)(27) (v + 6)(29)

1
X*

+ X72a

+ X*Qﬁ(

O(1/log X), (2.65)

as X — oo.

3. One-level density

In this section we use the ratios conjecture to compute the one-level density function for
zeros of quadratic Dirichlet L-functions, complete with lower order terms. Ozliik and Snyder
[38] have proven such results (assuming the generalized Riemann Hypothesis) for test functions
f for which the support of f is limited. The ratios conjectures imply a result consistent with
[38] but with no constraint on the support of the Fourier transform of the test function.
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For simplicity, we assume that
f(z) is holomorphic throughout the strip |Sz| < 2,
is real on the real line and even, (3.1)
and that f(z) < 1/(1 + 2?) as © — oo.

We consider
=% s, (3.2)
d<X 7va

where ~y4 denotes the ordinate of a generic zero of L(s, x4) on the half-line (we are assuming
that all of the complex zeros are on the half-line).
We have

1 L'(s,xd) ;.
s= 5] -] X f(-i(s — 1/2)) ds, (33
1 d%;( 271 ) (1-¢) L(S, Xd)
where (c) denotes a vertical line from ¢ —ico to ¢+ ioo and 3/4 > ¢ >1/2+ 1/log X. The

integral on the c-line is

1= (1/2+ (c — 1/2 + it), xa)
%J'_ f(t—i(c—1/2)) ;{LI/QJF C71/2+Zt)><)dt. (3.4)

It follows by the Riemann Hypothesis that on the path of integration (c)
L'(s, xa)
L(Sv Xd)

For [t| > X'7¢ we estimate the integral using (3.5) and (3.1) and the result is < X¢. By the
ratios conjecture (2.34), if [t| < X'7¢ then the sum over d in (3.4) is

CA+2r)
g{(W—FAD(T,T)

< log?(|s|d). (3.5)

+O(XY2Fe). (3.6)
r=c—1/2+1it

d\"T(1/4-71/2) .
_ (;) WC(l — 2T)AD(—T,T))

Since the quantity in (3.6) is < X*¢ for |t| < X17¢ and f(t) < 1/t?, we can extend the
integration in ¢ to infinity. Finally, since the integrand is regular at r = 0, we can move the
path of integration to ¢ = 1/2 and so obtain

1 (> ¢'(1 + 2it) L
-_— —_— A 1
o Joof(t)d;((c(um) + Ap (it it)

B (%) 7 %é(l — 2it) Ap(—it; z't)) dt + O(XV/2+e). (3.7)

For the integral on the 1 — ¢ line, we change variables, letting s — 1 — s, and we use the
functional equation

L'(1-s,xa) X'(s,xa) L'(s,xa)

= — 3.8
L0 =5 xa) ~ X(sxa)  L(sxa) (38)
where
X'(syx4d) d 1TV (1-s 1T /s
2Xd) e &2 (228 2 (), .
X (s, xa) T 2T\ 2 2r(2) (3.9)
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The contribution from the L’/L term is now exactly as before, since f is even. Thus, we obtain
the following result.

THEOREM 3.1. Assuming Conjecture 2.6 and f satisfying (3.1), we have

S s =p | 10X

(log ¢, —F—(1/4—Ht/2) L (/4 itf2)

dSX 7a d<X
Cr2it)
+2<m + A (it;it)
d\ " T(1/4 —it/2) , . i
_ <;> mC(l - 2zt)AD(—zt,zt)>) dt + O(XV/2+€),  (3.10)
where
1 1 1 -1
) l;l( (p+1) 12’"_p+1><1_]_9> ’ (3.11)
and

logp
Ap( g . 12
U= e 1) (312)

The low-lying zeros of this family of L-functions are expected to display the same statistics
as the eigenvalues of the matrices from USp(2N) chosen with respect to Haar measure. Thus
in the large X limit, the one level density of the scaled zeros will have the form, as proved by
Ozliik and Snyder [38],

. X* 3 Zf( log d/w)) _ Jm f(x)(l — %) dz, (3.13)

d<X 7d B

where X* is the number of terms in the sum (and is proportional to X).

Defining
tlog X
o) =g (M)

and scaling the variable ¢ from Theorem 3.1 as 7 = (tlog X)/(27), we have

Ty < dlogX>

d<X 7a

) J . + _1"_/ 14+ ITT
logX ng g log X
1/a— imT +2 w + A’ M m
g X ¢+ %) P \log X' log X
. e—(QTriT/logX)log(d/Tr)wg <1 — m) Ap (_m m) )) dr

F1/4+ 5%) log X log X " log X
+O(X1Y/2e), (3.14)
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For large X only the log(d/7) term, the ¢’/ term and the final term in the integral contribute,
yielding the asymptotic

loo X 1 0o log X —2miT
DI (%l 08 ) N J 9(7) (X* log X — X" o582 4 x+5 logX) dr. (3.15)
= log X | 2miT 2miT

However, since g is an even function, the middle term above drops out and the last term can
be duplicated with a change of sign of 7, leaving

log d/7r) I e—2mir e2miT
Xlg’n‘x’ X* Z Z ( ) _J g(T)(l + 4miT + —AmiT dr, (3.16)

d<X 7d -

and resulting in exactly the answer expected.
In much the same way as for Theorem 3.1 we can compute the lower order terms in the one-
level density for the zeros of the functions from the orthogonal family La (s, x4) by using (2.61).

THEOREM 3.2. Assuming Conjecture 2.9 and with f satisfying (3.1), we have

> Y isad =g | 10X

d<X va,d d<X

Lof = C'(1+2it) L\ (sym?, 1+ 2it)
C(1+42it)  La(sym?, 1+ 2it)

A\ TPT(6 = it) (1 + 2it) La(sym?, 1 — 2it)
27 (6 + it) La(sym2,1)

+ O(X /%) (3.17)
where B is defined in (2.56).

d T ! )
<2log2—+ (6 +it) + F(G_Zt)

+ B (it; it)

BA(—it;it)) dt

In the same way as above, the main terms here give the one-level density of eigenvalues of
matrices from the group SO(2N), which in the limit of large N is 1 + (sin 27x)/(27z).

4. Pair-correlation

We show how to use the ratios conjecture to compute the pair-correlation of the zeros of the
Riemann zeta function, originally conjectured by Montgomery [36], together with lower order
(arithmetic) terms that have been found heuristically by Bogolmony and Keating [3] (see [28]
for a more expository description, [2] for numerical calculation of these lower order terms and
[19] for related rigorous results). When Farmer formulated his original ratio conjecture (2.2)
he observed in [16] that it implied the leading order terms of Montgomery’s pair correlation
conjecture. Farmer’s method is completely different from what we present below.

We want to evaluate the sum

S(H= >, fr=9) (4.1)
0<y,y'<T

for a test function f satisfying (3.1). We rewrite the sum in question in terms of contour
integrals. Let 1/2 4 1/logT < a < b < 3/4 and let C; be the positively oriented rectangular
contour with corners a, a + 47T, 1 —a+ 4T and 1 —a and let Cy be the rectangular contour
with corners b, b+ 47, 1 — b+ 4T and 1 — b. Then

-t C—/zc—lw —i(z —w)) dwdz;
SV = nap )y Jo, €O (e —w)dw (12)
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the point, of course, is that the poles inside the contours are simple poles with residue 1 at the
zeros z = 1/2 + iy and w = 1/2 4 i of the zeta function. The integrals along the horizontal
sides are small and may be ignored. Thus, we consider four double integrals. We consider each
of the four double integrals separately; call them I,..., I, where I; has vertical parts a and
b, Iy has vertical parts 1 —a and 1 — b, I3 has vertical parts a and 1 — b, and I has vertical
parts 1 — a and b.

It is easy to see using the Riemann Hypothesis that I; = O(T¢), just by moving the contours
to the right of 1 and integrating term-by-term.

For Iy, we use the functional equation

¢ X ¢
—=(5)==(s) —=(1—s
C( ) x( ) C( )
for s = w and s = z and find similarly that
1 T TXI X/
Iy = J J =124 du)=(1/2+ i) f(u —v)dudv + O(T*). 4.3
o= G ), | S22 () (13)
Using the fact that
X . || 1
=124it)=—log— ([14+0 | — 4.4
Casavin =t (1+0( (1.4
and that f is even, we see, after the substitution u = v + 7, that
2 T v u
Ih=—= log — log — —v)dudv+ O(T*
2 (27)2 L L 08 5 OgQWf(U v) dudv 4+ O(T)
2 (7 T=n v v+n
= log — 1 dvdn+ O(T°). 4.5
(QW)QL f(n)Jo 0g 5 log ——=dv dn + O(T") (4.5)
Recall that f satisfies
1
_ 4.6
f@) <10 (4.6)
for real x. Letting v — vT in the inner integral above, we have
2 T =% vT vl + 1
Ih=—-=T log — 1 dvdn+ O(T°). 4.7
2= | f | o ton S  dvan + (1) (47)

We may extend the upper limit of the inner integral to v = 1, introducing an error term of size
< fg nf(n)log? T dn < log® T. We can also replace log(vT + 1) by logvT with the same error
term. Thus,

=g Trﬂ >J11 22 dudn + O(T°)
2_(271')2 o n OOg 27TU77
1 (7 T
= — I — Tc). 4.
g | A | 10?5 dvan+ O(T) (19)
Next we consider I3. Letting z = w + 7, we see that it is

-1 1—-b+:T pa+iT CI CI

al, | W
1 1—a—b+iT ' Ts C/ ' C/ '

@n)i J f(=in) JTl Z(a + zt)z(a + it +n) dt dn, (4.9)

where T} = max{0, —Sn} and Ty = min{7T — 37, T}. We use the functional equation

I3 =

(2)f(—i(z —w))dwdz

1-b

l—a—b—iT

%(a—i—n—&—it):X;I(a—kn—&-it)—%(l—a—n—it). (4.10)
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The term with the x’/x is small as is seen by moving the contour to the right. Thus, we see that

L et (T . ‘
B i), oy g 7O, Gl 0G0 a0
I T O ¢
= G LﬂHHT f(=in) La : > (s+ (a— 1/2))f(1 —s5+(1/2—a—n))dtdn
o, (4.11)

where s = 1/2 + it. By Theorem 2.5, we have

= o JH;“”)E ((g)/“")

n ]-_ 17, 1__ 111
+(t) ¢t - e [T )

21 . (1- 5)

Z< llongf - >2> dt dy + O(TV/2+). (4.12)

p

Let § = a+ b — 1 and let g(—n,t) be the integrand in the second integral above. We can extend
the range of the inner integration, much as we did for the I integral, to the interval [0, T] with
an error term of size < T fn [nl|f(n)] dn < T€. Thus, we obtain

1 T §+iT . .
fs = (2m)%i Jo J—&-iT F(=in)g(=n,t) dndt + O(T ). (4.13)

Now we consider I4. Again letting z = w + 7, we have

= [ [ @i s

(27TZ)2 l—a b C é'
1 a+b—1+:2T T> C/ C/
= — —1 ~(1—a+it)>(1—a+it+mn)dtdn. 4.14
e RGOl & mdedy.  (414)
We use the functional equation

¢ X ¢ ,
1—a+it ~—(1—-a+1it) — =(a—1t). 4.15
C( ) = x( ) C( ) (4.15)

Again, the contribution of the x’/x term is negligible. Thus,

_ 1 a+b—144T ) T> C/ CI . )
I+ = oy L+b1n f(=in) JTl : > (a—it)= ¢ (1—a+ it +n)dtdy+ O(T®)

I T N NS ¢

~ 20 L+b—1—iT f(—in) JTI Z(l —s+(a— 1/2))Z(S + (1/2—a+n))dtdn
o). (4.16)
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Now, by Theorem 2.5,

1 a+b—1+:T ) T> C/ /
e U <(<> ()
(1 - )1 2+ 7o)

T I ) | R

p

-y <1°gp )2> dt dn + O(T"/**°). (4.17)

(pttn—1)

Using the notation introduced after the calculation of I5, and again extending the range of the
integration in the inner integral, we can write the expression for I, as

1 T (64T . are
Iy = = f(=in)g(n,t) dndt + O(T™/=7°). (4.18)
(2m)%i Jo Js—ir
Combining this with what we found for I3 we have, after a change of variables,
9 T 5T e
L+1i= 55 flamgn,t)dndt + O(T ). (4.19)
(2m)%i Jo Js—ir
Now let
(1= 5im) (1= 2 + 5o)
Am) =] —2 +(1 — - (4.20)
P p
and
B log p 2
so that
¢\ t\ "
st = (§) @+ (5) c-mea+ A - B (1.22)
Near 0, we see that (note that A’(0) = 0),
log(t/2m
g(n,t) = (77/) +O0(1). (4.23)

We move the path of integration in 7 to the imaginary axis from —7 to T with a principal
value as we pass through 0; the contribution from half of the residue from the pole of g at
n=201is
r t
7TJ' £(0)log — dt. (4.24)
0 27T
Combining our expressions for Iy, ..., I4, and changing 7 into ir we have the following.

THEOREM 4.1. Assuming Conjecture 2.1, and with f satistying (3.1), we have

S fly=9) = ﬁ JOT (27rf(0) log % + ET f(r) (10g2 % + 2( (%)l (1 +r)

7.V’ <T

+ ( i >_ ¢(1—ir)C(1 + ir) Alir) — B(ir))) dr> dt

2

+ O(TY/?%e), (4.25)
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here the integral is to be regarded as a principal value near r = 0,

1- 1-2 4+
Am =11 S (i(_ T3; o ! (4.26)

and

Z( llfffl >2. (4.27)

p

We believe that this formula, originally found by Bogomolny and Keating [3], is very
accurate, indeed, down to a square root error term. It includes all of the lower order terms
that arise from arithmetical considerations and should include all of the fluctuations found in
any of the extensive numerical experiments that have been done. We have not scaled any of
the terms here so that terms of different scales are shown all at once.

To see the leading order term from Montgomery’s pair-correlation conjecture, let

T L
= logﬁ and ¢ (x%> = f(x),

and scale the variable 7 in the inner integral in Theorem 4.1 as y = r(L/2m):

Yoy ((7 - 7’)%)

¥ <T

1 (" t  op (T(E/2m) ¢’ omiy
- (2m)? Jo <2ﬂg(0)log2 +f,[ T(L/2w)g(y)(log 2 +2<<C) ( - )

L
o 2miy 2miy 2miy 2miy
27iy(log(t/2m))/L _ _
g (=) e ) () -2 (55) ) o)

+O(TY/?+e), (4.28)

For large T, only the log® (t/2m) and the two terms containing zeta functions contribute, so we
have the asymptotic

L 1 (7 t  op (T&E/2m) t L?
~— 27g(0) log — + — log? — — =
Z g <(”y 7)27T> (2m)? Jo ( mg(0) log 27 * L JT(L/QT{‘)Q( )( o8 2 2m2y?

vy <T
2
L e—2miylios(e/2m/n) (L7 N\ g ar (4.29)
e oy y dt. )

Integrating over t, we find that

> (=750 ) ~ g touge (50 + | o (1 5+ 2o Y ay )

¥/ <T -0

—;M;G@ﬁimw,ﬁﬁfﬁﬁ. (4:30)

The expression 1 — (sin? 7y)/(7y)? is exactly the limiting two-point correlation function
predicted by Montgomery [36].

5. Mollifying second moments

The technique of mollifying is used for computing information about zeros in families of
L-functions, for example for obtaining lower bounds for the proportion of zeros on the critical
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line or for showing that not many L-functions in a family vanish at the central point. The
general set up is that we have a family of L-functions to average over. Before performing the
average we multiply by a Dirichlet polynomial whose coefficients arise from the inverses of
the members of the family, multiplied by a smoothing function. We will compute one example
arising from each of the three basic symmetry types.

As we discussed in the introduction, mollifier calculations are in general quite complicated.
The ratios conjectures give a relatively easy way to obtain the relevant asymptotic formula.
Thus, they can serve as a guide as to whether to embark on a calculation and a check as to
whether a calculation is correct. They also provide evidence that mean-value formulas which
can be proven for short mollifiers remain correct for long mollifiers. So, these calculations are
valuable even though we assume the Riemann Hypothesis.

5.1. A unitary example

We start with the Riemann zeta function in t-aspect as a prototype of a unitary family.
So, let

Z pu(n log y/n)/log y) (5.1)

where p(n) is the Mobius function,

L — Z u(n)7 (52)

and P is a polynomial satisfying P(0) = 0. Also,
y="T"° (5.3)

where, classically, the following results have been proven for § < 1/2, and, with a more modern
treatment, for § < 4/7 [7]. Conjecturally, the asymptotic formula we obtain should be valid for
any fixed 6, no matter how large. We want to consider

T
I:J |C(1/2 +it)|*| M (1/2 + it, P)|* dt, (5.4)
0
and more generally
T
I(a, 8, P1, Py) :J C(s+a)((1— s+ B)M(s, P)M(L — s, Py) dt, (5.5)
0

where s =1/2 +it. Also, it is useful to discuss the scaled and differentiated form of this
quantity, namely,

1 d 1 d
I ,Q2, P1, Py) = Ie(a, B, P, P , 5.6
(@Q1,Q2, P, P») Q1 (logTda>Q2<logTdﬁ) c(a, 8, P1, P2) im0 (5.6)
for polynomials Q1 and @s.
To relate this to our ratios conjecture we note that by Perron’s formula
LJ . dz ) (log™x)/m! ifx>1, (5.7)
2mi )" 2™t )0 if0<z<l, '

where ¢ > 0. Therefore, if P(z) =}, -, pna™, then

Pmm! y* 1
2. 5.8
log™ y2mJ'c) zmtl ((s+ 2) ‘ (58)

m>=1
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This expression leads us to

pl mm'pQ nn' 1 yw+z
Ie(a, B, Py, P2) = Z gy (2m)? L )J( )WRC(avﬁvwaz)dwdzv (5.9)
C1 C2

where ¢; = ¢ = 1/logy, and R¢ is defined at (2.1). Using the ratios conjecture, Conjecture 2.1,
we see that the double integral above is equal to

1 yw—‘rz T C(1+a+ﬁ)<(1+w+z)
J(cl)J'( J ( A<a7ﬁ7waz)

(27i)?2 op) WMLz CQ+a+2)C1+ 8+ w)

NP a - B+ wt2)
+ (%) (0—B+2(—a+tw)

From this formula we could work out a precise conjecture with all lower order terms included.
However, we are mainly interested in the leading order term when «, 5 ~ 1/log T. The leading
order terms come from the residues of the poles in w and z at zero; to obtain these we use
arguments similar to the proof of the Prime Number Theorem to move the paths of integration
slightly to the left of zero, allowing us to replace the contours of z and w with circles of radius
1/logT and 2/logT respectively. The error term is then certainly 1/log7 smaller than the
main term. Alsoweuse A =1+ O(1/logT) and ¢(1 + z) = 1/x + O(1) for small = and large T'.
Then we have

Ac(—B, —a,w, z)) dt dw dz + O(TY*+).  (5.10)

plmnﬂpznn' 1 ywte
I((aaﬁ7P17P2 Z m+n (27”)2 wmtlyn+l

Tlata)@Brw) (T (BrAatw))
<), <(a+ﬂ)(w+Z)+<2ﬂ> (—a—B(w+2) )dtd !

+O(T/log T). (5.11)

It is convenient to write, for R(w + z) > 0,

w—+z Y
Y :.[ ote (5.12)
w+ z

so that the above becomes

p1mmﬂp2nN' Vol %% uts
P P
(a /37 1, 2 a+ ﬂ Z m+n JO J (271_2‘)2 wmt1yn+l

m,n

—a-p
X ((a—&—z)(ﬂ-i-w) - (%) (—ﬁ+z)(—a+w)> dwdzdzudt

+O(T/ log T); (5.13)

note that the integration in wu is for u > 1 since for u < 1 the integrals in z and w are 0.
Now

p1,mm! u® logu
dw = P 5.14
Z log™ y 2m§wm+1 v ! (logy) (5.14)
and
Z P1,mm! fF uv i 1 P log u (5.15)
—dw = . .
log™ y 2mi logy ' \logy
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Therefore,

T (Y d d d d
= — J— R — —a—p — - — -
P1<w+1°g“>P2(z+log“) M o1/ 10gT). (5.16)
logy logy U
Letting u = y", we deduce that

T1 d d d d
Ie(a, B, P1, Pp) = aj_gﬂy <<a—|— E) <ﬁ+%> —T_O‘_ﬂ(—ﬁ-i- a)(—a-ﬁ-%))
1
(3% ol e
0 ogy logy

It is useful to rewrite the main term of this as

Tlogy(l — T~ F) d d Jl w z
_ il Y el P 2N
a+ 0 6+dz OH_dw 0 ! 10gy+r 2 logy—i—r dr

w=z=0

+O(T/logT). (5.17)

w=2z=0

w=z=0
Tlogy d d Jl w z
P — P — d 5.18
+a+6(a+ﬂ)<d +dz) ! logy+r 2 logy+r rw:z:O (5.18)
The second term here is equal to TPy (1)P2(1). For the first term, we write

1 -7 h !

= logT | T A ¢ 5.19

a+p & Jo ! (5.19)

and note, for example, that logy(—a+ d/dw)Pi(w/logy+1)lw=0 = (d/dw)y=**
Pyi(w + 7)|w=0- Finally, recalling that y = T?, we have

I, B, Py, Py) = TP1(1)P(1)

JTdd aup: B ———
9dw Y T Pi(w+7)Py(z+r)drdu
0

+O(T/logT). (5.20)
This formula appears in [7, p. 11]. To compute I¢(Q1, Q2, Pi, P») we observe, for example, that
-1 d
i —awp—ou
@ <log T doz) Y

Thus, we have the following result.

0 w=z=0

= Q1(wb + u). (5.21)

a=0

THEOREM 5.1. Let Py, Py, Q1 and Q)2 be polynomials, with P;(0) = P5(0) = 0. Assuming
the ratios conjecture 2.1, for any fixed 6 > 0, we have (using s = 1/2 + it)

1 (7 -1 d 1 d
TL Ql(m@)Cb(logTdﬂ)C(s“‘a)g(l_S‘i‘ﬁ)M(S’Pl)M(l—S,Pz)dt

a=p=0
= P1(1)P2(1)Q1(0)Q2(0)
d d1'!
T J J (w+ )Pz +1)Quw0 +0)Qa(0+ wdrdu| — +0(1/10gT)
= P1(1)P2(1)Q1(0)Q2(0)
+$L L( P{(r)Q1(u) + 0Py (r)Q} (w)) (Py(r)Q2(u) + 6P2(r)Q)(u)) dr du
O(1/1logT). (5.22)
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As remarked earlier, if 6 < 4/7, then this is a theorem of [7] which generalizes work of
Levinson [33]. Farmer [16] was the first to propose that this formula should hold for any fixed
value of # > 0; he calls this the ‘long mollifiers’ conjecture. Other examples of mollifying a
second moment in a unitary family are in [17, 25, 35].

5.2. A symplectic example

We consider mollifying in the family of L-functions L(s, x4) associated with real Dirichlet
characters. Let

n n) P (lesly/n)
M(xa, P) =" el ;1/5 = ) (5.23)

nxy

where P is a polynomial satisfying P(0) = P’'(0) = 0 and y = X?. Consider the second mollified
moment

M(Oé,ﬁ,Pl, P2) = Z L(1/2 + «, Xd)L(1/2 + 6? Xd)M(Xda PI)M(Xd7P2)' (524)
d<X

As in our previous example, we can express

w

pnn! y
d
M(xa, P Z log" y o J(C) L(1/2 4 w, xq)wn+! w,

(5.25)

where the p,, are the coefficients of the polynomial P. So, letting p,, 1 and p, 2 be the coefficients
of P; and P, we have

DPm, 1m'pn on! 1 yw+z
M(e, B, Pr, P) Z g™ty (2mi)2 J(q) Lm wmtiznl

Y

Z - L(1/2 + o, xa)L(1/2 + B, xa)

dwdz. 5.26
(/2 + wxa) L1/ + 2, xq) 2042 (5:20)

a<X

For the sum over d we substitute from (2.39); we find that

;*M(Oé, ﬁ, Pl, PQ)
Pm, 1m‘pn on! 1 warZ
Z m+n y (27”')2 J(Cl) J(CQ) wmt1yn+1
" <(a+w)(a+Z)(ﬁ+w)(ﬂ+Z) _ y-alzatw)(—a+2)(B+w)(5+2)
daf(o+ B)(w + 2) daf(—a+ B)(w + 2)

(a+w)(a+2)(=B+w)(=B+2)
daf(a— B)(w + z)
o tw)(cat ) Bruw)(BrY,
daf(a+ B)(w+ z) )d dz.

For simplicity from now on we write asymptotic formulas but, as in the previous section, they
could all be replaced by equality with an error term that is one log smaller than the main term.

As before, we replace y*“ % /(w + z) by ﬁ’ u“’“"z%“. Then the poles are all at w =0 and z =0
and only the numerators in the last set of brackets depend on w and z. Removing the factor
(w + z) from the denominator, we expand this bracket into an expression that is a polynomial

—_ X5

_ X«

(5.27)
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of total degree 4 in w and z with maximum degree 2 in each variable:
1 (1-X"oF 1—xe-F - X9 (1-X"F
( (oo Jurer ) )

(w?z + wz?)

1B\ a+p a—p Aaf
L= X0P W1 XN o
+(W—X W)“" )
. R o —a _ x-8
+(< +ﬂ)(ia6X ), ﬁ)(ifaﬂ X >>wz+§<1+x-a><1+X‘ﬂ><w+Z>
af(l— X0 apl-—X""P)
T R e -

Using the analogue of formulas (5.14) and (5.15), we see that we now should replace w?z>

in this expression by

Y 1
14 J Py <log “) Py (log “> du _ 13 J P! ()P (r) dr-. (5.29)
log™y J1 log y logy /) u  log”y Jo
Likewise, w?z + wz? should be replaced by
1 1
o | (PrPe) + PP ) (5.30)
log”y Jo
w? + 22 by
1 1
1 J (PI'(r)Py(r) + Py(r) P (r)) dr, (5.31)
logy Jo
wz by
1
Jo Pi(r)Ps(r) dr7 (5.32)
logy
w + z by
1
J‘ (f{(r)fﬁ(r)<+‘Fﬁ(r)fg(7)) dr, (5.33)
0
and the constant term by
1
logyJ PL(r)Py(r) dr-. (5.34)
0
In this way, we find that
1 L (1-x—F L— X0\ [y PY(r) Py (r) dr
M(e, 3, P, P~ — [ 4 x@ 0
x- Mo 1, Pe) aﬂ( a+p a—p ) log® y
(1= X)L = X~8) [y (P (r)Py(r) + P{(r)P§(r)) dr
af log” y
. (1 _x—oh P Xaﬁ) Jo (PI(r)Pa(r) + Pi(r)Py(r)) dr
(a+3) (a—p3) log y
1-X8 1= X\ [LP!(r)Pi(r)dr
+ {4+ X ——+ 1+ X7 Jo P(r) Py ()
B « logy

1

A+ XN+ X0 j (P{(r)Pa(r) + Py (r)Py(r)) dr

’ (5.35)
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This gives our final formula for M(a, 8, P1, P2).
If, instead, we consider the mollified second moment of £(1/2,x4), we can put our answer
into a more symmetric form. Recall that by the functional equation (2.26) we have

a/2 o
/2o = (2) T ({45 a2 e =602 -0 (539

Therefore, if we multiply (5.35) by X(@+A)/2 we will obtain the asymptotic formula for the
mollified second moment of &:

N<aaﬁa P17 PQ) = Z 6(1/2 + «, Xd)§<1/2 + 6’Xd>M(Xda PI)M(Xd7 P2) (537)
d<X
We have
4 N, 8, Py, P
X+ (Oé, y 41y 2)
1 /x@+8)/2 _ x—(a+B)/2  x(a=B)/2 _ x(B—a)/2 j; PI'(r)PY(r) dr
~ B < a+p B a—p > log®y
(X2 - X (XP2 - X0 Jo (PI(r)P3(r) + P{(r) Py (r)) dr
of log? y
(X<a+ﬂ>/2 _x—(+p)/2  x(a=p)/2 _ X<ﬁa>/2> jé (P{(r)P2(r) + Pi(r)Py (r)) dr
+ +
(a+ ) (=) logy
2 —B/2 a/2 —a/2 1o /
+ ((on/2+Xa/2)Xﬁ/ - X _‘_(X,B/z_'_Xfﬁ/z)X 12— X/ ) fopl(T)Pz(T)dT
154 «@ logy
1
F(X? 4 X2y (XP2 X—B/Q)J (PL(r)Po(r) + Py (r) Py(r)) dr
0
af(X(etP)/2 _ x—(at8)/2)  qp(X(a=F)/2 _ x(B-)/2) J‘l
- 1 Py(r)Py(r) dr-.
+( — — o8y [ P)PAr)ar
(5.38)

We introduce a scaling, writing a = 2a/log X and 8 = 2b/log X. Then it is not difficult,
remembering that y = X7, to see that the above can be rewritten as

4 1 (! sinhau sinh bu
N(a7ﬁ7P17PQ)N J -

1
duJ. P/ (r)Py(r)dr
0

X* 203 0o a
1 sinhasinhb (*
o S | (PR + PP ) ar

1 1
+ % J cosh au cosh bu duJ (P{'(r)Pa(r) 4+ Py(r) Py (r)) dr
0 0

2 (coshasinhb N coshbsinha) J

1
- P/ (r)P,
9 b 0 1 (1) Py(r) dr

0

1

+ 4 cosh a cosh bJ (P{(r)Py(r) + Pi(r)Ps(r)) dr
0

1 1

sinh au sinh bu duJ Py (r)Po(r) dr. (5.39)

+ 89abJ
0

0
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We now apply Q1 (%) Q-2 (%) to this expression to obtain

N(Q1,Qz,P1, P2) :== Q1 (%) Q2 <%> N (lo2gaX’ %jﬂ,&) (5.40)

We may assume that Q1 and @, are even functions, since for an odd number r we have
€ (1/2,xq4) = 0. To perform this calculation, we observe, for example, that

d d ! ginh qu sinh bu
Q1 (@) Q2 <%> Jo - ) du
d d
= Ql (@) Qz <%>

— EJ Ju(Ql(mHQl(—tl))dtlJ (Qa(ta) + Qa(—t2)) dta du

400 0

a=b=0

a=b=0

1 pu u
J J' cosh aty dty J cosh bty dts du
o Jo 0

a=b=0

1 o~ o~
= J Q1(u)Q2(u) du, (5.41)
0
where we have used the notation
Q(u) =J Q(t) dt. (5.42)

By similar, but easier, calculations we find that

4
X+

1 1
N(@ Qe PuuPa) ~ s | @@ an | PPy ar

. . 1
LG j (PI(r)PY(r) + P{(r)P{(r)) dr

L2 J Q1 (1) Qs (1) du L (P(r)Po(r) + Py(r)PY(r)) dr

+5 (@O + QW) | PPy dr

1

+4Q1 (1)Q2(1) J (P{(r)Py(r) + Py(r)P4(r)) dr

1 1
+ 89J Q7 (u)Q5(u) duJ Py(r)Py(r) dr. (5.43)
0 0
The right-hand side here can be written in a more compact form as

% Jl Jl (ép{’(r)@(u) — 49P1(T)Q’1(u)> (%Pﬁ'(r)@;(u) - 49132(7«)@'2@)) du dr

0JO

+ <$P{(1)@V1(1) + 2P1(1)Q1(1)) (%P;(n@(n + 2P2(1)Q2(1)> . (5.44)
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To verify this assertion we need to use identities which follow from integration-by-parts, such as

E (PY(r)Pa(r) + Py(r)Py(r)) dr = Pi(1)Pa(1), (5.45)

E (Py(r)Py(r) + P{(r) Py (r)) dr = P{(1)P5(1), (5.46)

E PY(r)Py(r) dr = PJ(1)Py(1) — E Pl(r)Py(r) dr, (5.47)
and

E Q1 (u) Q5 (w) du = Q1(1)Qa(1) — E Q1(u)Q2(u) du. (5.48)

In the last equation note that we have used Q(0) = 0.

THEOREM 5.2. Assuming Conjecture 2.8, we have for even polynomials ()1 and )2, and
polynomials P, and P, satisfying P;(0) = Pj(0) = P»(0) = P5(0) =0, and y = X? with any
0 >0,

2 d 2 d
& (oxa) @ (ixas) 3 €01/2+ a xaE(/2+ 6. xa)M (e PM v )

~x (g [ (FR0)@ 0 - 1820)G W) (P 0(0) - 1P (w) ) dudr

0JO

a=(=0

+1 (OGO +2n0Q 0 ) (RO + 2P0
—i—O(l/logX)). (5.49)

Examples of second moment mollifying in a symplectic family occur in [40] and [15].

5.3. An orthogonal example
Here we compute
Ma(a,B; Py, Pa) i= Y La(1/2+ a, xa)La(1/2 + B, xa)Ma(Xa, Pr) Ma(xa, P2), (5.50)
d<x

where

m m) P ( lesly/m)
MA(dep) . Z NA( )Xd(m>1/2( logy ) (551)

my

As in equation (5.26), we have

Pmam!ppon! 1 J J' yvt
Ma(a, B, Py, Py) =y Prtiibn2lt T
alo, B, Pr, Py) ; log™ "y (202 J (1) J(eg) wHLZAH

3 La(1/2+ o, xa)La(1/2 + B, xa)

dwdz. (5.52
La(1/2+w, xa)La(1/2+ 2 xa) (5:52)

d<X
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Using (2.65) leads to

(a ﬁvplaPQ

Z Dm, 1m'pn an! 1 J J yts
X+ gy (2m0)2 J (o)) Jen) w2 wz (w + 2)

((04 Tw)(a+2)(B+w)(B+2)
X
(a+5)
—atw)(—a+z)(B+w)(B+2)
(—a+p)
(a+w)(a+2)(=f+w)(=B+2)
(a—p)
= L T ) PV
(o + ) '
We expand the brackets into powers of w and z yielding
e -
+ (1 + X2 (1 4+ X ) (w?z 4+ w2?)
af(l — X20728) qp(X 2 — X ~20) 2 2
" < oa+f * a—p0 )(w +2)

+ ((a +3)(1 = X"20720) _ (o — B) (X 2™ — X_25)>wz

4 X72a (

+X%

(5.53)

+af(l = X1 - X)) (w+ 2)
<a252(1 _ X72a725) a252(X72a _ X26)>
_l’_ _ .
a+p a—pf

As we did in the other cases, we replace y***/(w + z) by [Y u**#4% In a similar manner to
(5.29), we evaluate the sums over m and n using

melm'pngn' 1 J J J’y ut  du
m+n 2m0)% Jiep) J(en) 1 wm Lzt lwz u

Yy
v — /1 1 d
P, < Og“) ( Og“> ) (5.55)
1 logy logy ) u
Z Pm, 1m'pn an! J J J 't du —dwdz
m+n 27TZ 2 (en) dea) wm+1zn+1 u
Y 1 1 d
:J P, ( Og“) P, ( Og“> a (5.56)
1 logy logy ) u

and, in general,

g _— wdz
"”‘" (27ri)2 Jeeny Jieny 11 wm+1z"+1wz u

Y e (1 /(1 d
= (logy)>~*~*| p*Y o8t P oet) &
1 logy logy ) u

rl
= (logy)*~ 2| Pl V)PV (1) at, (5.57)

JO
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where P() means the ath derivative of P; if a < 0 then it means the (—a)th integral of P, so
that, for example, P(—1) = P. Inputting this into our expression for M leads to

(o, B, P1, Py)
1 1_X—2a—25 X—2a_X—2ﬁ 1
~ - P{(t)Py(t) dt
logy( a+p a—p )Jo 1(0F0)

+ (14 X721+ X729 Jl (PL(t)Py(t) + P{(t)Py(t)) dt
0

o _ Yy —2a-28 a —2a _

Hogy( A a)i,@’ )Jr ﬁ(Xa/B

; 1ogy(<a L B)(1 - X2 (a - p)(X 2 - X%) J Py(t)Pa(t) dt

0

X_w)) Ll (P{(t)ﬁ;(t) + E(t)Pg(t)) dt

+logty a1 = X721 = X2) | (BP0 + POPO) de

2132 _ —2a—-2f3 2132 —2a _ —23 T
+1log’y (a - (1a fg )_of (Xa 3 X )>J Py (t)Py(t) dt. (5.58)
- 0

We want to compare mollifying in an orthogonal family with that in a symplectic family. To
this end, we consider, as we did for the symplectic family, mollifying the xi-functions. In this
situation it just means multiplying the above result by X®*#. This gives

> €a1/2+ anxa)éa(1/2+ B, xa) Ma(xa, Pr)Ma(xa P2)
d<Xx

1 xotB _ x—a—B  xo—f _ xB-«
+
logy ( a+p a—f

X*

) J: Pl(t)Py(t) dt

F (XS 4 X0 (XP 4+ X P Jl (PL(8)PL(E) + PL()Pa(t)) dt
0

aﬁ@ya+ﬁ__x;a—ﬁ)__aﬁﬂga—ﬁ__xﬁ—a>>
a+p a—pf3

1
+ logy((a +B)(X = X7 4 (a = p) (X~ Xﬁ“)) L Pi(t)Py(t) dt

Jl (P{(t)ﬁ;(t) + E(t)Pg(t)) dt

+logy(
0

+logly af(X — X)X~ X | (Bi)Ra(e) + POPA1)

04252(Xa+5 _Xfafﬁ) Oézﬂ?(Xa*ﬁ _Xﬂfa) o
a+tp * P >L Py (t) Py(t) .

+log®y ( (5.59)

If we now scale, letting o = a/log X and 3 = b/log X, and continuing our y = X% convention,
then we can rewrite the above as

1 b
( I gX,Xd> éa (2 + logX’Xd) MAa(xd, P1)Ma(xa, Pz)

" iex
2 (sinh(a+0b)  sinh(a —b)\ (', p
NE( sath , dites L Pl PY(t) dt
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1
+ 4 cosh a cosh bJ (Py(t)Py(t) + Py (t)Pa(t)) dt
0
9 2absinh(a +b)  2absinh(a —b)
a+b a—1>b

1 —_— —_—
JO (Pl’(t)Pg(t) + Pl(t)Pz(t)) dt

+ H(Z(a + b)sinh(a + b) + 2(a — b) sinh(a — b)) Jl Py (t)Pa(t) dt
0

+ 6% 4absinh asinh b J (ﬁ(t)Pg t)+ P (t)ﬁ;(t)) dt

0
e <2a2b2 sinh(a +b) = 2a%b?sinh(a — b)) Jl

P b Pi(t)Py(t) dt. (5.60)

0

We now apply Ql(dd—a)Qg(%)‘a:b:O to both sides of this expression; we assume that (); and
Q2 are even. We use the notation Ma(Q1,Q2, P1, P3) as in the symplectic example. Thus,

1

1 M P, P, 4 d Pl(t)Py(t)d
FMQuQu PP ~ 5 | Qe dn | PRy

1

+4Q:1(1)Q2(1) JO (PL(t)Py(t) + Pi(t) Po(t)) dt

+40 | @iz du| (PO +POPO)
1

L 46(Qu(1)Q4(1) +Q3<1>Q2<1>>j Py(t)Pa(t) dt

0

a0 Qaa)cz;(l)J

(IDI(t)P2 () + Pi(t)Ps (t)) dt
0

1 1
4 467 J 7 () QY (u) duJ PP (1) dt. (5.61)
0 0
This expression can be simplified to obtain the following theorem.

THEOREM 5.3. Assuming Conjecture 2.11, with even polynomials Q1, Q2, and polynomials
Py, Py, satisfying P;(0) = P»(0) = 0, and using y = X%, we have for arbitrary 0,

1 1 d 1 d
X* @ (logX @) @ (logX %)

X Y Ea(1/2+ a, xa)€a(1/2 + B, xa)Ma(Xa, Pr) Ma(xa: P2)
d<x

- H j (Pr0@i 0 - R0t ) (B0 - #R0 W ) dru

0JO

a=£=0

N (P1<1>Q1<1> n 0E<1>Q3<1>) (P2<1>Q2<1> n eﬁz(l)@g(l))

" (Qa<0>c22<o> | Pom© a0 | Mono dt)

0
+0(1/ log X). (5.62)
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Examples of second moment mollifying in an orthogonal family occur in [26] and [31]; in
[32] a fourth moment mollification is performed.

6. Mollifying the kth moment of ((s)

Chris Hughes has unpublished notes giving an asymptotic formula for

L 1C(1/2 + i) A(L/2 + it) [ dt (6.1)
where
A(s) = i—” (6.2)

is an arbitrary Dirichlet polynomial and where y = T? with # < 5/27. For applications to zeros
of {(s) it would be extremely useful to specialize this formula to the case that A(s) = M(s)
is a mollifying polynomial, but this would still involve a lot of work. Via ratios we produce a
conjectural formula which can serve as a check against the more complicated rigorous proof via
Hughes’ formula. There are (at least) two obvious choices for a mollifying polynomial M(s).
One is M(s) = M (s, P)? where

p(n)P (15m )

M = .
1, P)=3 " (6:3)

nLy
with y = T?. The other is M(s) = My(s, P) with

log(y/n)
pz(n) P (W)
Ms(s, P) = ; e (6.4)
nxy

where y = T? and 5 is the coefficient in the generating function for 1/¢(s)?.

Here we will compute what the ratios conjecture tells us about the asymptotics for the kth
mollified moments in the case where we mollify with My (s, P), where P(z) =), pmaz™ is a
polynomial satisfying

P(0) =P'(0) =...= P*~1(0) = 0. (6.5)

These conditions on P(x) ensure that we have a smooth cut-off at n =y. It is only in the
course of the calculation that we see why we need k% — 1 derivatives to be zero.
We note that

w

pi(n) P ( log(y/n)

log y >_Z Pmm! 1 y
e

log y)™ 2i J(c) ¢F(s + wywmt!

My(s,P) = = dw,  (6.6)

n<y m
where j1, is the coefficient in the generating function for 1/¢(s)*, y = T% and ¢ > 0.
Thus, using s = 1/2 + it, we have
T

My (o, 8) :== %J C(s+ar)...C(s+ar)l(l—s—0F)...

0
X C(]. — S — ﬂk)Mk(S,Q)Mk(]. — S,P) dt

_ Z gmm!pyn! 1 J J yw—i-z
= log™ My (2m0)? ey Jiep) Wt

XlJTC(s+a1)...<(s+ak)<(1—s—ﬂl)...g(l—s_gk)
T Jo C(s+w)k¢(1 — s+ 2)*

dtdwdz.  (6.7)
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Using the contour integral form of the ratios conjectures (see, for example [9, Lemma 2.1]

r [10, Lemma 2.5.1]; the sum of residues of this integral equals the ( ) terms in the ratio
conjectures as we have previously been writing them, in for example (2. 10)), we see that the
integral over ¢ is asymptotic to

(=XF_(a;=B7))/2 (_1\2k(2k—1)/2 9
T ( ( 1) + %G(Ul,...,ng)A(’Ul,...,’ng) dvl,,,dUQk (68)

+ )" (2mi)2* k1! T2, T (v — ) (05 — B5)
where
15 (v +2)% TI5 (w —vin)* s )
G(U1, ooy Uk, Vg 1y - -+ 5 V2p) = —2— I= TX5=1 (05 =v546))/2, (6.9)
D(V14ky -+, V2k; V1, -+, V)
Here D(Vga1,-- -,V V1,. .., V) = II?:1II£:1(”j — Vitk)-
Noting the identity
wz y A-1
= log = — 6.10
(w+2)4 (A—l)!,[ou &y u’ (6.10)
with A = k2, we have
gmm!ppn! 1 (=51 (i =57))/2 (- )2k(2k 1)/2
Z log™*"y (2mi)? J(CI)J(CQ) (k2 —1)! (2mi)2k kK
.. A ... 2
J' fi; jg (V1. v2K) AV, -, vag) dvy ... dvys
12, Ty (vi — ) (v = B))
K-1dy dwdz
w—+z Y
So, focusing on just the integrals over u, w and z, we have
Y k k w+z(1o E2—1
g(y/u)™ " du
v; + 2) — Vit — dwdz
[ P S CCR 1 Ty
1
(1) J(e2) 0
k k k k
v+ 2 - (w —v;
% H],1( J ) H],1( J—i—k) dwdz, (6.12)

merl Zn+1

where the substitution was log u/logy = 1 and we note that the part of the integral with u < 1
will not contribute since for these values of © we can move the path of integration in w and z
as far to the right as we like. Now let y = 7%, o; = a;/log T = a;0/logy, and similarly for b;
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and (3;, as well as making the replacements w — w/logy, z — z/logy and v; — v;/logy. So
we end up with
1 (= X5oi(ai=b5))/2 (— )2k(2k 1)/2
mi)? (k2 —1)! (2mi) 2k K k!

My (a/logT,b/log T) ~ > gmm!p,n! G

m,n

1
xﬁ')jgj J J e”(q“”*'z)(l—n)kz_1 dn
(c1) J(e2) JO

[Ty (v +2)% TIhy(w—vjgp)®

dwd
D(ks1y-- e, U2k 01, .-, U )W TLzHL waz
(=1 (vi—v;4+1))/20 A 2
N @1 V) g g (6.13)
ITiz: j=1(”i —fa;)(v; — 0b;))
Now we note that
k k
[T +2" J]w—vje)* (6.14)
j=1 j=1
k k
— i o d eul(v1+z)+...+uk(vk+z)+uk+1(wka+1)+‘..+u2k(w7v2k)
dullf dué)k; ur=...=u2, =0’
and that
1 eﬂ.’LU m
ot w40 = o (6.15)
and use these to write
My (a/logT,b/logT)
o= Zioi(a;=b;))/2 (—1)2k@k=1)/2 gk d* Jl(l )k2_1
&2 1) Qi) R duk A, o
X QM+ upg1 + ... Fuor)P(n+uy + ...+ ug) % . .jge(2§=1(“f_”f+’“))/29
eu1U1+~--+uk'Uk_uk+lvk+1_~--_u2kv2kA(U17 o U2k)2
X
D(Wir1s -y vars vrs - k) [12, TT5— (vi — ag) (v; — 0by)
x dvy .. .dvsgy dn e —uge=0 ° (6.16)
Now we concentrate on the contour integral over the v; variables:
Iv(ul, e ,UQk)
— 1 +-..+e(%‘F“l)vl+(%+U2)U2+u'+(21_9+uk)vk*(%+uk+l)vk+l*~~~*(%+U2k)1}2k
(2mi)2F KK
A . A . A ..
% (U17 ,U2k) (Ul, , Uk ) A (Vg 1, 7'U2k) dvy . . . dvop.. (6.17)

D(Hal, .. .,Gak;vl, N ,ng)D(ebl, .. .,Gbk;vl, e ,vgk)
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Expanding the determinants A(zy,...,2x) = det[z]m_l]lgj,mgk, we obtain
1 1 1 1 1
; 1 % ﬂge(29+U1)U1+(20+u2)vz+~-<+(29+uk)vk—(20+uk+1)vk+1—.--—(29+u2k)v2k
v (27T’L)2kk']€' D(&al, ey Hak; (R ,’ng)D(abl, e ,Obk;vl, . ,UQk)

(St ) (Som@nf o)
Q

(Z sgn(R Uk+1 vfk’“ 1) dvy . .. dvgg. (6.18)

Here @ and R are permutations of {0,1,...,k — 1} and S is a permutation of {0,1,...,2k — 1}.

Since the integrand is symmetric amongst vy, ..., v, and also amongst vg41, ..., vk, in each
term of the sum over () we permute the variables vy, . .., vy so that v; appears with the exponent
j—1,for j=1,...,k. In the sum over S the effect is to redefine the permutations, and the
additional sign involved with this exactly cancels sgn(Q). We do the same with the sum over
R, and as a result we are left with k!? copies of the sum over the permutation S:

1 1 1 1 1
1 % fﬁ e(%+u1)v1+(%+u2)vz+~~~+(@+uk)Uk*(%+uk+1)vk+1*m*(%+U2k)v2k

- (2mi)2k D(bay,...,0ar;v1,...,02)D(0by, ..., 00 v1,. .., v2%)

Si+1 Sk—1+(k=1) Sy  Sk+1+1 Sok—1+(k—1)
X g sgn(S)vyovs v VR Uys Vo dvy ...dvg,.  (6.19)

This can then be written as the following determinant, where we have written out the jth
row, with 7 =1,...,2k:

1 .
(20 +u)vy, j—1 1 (ggtu2)ve,j
I, = det f}; U dvy, _f}; R % dvg, . . .,
H 1)1 — Hai)(vl — gbl) 27” Hizl(vg — Gai)(vg — gbl)

- e(2g tun)vk, g+k—2
1 29 Uy,
e Ukv

2mi I TIY_, (o — Oa;) vy, — 0b;)

1 .
1 e*(%+uk+1)vk+1vili
Py dvg41,

2mi ) H§:1(Uk+1 —fa;)(vp1 — 0by)

1 .
—(5g+ukt2)Vr12,,]J
1 e 20 Vkio

200 J TTE_ (vhso — 0ai) (vs0 — 6D;)

1 .
[ - Fuzk)v +k—2
1 . ke (3g +u2k) %ng don L. o0
2m | [Li_; (var — Oa;)(var, — 6b;)

d’Uk;+2, SERE)

Setting the a and b variables equal to zero and performing the integration, we have
(for integer n)

1 bu. n 0 forn >0,
— ¢’ dv=q ,-n1 (6.21)
274 (e for n <0,
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giving us
(Fru)®™ ' ruw)t —(Grw)? Tt (=" (55 +uan)”
2k—1)! Kl 2k—1)! kI
(ggtu)®* 2 (Ftu)*! (mgtues )™ 2 (DTG tua)* !
1, (@) = det 2k—2)] (E—1)I (2k—2)] E—1)1
(1) = de
(gg+u1)° o Gtuth (g +ur+1)’ T G M € 2
0! (1—Fk)! 0! (1—Fk)!

(6.22)

Note that many of the lower matrix entries are zero as we apply the convention that 1/n! =10
for integer n < 0.
So, the mollified kth moment with the o and [ variables set to zero now has the form

(71)2k(2k71)/2 dk dk 1
(k2 —1)! d—u’f'”du’gkj

XQ(n+Uk+1+...+u2k)P(77+u1+...+Uk;)d77|u

M;,(0,0) ~ (1 —n)* 11, (@)

(6.23)

1=...=uz;=0"

The differentiation with respect to the w variables is not difficult, but we will now restrict
ourselves to the case k = 2 where we can write the result fairly concisely. In this case we have

1 d2 d2 1
0,0) ~ = —5...—5 | (1-n)* P d
M0.0) ~ 5 4 | (1= QUn -+ + ) POy 1 -+ )
(55+u1)? (55 +u2)® —(55+us)? (o +ua)?
31! 21 31 21
(zg+w)? (1 (35 +u3)? 1
cdet | o (mrw) e (g tu) . (6.24)
(55 +u1) 1 — (55 + us) 1
1 0 1 0 o
ul_...—u4—0

Performing the differentiation leads to

Ma(0,0) ~ J U

0

(Q<n>P<4> (1) + QW () P() + QP ()P’ () + Q' () PO ()

F6Q ()P () + QWP (n) +Q ()P ()

£ @I P () + Q") PO ()
2

+ 55 QWP (n) + Q" ()P (m)) + 94_2@(30 (PP ()
1

2 (@WEPO ) + QP )P m) + e

363 QW () PW (77)) dn.  (6.25)

Integration by parts gives the following.
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THEOREM 6.1. Assuming the ratios conjecture as indicated in (6.8), if Q and P are
polynomials which vanish at 0 and whose first three derivatives vanish at 0, then for any
6 > 0 we have

T
% J |C(1/2 4 it)|[* My (1/2 + it, Q) My (1/2 — it, P) dt
0

1t (1—n)?

= Puam + 5 [ S5 (2w m + QP )

+8(QW ()P (1) + Q" () PP (n)) + %(Q“)(n)P"( ) +Q" (P (1))

+5QO@PO ) + 5o (@D ) PO () + QO () P (1)
1

+ 1@ P ) dy + 001/ g ). (6.26)

REMARK 6.2. While we do not know which are the minimizing polynomials, with the choice
that P(z) = Q(z) = x%, the right side of (6.26) is equal to
208 48 32 2

1+ =+ — + =5

350 T 502 505 T gi- (6.27)

By a similar calculation one can show that with polynomials P; and @; satisfying

P;(0) = P/(0) = Q;(0) = Q}(0) = 0, we have

T
% J. C(1/2 + it)[*My (s, Py) My (s, Pa) My (1 — 5,Q1) My (1 — 5,Q2) dt
0

S d__d d "2 N3, M
16 dul'”duéldUl"'dUZlUJJ P1(2 + 5 +U3+U4>P2<2 + 5 +U3+U4)

Ql( +?+u1+u2)Q2< —I-E—I—Ul—&—Ug) dny ...dny

X IU(Ul + U17u2 + UQ,U/S + U3,’LL4 + U4)‘ulz...:’U4:U1:---:U4:O
+0(1/logT), (6.28)

where R is the subset of [~1,1]* for which 71 +72 >0, n3+n4 >0, 0y +n3 >0 and
n2 +1n4 2 0.

REMARK 6.3. While we do not know which are the minimizing polynomials, with the choice
that P(x) = Py(x) = Q1(x) = Q2(x) = 22, the right side of (6.28) is equal to

68 10 64 2
gy 8 10,6 2 P
o1 T30z T 1508 T oan (6.29)

6.1. A third power mollification

In the work of Hughes alluded to earlier it is likely that, in applications to zeros of {(s) on
the critical line, the moment

JT IC(1/2 +it)|?| M1 (1/2 + it, Pr) + C(1/2 + it) Ma(1/2 + it, Py)|* dt (6.30)
0
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will need to be evaluated. Here, as at (6.3) and (6.4), My is a mollifier with arithmetic
coefficients p1(m) smoothed by P; and

pa(m) Py ({22

mS

MQ(S,PQ) = Z

mLy2

, (6.31)

where the ys are the coefficients of 1/((s)?. In order to evaluate this integral we can use the
results (5.20) and Theorem 6.1; in addition to these we need to evaluate

T
I3(a, B,7; P, Py) := L C(s+a)C(s+ B)C(1 —s+7)Mi(1—s, P1)Ma(s, P2)dt. (6.32)

Proceeding as usual, we have

L= log™ yilog" ya (2mi)? J () J(eyy w2

y JT C(s+a)¢(s + B)C(1 — s +1)
o Cls+w)((l—s+2)

dt dw dz. (6.33)

By the ratios conjecture,

P1,mm!p2 nn! 1 J J yi'ys
I ~ T 7 )
’ T;L log™ y1log" y2 (20)? J(¢,) J(ey) w12 (w + 2)?

y <<a +2)B )G +w)? s (2B ) (cat w)?
(@+7)(B+7) (@+7)(6 - a)

(a+2)(— + 2) (=6 + w)?
(a=B)(B+7)

Taking the limit (MATHEMATICA can be helpful here) as a, 3,7 — 0, we have

— TP ) dw dz. (6.34)

P1,mm!p2 nn! 1 J J yiys
Iy~ T m 5D .
° ;l log™ y1log" 2 (2m1)2 J(¢)) J(ey) 2" T (w + 2)?
x (w4 2)* + w*zL 4 2wz*L + w?*2*L?/2) dw dz. (6.35)

The contribution of the (w + 2)? term at the beginning of the brackets above is Py(1)Px(1),
essentially using (5.57). For the rest of the terms, we write, using (6.10),

Z, W w2z z Y2
Y1y Yy " (y1/y2) . wine Yo du
(w1—|—2z)2 - 2(w +1Z)22 = (y1/y2) J u"t* log = —. (6.36)

0 u u
The integral over w is 0 unless u > 1; the integral over z is 0 unless uy; /y2 > 1; this inequality
is weaker than the requirement that u > 1, since, in general y; > y». In this way, we see that

Y2 L 1 1
I ~T| PL(1)Py(1) +J P ( og(ylu/yz)) Py ( Ogu)
1\ logyi log™ y2 log y1 log yo
4 . 2L Pll/ (log(ylu/yQ)) Pz, < 10gu>
log” y1 logy2 logy log 12

L? 1 1
P ( Og(yl“/y2)> Py (ﬂ) log 2 du |. (6.37)
2log” y1 log” ys log i1 log y2 U
With a change of variables u = vy, and with y; = 7%, and y, = T, we see that the following
holds.
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THEOREM 6.4. Let I3 be as defined in (6.32). Assuming the ratios conjecture as indicated
n (6.8), if P, and P are polynomials which vanish at 0 and whose first derivatives vanish at
0, then for any 8 > 0 we have

L7
15(0,0,0; Py, P>) = T(Pl(l)PQ(l) + Jo <91P1/(1 + (1 —n)82/61) Py (n)

29%1)”(1 + (1 —1n)82/61) P5(n)

292 P{’(l +(1- )02/01)P2”(77)) (1—mn)dn+ O(l/logT)). (6.38)

7. Discrete moments of the Riemann zeta function and its derivatives

So far in this paper we have considered integer moments. Another kind of average which
gives useful information about the distribution of zeros is a discrete moment summing the zeta
function, or its derivatives, at or near the zeros.

In the 1980s Gonek [20], assuming the Riemann Hypothesis, proved, amongst much more
general results, that

T
> KPP =5 log* T +O0(Tlog T), (7.1)
1< <T T

where p = 1/2 + i is a zero of the Riemann zeta function.
Hughes, Keating and O’Connell used the analogy with random matrix theory to propose the
following conjecture.

CONJECTURE 7.1 (Hughes, Keating and O’Connell [23]). For k£ > —3/2 and bounded,

T G?(k+2)
et ; 2k, - T AV T A loe T k(k+2)+1 5
0<’YZ<T|C 2+l 2m G(2k+3)a(k)(og ) (7.2)
as T — 00, With
1\ & (Tm+k)\
a(k) = H (1 - p) Z ( Tk > p M. (7.3)
P =0

Here G(k) is the Barnes G-function.

While the above conjecture produces the leading order terms, it was previously not known
how to obtain lower order terms for the moments of |(/(p)|. In the first two subsections we
consider the second and fourth moments of |¢’(p)|, and in the last subsection the second moment
of |{(p+ a)|. Using the ratios conjecture we show how to obtain all of the lower order terms
for these averages.

Note that Hughes [22] has conjectured the following, using random matrix theory.

CONJECTURE 7.2. One has

T\I* T 2
>l (p + 2mialog ™! 2—) ~ 2—G2(k +1)/G(2k + 1)a(k)Fi(2ma)(log T)F 1, (7.4)
™ Y
0<y, <T
where

Fy(22) = g(xJkH 12(2)? + 2 i1 2(2)% = 2k Ti i 2 () T (). (7.5)

Here J}, is the usual Bessel function.
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7.1. Second moment of the derivative: 37, 1 [C'(p)|?

In this section we will show how to use the ratios conjecture to reproduce the result of Gonek
(7.1) and to derive all the lower order terms.
The first step is to write the sum over zeros as a contour integral

> IO =5 | CC) e - 2)ds, (7.6)

= C 2w o ((2)

where the contour C has corners ¢, ¢ + 47,1 — ¢+ iT and 1 — ¢, with 1/2 < ¢ < 1. The integrals
along the horizontal sides of this rectangle can be neglected, and so we look first at

1 c+iT CI(Z) , ,
| G-z
1JT ¢ (c+it)
~ 21 Jy C(cH+it)
ddle’TC(c+z‘t+6)
o Clc+it)

T dBdydd 2
Now we follow the recipe for computing the ratio of zeta functions in the integrand. As in
Section 1, we replace the zeta functions in the numerator by

I, =
le+it)'(1—c—it)dt

Cle+it+7)C(1—c—it+9) dt‘ . (7.7)
B=y=5=0

1 1
SOITED DEESSVO N Pl (79)
n<y/t/2m n<y/t/27
and the zeta functions in the denominator by
1 & opln)
— = . 7.9
(o~ 2w (79)

Since each of the zeta functions in the numerator is replaced by two sums, when multiplied out
we have a total of eight terms in the integral. Considering the term involving the first term
from each approximate functional equation, the resulting sum is

Z u(h) _ Z u(h)
ml/2+8pl/2+yp1/2p1/248 mitB+opl+y+dp1+d

hmn=~¢ h,m,n

1 0)¢(1 1)
¢(1+49)
Of the eight terms in the integrand, only those with the same number of x factors resulting
from ((z) as from ((1 — z) will survive. This means that the recipe implies two further terms,

and using (2.9), we have

ddd1 JT <c<1+5+6)<(1+v+6>+(i>“c<1—6—ﬁ)<(1+v—5>

" T dBdydé2r ), C(1+9) o C(1-p)
E\ T B =5 )
+ (= (1+O(t—<1/2>+€))dt’ . (7.11)
<2W) ¢(1—7) B=~y=6=0
We now consider the contribution from the other side of the contour of integration:
L e
I:—,J () (1 - 2)dz. 7.12
£ 2mi 1—ctir €(2) =) ) ( )
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Replacing z with 1 — z, we have

_ -1 (¢ Cl(l B Z) / /
Differentiating the functional equation gives us
¢ X ¢
1—2z =—(1—-2)—=>(2), 7.14
c ~(1-2)= N (1-2) R (2) (7.14)

and so

s N A I _, 1 C’(Z)/Z/ ) de
e R e e SOL | (=2 de (115)

27 (1-2) 2mi Je—ir ((2)

Here the first integral can be shifted over to the half-line, while the second one is just the
complex conjugate of I,., already calculated in (7.11). In addition, we can use

(s) = (%) I e (1 10 (%)) (7.16)

to approximate x'/x(1 — z) with —logt/27. Thus we have

T
S IR =20+ 5 | lomg (/2 iR+ O

y<T

or. +i irb L2 it +a)C(1/2 — it + B)(1 + Ot Y)) dt
do 2 0 g271'

A
g
d d 1 (Tt t\ "

X (1+0@t~Y*<)) dt

a=(=0

: (7.17)
a=(=0

where the last line is a further application of the ratios conjecture (or in this case the simpler
moment conjecture [10]) similar to that in Section 1.

Using (7.11) for I,., it is now necessary to carry out the differentiation and take the limits as
a, 3, v and ¢ tend to zero. This results in a polynomial in log(¢/27). If we write

’V2 ’733

1
C(1+s)=—+7 Ms+ o5 FTRARREE (7.18)
then the final result is as follows.
THEOREM 7.3. Assuming the ratio conjecture as indicated in (7.11), we have
T 2
1 gl t 7 om t
1 o\12 3 2
= log log® — — — — | log” —
2 1<) JO (24 +3 27r+<27r 7r>°g or
y<T
_ ’7_3 57’71
T ™
16 7 4 5
+7? L 7*m el ’Y1 e B 373) (14 O(t~1/2+¢)) dt
T
= _——log* T+ O(Tlog” T). (7.19)

24m
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REMARK 7.4. The leading order term of the above agrees with Gonek’s result (7.1). It
is possible that Gonek’s methods could prove the theorem conditional only on the Riemann
Hypothesis. Also, Pokharel and Rubinstein have checked this numerically.

REMARK 7.5. Since the original version of this paper appeared on the archive, Milinovich
has used Gonek’s method to verify all the main terms above. He also remarks that this result
can probably be obtained from a theorem of Fujii.

7.2. Fourth moment of the derivative: 3 __r 1<’ (p)]*

Higher moments are more difficult because of complicated arithmetic contributions. Unlike
the case of the fourth moment of the zeta function itself,

1 T
TJ ¢(3 +it)|* dt
0
1 (71 t 8
= | —log*— + — (y7%2 —3¢'(2)) log® —
TL 5,218 o5 +7T4(77T ¢'(2)) log” 5
t
( 487¢ (2)m? — 12¢"(2)7? + T2t + 144¢'(2)? — 2v17*) log® o
s
( — 8472 (2)m* + 24y.¢'(2)7* — 1728¢7(2)3 + 576~¢ (2)* 72

t
+288¢7(2)¢" (2)7? — 8¢ (2)7t — 107,478 — yom® — 487("(2)#4) log o

4
+ — <_12CHH(2)7T6 4 36’72CI(2)7T6 + 9')/47r8 —+ 21’7%7('8 + 432<N(2)27T4
i

+ 3456~7¢' (2)¢" (2)7* + 3024+2¢(2)%7* — 367217 — 25242¢"(2)7C
+ 3yyam® + 727,¢"(2)78 + 360y, v¢ (2)7® — 216+3¢ (2)7°
— 86471¢"(2)%7* + 5y378 + 576¢"(2)¢" (2)7* — 20736~¢ (2)3 72

—15552¢"(2)¢’(2)*m% — 96~¢" (2)7® + 62208(’(2)4) dt + o(1)

= 122(2) log* T+ O(log® T') (7.21)
(from the moment conjecture formula of [10] and also implied by [21]), the fourth moment
of the modulus of the derivative involves arithmetic factors that are more complicated than
derivatives of the zeta function at 2. In the following we calculate the first four leading order
terms, demonstrating where the first of these new arithmetic factors appears.

As for the second moment, the first step is to write the sum over zeros as a contour integral

Z |< 27m J C'(Z) C/(Z)Cl(l . z)c/(z)cl(l _ Z) dz, (7.22)

A<T c ¢(z)
with the contour C running from ¢ to ¢ + 47", 1 — ¢+ i1 and 1 — ¢. The horizontal integrals do

not contribute significantly, and so we define

d dddd1l J’TC(c+it+a)
" dadB dy db de 2 C(c+it)

x C(c+it + B)C(c+it +7)C(1 —c— it +6)C(1 — ¢ — it + €) dt . (7.23)
a=F=y=0=e=0
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The sum resulting from taking the first half of each approximate functional equation is

p(h)
. 7.24
Z Vate, /248 12y 10, 17240, 1724 (7.24)

mimamsh=nins 11’1

Here we note that if we let v = 0 then we obtain the sum

1 h
H Z P72+ mi+(1/24B) ma+(1/2)c+ (1/2+8)m +(1/2+e)na Z (™). (7.25)

p mit+matc=ni+nz mg+h=c

The final sum is zero unless ¢ = 0, and thus the whole expression reduces to the corresponding
sum that results from applying the ratios (or moments) conjecture to the fourth moment of
zeta,

HT C(1/2 4+ it + a)C(1)2 + it + B)C(L/2 — it + 8)C(1/2 — it + ) dt

which itself produces the arithmetic contribution 1/{(2 + a+ 8+ § + €) observed as the factor
1/¢(2) in the leading order term of (7.21) (see for example [10]).

We keep this in mind as we continue with the sum in (7.24). This sum can be written as an
Euler product, and we can pull out the divergent terms in the form of zeta functions:

T(Oé, ﬁa e 67 6)

A+ a+0)(I+a+eC(1+8+0)C1+8+e)(1+v+0)C(1+v+e¢)
N C(L+6)C(1+e)

1+a+6)(1 _'p1¥L+e)(1'_ p1+ﬁ+6)(1‘_ p1;2+e)(1<— p1+%+5)(1<— ;Tﬁ%¢€)
(1 (1~ )

XH

X 3 p(p") . (7.26)

(1/24a)m1+(1/248)ma+(1/24v)ms+h/24+(1/2+6)n1+(1/24€)n2

mi1+ma+mz+h=ni+n2

With the remaining terms from the approximate functional equations we have

dddddil (T N
Ip= o — T(— _
N ror | (a,577,6,e)+(2ﬂ) (~8,8,7, ~a,€)

n —a—e¢ " —B—4
) T(*E, 5)7’6,760 + <> T(Oé, 75/77 7ﬁa 6)

21

T(a7 —€7, 6) _ﬁ)

(
(
+ (;)75 T(a, 8, =6, —7,€) + <2i> o T(a, 3, —€6,—7)
(&) -
(

™
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The most concise way to write the ten terms in the integrand above is as a contour integral
(as described in [10]). So, we have

T
Ip= 2@ ddd qogem)-a—p-r-i-0 L J __ 1
da df dy do de 21 Jo 3!21(2mi)5
% % . +6((10gt/(27r))/2)(z1+zz+z3—Z4—z5)

T(z17 22,23, —Z4, _Z5)A(zl7 RS} Z5)2

dzy ...dzs dt +O(TY?1€). (7.28
Xngzl(zj—a)(zj—ﬁ)(Zj—v)(zj+6)(zj+€) 5 di+0( ). (7.28)

With the formulae

d e 1 "1
- — —a (7.29)
do H?:1(Zj —a) - J Pl
and
d e 1 "1
—_—— == |- ——al, (7.30)

the differentiation can easily be performed, to yield

I 1 JT 1 1; ng(Zlaz2;Z37Z4725)A(217"'7Z5)2
R .
5

"3 ), BAGm” [, =
5 2 5 °
log t/(2n) 1 logt/(2n) 1
2 zg: 2 2 +_:£: 2
j=1 j=1
xe((08t/(2m)[2)(zit2atzs—2a=2) o1 dg dt + O(TH/2H). (7.31)

For the contribution from the other side of the contour of integration we have, following the
same method as for the second moment,

Lo J B e - e - ) de

2mi 1-crir §(2)

(" l Pl a4
—J (10g+0(1/(t+1))) I¢'(5 +it)|"dt + Igr

2T 0 2T

d ddd1 ("
i+ oo | (o5 + 00/ + 1)) /2 it )c(a/2 it 4 )

XC(1)2 — it +7)C(1/2 — it + 8) dt (7.32)

a=F=y=5§=0

The most concise way to write the six terms that will result from applying the ratio conjecture
(actually in this case there is no denominator so it is just a moment conjecture) to the fourth
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moment of ¢ in the last line above is as a contour integral similar to (7.28) (as described in
[10]). So, we have

d d dd 1Tt 1
I =1 o((l0gt/(2m)) /2)(~a—p—y—8) 1 J og L L
Y Gadddy do© o7 |, "8 2x 21 21(2mi)d

“ fi; . .j[;e((logt/<2w>>/z>(m+zQ—zS—Z4)

y C(l + 21 — Zg)((l 4+ z1 — Z4)C(1 + 29 — Zg)C(l + 29 — 24)
C2+21+ 22— 23 —2)
y A(Zl, .. 24)2 codzg + O(T1/2+6). (733)
1= (2 — a)(z — B)(z +7)(2 +5)

)
Now we use the formulae (7.29) and (7.30) and arrive at

1 (r ot 1
Ip=In+—| log—o
L=irton JO 8 o 21 21(270)’

Xﬂg Ei;C(lJrZ1 —23)C(1 + 21 — 24)C(1 + 22 — 23)C(1 + 22 — 24)
C24+ 21+ 22— 23— 21)

2 2
Alzr,...,z0) [ logt/(2m) = 1 logt/(2m) < 1
(Bl (st 5o L) (beyn), 521
Hj:l Zj =1 % =1 %
xel(o8t/(@m) /D) (zitz2=25=24) Gy | dzy + O(TV/2Fe). (7.34)

We now compute the residues at z; = 25 = 23 = z4 = 25 = 0 of the contour integrals in (7.31)
and (7.34) (using MATHEMATICA). If we write

1
C(l—l—s):g—i—w—’yls—i——s — s, (7.35)

then the final result is as follows.

THEOREM 7.6. Assuming the ratios conjecture as indicated in (7.28), we have constants
Cy,...,Cg such that

log(t/2m)  (=21C(2) + C'(2)) log® (¢/27)
S (p) QWJ (

= 8640((2) 480C%(2)
(T7°¢%(2) — 201 ¢2(2) — 81¢(2)¢'(2) +4(¢(2))* — 2¢(2)¢" (2)) log” (¢/2)

+ 12003(2)

+Cslogl(t/2m) + ... + CO) dt + O(T/**)

T log’T 8
= orsea0cm O(T1og® T). (7.36)

This leading term agrees with Conjecture 7.1 of Hughes, Keating and O’Connell [23]; since
G?(4)/G(7) = 8640 and a(2) = 1/((2), we see that there is agreement between the leading
order term of (7.36) and the conjecture in the case that k = 2.

The first three terms in decreasing powers of log T' shown in (7.36) contain only arithmetic
factors that are derivatives of the Riemann zeta function evaluated at 2. This is not true
of the (logT)® term. We can see that this will be the case by the comment after (7.25).
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The arithmetic factor which forms part of T'(«, 8,7, 4, €) in (7.26),
A(a, B,7,0,€)

_ H (1- p1+1a+6)(1 - p1+1a+e)(1 - p1+1ﬁ+6)(1 - p1+1ﬂ+e)(1 - p1+1w+6)(1 - ﬁ)
; (- )1 - 52

n(")
x Z p(1/2+e)mi+(1/2+8)m2+(1/24+7)ma+h/2+(1/2+8)m+(1/2+e)n2 |’ (7.37)
mi+ma+mz+h=ni+n

expands as a Taylor series
A(Zl7 224,23, TRZ4, _25)
=Ao+Ai(z1+ 20+ 23 — 24 — 25)
+ Aro(—2124 — 2224 — 2324 — 2125 — 2225 — 2325 + 2122 + 2123 + 2223 + 24%5)
A

2 2 2 2 2

+ N (21 + 23 + 25 + 21 + 25)

+ A124(—212’22’4 — Z1R3%4 — R2R3%4 — R122%5 — Z123%5 — Z223%5 + (21 + 29 + 23)2425)

+ Aq23212023

A
;2 (23(21 + 20+ 23 — 25) + 25(21 + 20 — 24 — 25) + 25(21 + 23 — 24 — 25)
+ 22 (20 + 23 — 24 — 25) + (21 + 22 + 23 — 24)22)
A
+ %11(zf’+z§’+z§—zi’—zg)+..., (7.38)

where A; is the partial derivative, evaluated at zero, of A(z1, 22, 23, 24, 25) With respect to the
jth variable. Note that A is symmetric amongst the first three variables, and amongst the final
two variables, so, for example,

A 76A(Zl,22,23,2’4725)
12 = S —’
621822 Z1=29=23=24=25=

= Az = Ags.

In addition, we noted at (7.25) that A(q,3,0,4,7) is just the same as the arithmetic factor
from the fourth moment of zeta,

1 (7

= J CL/2 + it + a)C(1/2 + it + B)C(1/2 — it + 8)C(1)2 — it + €) d,
0

that is, 1/¢(2+ a+ B8+ d +¢€). Therefore all the partial derivatives of A in (7.38) can be

computed by taking partial derivatives of 1/{(2 + z1 + 22 + 24 + 25) except for the derivative
02A

82’1 822623 ’

which involves all of the first three variables and gives a contribution that is not expressed as
a derivative of ¢(2). This contribution shows up first in the log® T term.

A123 =

7.3. A second moment: 3, 1 |C(p + a)l?

In [18] A. Fujii generalizes work of [20] and proves, under the assumption of the Riemann
Hypothesis, the following theorem.

“~d1021”7 — 2006/12/4 — pace A5 — 4HA5



2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208

Page 46 of 53 J. B. CONREY AND N. C. SNAITH

THEOREM 7.7 (Fujii [18]). Assume the Riemann Hypothesis is true. If T is sufficiently
large and « is a real number such that |a| < log T, then

> C<;+i <'y+27ra/log2j;r>)

1< <T

. 2
_ <1_ (smwa) > Zlog2T
T 2m

sin 2wa ¢ . 21« T T

+G(T,a) + O(VTlog* T), (7.39)

2

where «y is Euler’s constant and G(T,«) = O(T) is explicitly given.

The ratios conjecture can reproduce this result in a straightforward way.
First we write the quantity we want to calculate in a form in which we can apply the ratios
conjecture:

Z ((p+a))*= lim 1 J C/(Z)C(z—i—al)g(l —z—ag)dz. (7.40)

0o a1,a2—a 270 c C(2)

Now we follow the identical method to that described in Section 7.1 and so obtain

. d 1 TC(1+a—a2)C(l+a1—a2)
2: 1 e
0<;<T Clp+a)f? = lm [da o L 2= o)

t T2 (14 ag — )C(14 a1 — @)
() (i -a)

£\ ertes C(1+a—a1)C(1+as —aq)
" (%> i —ar) U amo

d iJT Cl+a+a1)C(1—as+ay)
0 C(1+ap)

i) Tl —a—a)(l—ax—a)

(% {T-a)
(

i)ar‘“ C14+a+a)¢(l—aj+as
2 C(1+as)

) dt’a:O

T —ai+az
+%J'0 IOg% <C(1—a2+a1)—|— <%) C(l—a1+a2)>dt]

+0(TY/?+e), (7.41)
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Performing the differentiation and setting o = 0, we have

T »1 — as a; — as a2
> Kool =t oo [ USROS () g g+ a)

0<~<T aj,az—a 27 0 C(l — CLQ) 2

+ <t)_al+a2 ¢'(1 = a)¢(1 +az —ar)

2T C(l — al)
ks acl()lé(j ;1)@ ta) (%)_ (- )¢ - an)
T (i) ¢'(1+az)¢(1 — a1 + as)

2 C(1+as)

t t —ai+az

+log%<C(1—ag+a1)+(%> ((1—a1 —‘r(lz))dt
+0O(TY/%Fe). (7.42)

To perform the limit, let a; = @ and a2 = a + s. Then

iiir(l)g(l—s)—k (%)SC(I—&—S):Iog%—&-Z% (7.43)
and
i C—a—s)(1=s) (L) ¢'(1—a)(+5)
5—0 ¢(l—a—ys) 27 ¢(1—a)

b\ SO ) (- a))
‘(1%””) (o " i-a)  ei-a

Thus, assuming the ratios conjecture as indicated in (7.11), we have

> et =g [ (lomge +20) (1og e+ S0 S

0

0<y<T
"(1-a)  "(+a) (C0-a)\® [({0+a)?
Ti—e) T ita) <<<1—a>) <<<1+a>)
~(5) o~ (5) oo
+O(TY/%e). (7.45)

This result matches up exactly with Theorem 7.7; see in particular the bottom of page 66
in [18].

If we now let a = 2mialog ™ (T/27), then for large T we can use the first few terms of the
series

2

s
—+..

1
§(1+5)=;+’Y—718+’722 .
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as well as the similar expressions for the derivatives and inverse of ((1 + s), and perform the
integration over ¢ to obtain a more standard expression for the leading terms:

E: 2

0<y<T

(i sina\ 2 zlogQ T n zlogz sin 27 o _Z’Ysin27ra oy -2
T 2w 2w 27 2w TQ T

T
+2—(4fy cos 2ma — 2 cos 2ma — 292 cos 2ma — 4y; cos 2ma + 292 — 4y 4 2) + O(T). (7.46)
77

T
¢ (p + 2mialog ™! —)
2T

8. Further connections with the literature

8.1. Non-vanishing of Dirichlet L-functions

Michel and VanderKam’s paper ‘Non-vanishing of high derivatives of Dirichlet L-functions
at the central point’ [35] actually is concerned with non-vanishing of derivatives of A(s, x), the
completed Dirichlet L-functions:

A0 = (9) (/266 0, (5.1)
which satisfies
A(s,x) = e, A(1—s,%). (8.2)

They use mollifying techniques to give a lower bound for the frequency of A®)(1/2,x) # 0 as
X ranges over primitive characters modulo ¢q. They find, first, that using a mollifier with two
pieces

m m -1 ’fgx (m)) P [ leslw/m)
AMWM:ZM>M)H)m$MD(bM) .

msy

is more efficient than the conventional mollifier

plm)x(m) P (<507
Mi(1/2.0 = Y W& ) (8.4)

my

in fact for A(1/2, x) (no derivatives) they find that asymptotically half do not vanish, improving
work of Iwaniec and Sarnak [25] who had a third in place of a half here. They also prove that
when mollifying the high derivatives of A, the proportion of non-vanishing of the kth derivative
can be shown to approach 2/3 as k — oo, and that to obtain this result it is critical to use the
general mollifier.

In this section we use the ratios conjecture to reproduce the asymptotic formulae of [35]. In
addition, we indicate how one can show that the proportion of non-vanishing for L®*)(1/2, x)
does approach 100% as k — oo for this family.

Rather than work with the Dirichlet L-functions, we find it convenient to work with the
Riemann zeta function in ¢ aspect; they are both unitary families, so the results will be identical.
For the analogue of the A®*)(1/2, x) function we will use the function

x(s)2ZH) (s), (8.5)
where

Z(s) = x(s)7/%¢(s) (8.6)
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is a complex analogue of Hardy’s Z(t) function. This is appropriate because the Z-function
associated with L(s, x) is

Z(s,x) = e '/*A(s,X), (8.7)
so that
AP (s,x) = /220 (s,x). (8.8)

Note that x is used in two different roles here; recall that x(s) is the factor from the functional
equation of the zeta function, (see (2.3)), and it plays the role of €,.
The analogue of the quantity considered in [35, Section 7] is

(57 ()220 ()M (s) )
Jo Z®(s)Z®) (1 — s)M (s)M(1 — s)dt’

for a two-piece mollifier. However, here we will illustrate the calculation with the conventional
mollifier

(8.9)

M(s) = M(s, P) = u(m)P(log(y/m)/logy)/m". (8.10)
m<y
The object is to choose P in such a way that this ratio is minimized.
Since
n 1/2—s
x(s) = (%> (I1+0(1/t)) (8.11)
for t > 1, we have
d _ 4 _
= (M) = Jx(&) 721+ 01/, (8.12)

with ¢ = log(t/2m). Hence,
d\*
x()22H0) (s) = (da) ¢ (s +a)(1+ O(1/t)) (8.13)
Thus the integral in the numerator can be evaluated by considering

k k
B () e
(&% a=0 (0%

where L = log T'. (The ratios conjecture gives IOT(C(S +a)/¢(s+w))dt ~ T.) The denominator
is, by (5.20) and after rescaling @ = a/L and 8 =b/L,

d\"* 7 a\"
~ 2k [ % - (a+b)/2
TL <da> <db> €

a=0

T
J e/2¢ (s 4+ a)M(s, P)dt
0

=TP(1)27*LF (8.14)

a=0

2 lii —afw—blz Jl Jl —(a+b)u
X (P(l) + A . Oe P(w+r)P(z+r)drdu -
P(1)?
_ 2k
TL < 22k
+liiJ1J1P( +w)(1/2 — u— Qw)EP(r + 2)(1/2 — u— 62)F drd
G ), ), r+w u — Qw r+z u—0z ruwzz:o
P12 1! 2
:TL2k< 2(2}3 +§J J (P’(r)(1/2—u)k—k9P(r)(1/2—u)k_1) drdu)
0 Jo
TL* » 11 P(r)? Y E2P(r)?
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This corresponds to the evaluation of Qj, accomplished in [35, equation (17)]. Note that
A =20.
Thus, the ratio (8.9) is

P(1)?
: 8.16)
1 1 P'( )2 1 k‘2P( )2 (
1)2+9fo 21;1 dr +49fo o dr

If k = 0, we take P(r) = r and 6§ = 1/2 and deduce that at least one third of L-functions do not
vanish at 1/2. This is the result of Iwaniec and Sarnak [25]. For large k if we take P(r) = r*,
we see that this ratio is

1 1

L+ (0+3) g 1+ (0+ )
which is 1/2 when 6 = 1/2.
In general if A, B > 0, the minimum of A fé P'(z)*dx + B Io 2 dx over smooth functions
P satistying P(0) = 0 and P(1) = 1is AP’(1) and is achieved by
= (sinh v/ B/Ax)/(sinh y/B/A).
So the optimal choice for (8.16) is

sinh(Ar) 2k +1
P(r)= """ A =20k 1
") = "Sna O\ 21 (8.18)
as in [35]; however, this still gives that the ratio is 1/2 + O(1/k?).
Next we explain the use of the two part mollifier in the case that k = 0. For this, we consider
a mollifier of the form

M(s, P,a) := Z p(n)P (%) (n™* +ax(1—s)n*1) (8.19)

(8.17)

n<y

and we want to maximize the ratio

(Io M(s, P, a) dt)

. (8.20)
fo ¢(1— S)M(s, Pa)M(1—s,P,a)dt
The key things to observe here are that, with M(s, P) as in (8.10),
T T
J C(s)x(1 —s)M(1 —s,P)dt = J C(1—s)M(1—s,P)dt ~TP(1) (8.21)
0 0

and
T T
JO C(s)¢(1 = s)M(1 — s, P)x(1 — s)M(1 — s, P)dt = L C(1—s8)°M(1—s,P)*dt

~ P(1)°T. (8.22)
Thus, the ratio is
(1+a)*P(1)?
(1+ a?) (P(l)2 + 11 preye dt) +2aP(1)?

~T (8.23)

The optimal choices here are P(r) = r and a = 1; for §# = 1/2 this gives a ratio of 1/2 as claimed
in [35].

To handle high derivatives of L(s, x) at s = 1/2 we consider, by analogy, high derivatives of
¢(s). The trick is to insert a factor of x(s) and to ask about the non-vanishing of

X()¢W (1 = s). (8.24)
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Thus, we want to maximize the ratio of

(52 X610 )G Py

I3 Ix(8)C® (1 — )M (s, P)|2dt - (8:29)
Now,
k k
(W)= () xa-9c =3 (*) 0 -5
() » () o
= — s i keae s+«
-9 (5) e o s
Thus, the numerator is
~ (TP(1)L*)2. (8.27)

The denominator is evaluated optimally in [14] and is T|P(1)]2L?*(1 — O(1/k?)). Applying
this method to L(s, x), one can deduce that there is a constant C' > 0 such that the proportion
of the L(*¥)(1/2, x) which vanish is smaller than C/k?.

REMARK 8.1. Michel and VanderKam [35] give a nice explanation at the end of Section 2
of why one cannot expect to do better than 1/2 non-vanishing of A®*)(1/2,y) using a
conventional mollifier and 2/3 using a two-piece mollifier. The reason relies on the symmetry
of the approximate functional equation for A%*)(1/2,y) and the uniform distribution of €y -
That we can get a proportion of non-vanishing of L(*)(1/2,) approaching 1 as k — oo
does not contradict their argument because of the lack of symmetry of the approximate
functional equation for L®*) (1/2, x). For applications to bounding multiplicities of central zeros,
information about non-vanishing of L(*)(1/2, x) is equally as good as for A%)(1/2, x).

8.2. Non-vanishing of automorphic L-functions

The main theorem of the paper ‘Non-vanishing of high derivatives of automorphic L-functions
at the center of the critical strip’ [31] by Kowalski, Michel, and VanderKam is a mollification
of the second moment of weight 2 primitive cusp forms of a prime level. The formula achieved
is slightly different to the result we mention above (Theorem 5.3) for mollifying the second
moment in an orthogonal family. The reason for this is that they use a slightly different mollifier.
Instead of choosing a smoothed sum of the coefficients of the inverses of the Dirichlet series in
question they choose a mollifier of the shape

5 Mt (45

2T G

(8.28)

where A¢(n) are the coefficients of the L-function which is to be mollified and where
¥(n) =11, (1+1/p). The analogue of our Theorem 5.3 has the right side replaced by

5 (P o0 POP+ 5 | [ (P00 - @@ W) dedy). (520
This result, which is not deducible from our ratios conjecture, was reported in the paper of
Conrey and Farmer [8] as the general result one would obtain from mollifying a second moment
in an orthogonal family. We wish to correct that statement and replace it with the statement
of Theorem 5.3.
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8.3. Non-vanishing of quadratic L-functions

The papers of Soundararajan, and Conrey and Soundararajan, deal with non-vanishing of
Dirichlet L-functions for real quadratic characters, at the central point and on the real axis.
The results of Theorem 5.2 are consistent with the results of these papers [40, 15].

9. Conclusion

The purpose of this paper was to illustrate the use of the ratios conjectures by deriving from
them a number of important results from the theory of L-functions. The variety of applications
is by no mean exhausted by what we have presented. Other calculations that might be valuable
include lower order terms in moments of S(t), log|((1/2 4+ it)| and S(t + h) — S(t). For the
second moment of S(t) the lower order terms have already been computed by Tsz Ho Chan [6],
while lower order terms of the second moment of S(¢ + h) — S(t) have been considered in [1].
Precise evaluations of n-level correlations might be combined to obtain the secondary terms
in the nearest neighbour spacing distribution for the zeros of the Riemann zeta function. In
[39], the leading term in the n-correlation function is calculated for a restricted space of test
functions, but for essentially any L-function. Ratios conjectures could also be used to evaluate
possible schemes to improve lower bounds for proportions of zeros on the critical line.

References

1. M. V. BERRY, ‘Semiclassical formula for the number variance of the Riemann zeros’, Nonlinearity 1 (1988)
399-407.
2. M. V. BERRY and J. P. KEATING, ‘The Riemann zeros and eigenvalue asymptotics’, STAM Rev. 41 (1999)
236-266.
E. B. BocoMOLNY and J. P. KEATING, ‘Gutzwiller’s trace formula and spectral statistics: beyond the
diagonal approximation’, Phys. Rev. Lett. 77 (1996) 1472-1475.
A. BoOrODIN and E. STRAHOV, ‘Averages of characteristic polynomials in random matrix theory’, Comm.
Pure Appl. Math. 59 (2006) 161-253.
5. D. BumpP and A. GAMBURD, ‘On the averages of characteristic polynomials from classical groups’, Comm.
Math. Phys. 265 (2006) 227-274.
T. H. Cuan, ‘Lower order terms of the second moment of S(t)’, Preprint, AIM 2004 — 24,
arXiv:math.NT/0411501.
7. J. B. CONREY, ‘More than two fifths of the zeros of the Riemann zeta function are on the critical line’, J.
reine angew. Math. 399 (1989) 1-26.
8. J. B. CoNrREY and D. W. FARMER, ‘Mean values of L-functions and symmetry’, Internat. Math. Res.
Notices 17 (2000) 883-908.
9. J. B. CONREY, D. W. FARMER, J. P. KEATING, M. O. RUBINSTEIN and N. C. SNAITH, ‘Autocorrelation of
random matrix polynomials’, Comm. Math. Phys. 237 (2003) 365-395.
10. J. B. CoNREY, D. W. FARMER, J. P. KEATING, M. O. RUBINSTEIN and N. C. SNAITH, ‘Integral moments
of L-functions’, Proc. London Math. Soc. (3) 91 (2005) 33-104.
11. J. B. CoNREY, D. W. FARMER and M. R. ZIRNBAUER, ‘Autocorrelation of ratios of L-functions’, Preprint,
American Institute of Mathematics, 2006.
12. J. B. CoNrEY, D. W. FARMER and M. R. ZIRNBAUER, ‘Howe pairs, supersymmetry, and ratios of random
characteristic polynomials for the classical compact groups’, Preprint, 2005, arXiv:math-ph/0511024.
13. J. B. CoNrEY, P. J. FORRESTER and N. C. SNAITH, ‘Averages of ratios of characteristic polynomials for
the compact classical groups’, Internat. Math. Res. Notices 7 (2005) 397-431.
14. J. B. CoNrREY and A. GHOSH, ‘Zeros of derivatives of the Riemann zeta-function near the critical line’,
Analytic number theory, Allerton Park, IL, 1989 (ed. B. C. Berndt, H. G. Diamond, H. Halberstam
and A. J. Hildebrand), Progress in Mathematics 85 (Birkhauser, Boston, MA, 1990) 95-110.

15. J. B. CoNREY and K. SOUNDARARAJAN, ‘Real zeros of quadratic Dirichlet L-functions’, Invent. Math. 150
(2002) 1-44.

16. D. W. FARMER, ‘Long mollifiers of the Riemann zeta-function’, Mathematika 40 (1993) 71-87.

17. D. W. FARMER, ‘Mean value of Dirichlet series associated with holomorphic cusp forms’, J. Number Theory
49 (1994) 209-245.

18. A. Fuui, ‘On a mean value theorem in the theory of the Riemann zeta function’, Comment. Math. Univ.
St. Paul. 44 (1995) 59-67.

19. A. Fuull, ‘On the Berry conjecture’, J. Math. Kyoto Univ. 37 (1997) 55-98.

20. S. M. GONEK, ‘Mean values of the Riemann zeta function and its derivatives’, Invent. Math. 75 (1984)

123-141.

“~d1021”7 — 2006/12/4 — pace 592 — 459



2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

THE L-FUNCTIONS RATIOS CONJECTURES Page 53 of 53

D. R. HEATH-BROWN, ‘The fourth power moment of the Riemann zeta-function’, Proc. London Math. Soc.
(3) 38 (1979) 385-422.

C. P. HUGHES, ‘Random matrix theory and discrete moments of the Riemann zeta function’, Random
matrix theory, J. Phys. A 36 (2003) 2907-2917.

C. P. Hucngs, J. P. KEATING and N. O’CONNELL, ‘Random matrix theory and the derivative of the
Riemann zeta function’, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 456 (2000) 2611-2627.

H. IwaNiEc, W. Luo and P. SARNAK, ‘Low lying zeros of families of L-functions’, Inst. Hautes Etudes Sci.
Publ. Math. 91 (2000) 55-131.

H. IwaANIEC and P. SARNAK, ‘Dirichlet L-functions at the central point’, Number theory in progress 2,
Zakopane-Kodcielisko, 1997 (de Gruyter, Berlin, 1999) 941-952.

H. IwANIEC and P. SARNAK, ‘The non-vanishing of central values of automorphic L-functions and Landau—
Siegel zeros’, Israel J. Math. 120 (2000).

N. M. KAtz and P. SARNAK, Random matrices, Frobenius eigenvalues, and monodromy, American
Mathematical Society Colloquium Publications 45 (AMS, Providence, RI, 1999).

J. P. KEATING, ‘Statistics of quantum eigenvalues and the Riemann zeros’, Supersymmetry and trace
formulae: chaos and disorder (ed. I. V. Lerner, J. P. Keating and D. E. Khmelnitskii; Plenum Press,
New York) 1-15.

J. P. KEATING and N. C. SNAITH, ‘Random matrix theory and ¢(1/2 + ¢t)’, Comm. Math. Phys. 214 (2000)
57-89.

J. P. KEATING and N. C. SNAITH, ‘Random matrix theory and L-functions at s =1/2’, Comm. Math.
Phys. 214 (2000) 91-110.

E. KowaLski, P. MICHEL and J. VANDERKAM, ‘Non-vanishing of high derivatives of automorphic
L-functions at the center of the critical strip’, J. reine angew. Math. 526 (2000) 1-34.

E. KowaLski, P. MicHEL and J. VANDERKAM, ‘Mollification of the fourth moment of automorphic
L-functions and arithmetic applications’, Invent. Math. 142 (2000) 95-151.

N. LEVINSON, ‘More than one third of zeros of Riemann’s zeta-function are on o = 1/2’, Adv. Math. 13
(1974) 383-436.

M. L. MEHTA, Random matrices, 2nd edn (Academic Press, Boston, MA, 1991).

P. MicHEL and J. VANDERKAM, ‘Non-vanishing of high derivatives of Dirichlet L-functions at the central
point’, J. Number Theory 81 (2000) 130-148.

H. L. MONTGOMERY, ‘The pair correlation of zeros of the zeta function’, Analytic number theory,
St. Louis, MO, 1972 (ed. H. G. Diamond), Proceedings of Symposia in Pure Mathematics 24 (American
Mathematical Society, Providence, RI, 1973) 181-193.

A. M. ODLYZKO, ‘On the distribution of spacings between zeros of the zeta function’, Math. Comp. 48
(1987) 273-308.

A. E. OzLUK and C. SNYDER, ‘On the distribution of the nontrivial zeros of quadratic L-functions close
to the real axis’, Acta Arith. 91 (1999) 209-228.

Z. RUDNICK and P. SARNAK, ‘Zeros of principal L-functions and random matrix theory’, A celebration of
John F. Nash Jr, Duke Math. J. 81 (1996) 269-322.

K. SOUNDARARAJAN, ‘Nonvanishing of quadratic Dirichlet L-functions at s = %’, Ann. of Math. (2) 152
(2000) 447-488.

J. B. Conrey N. C. Snaith
American Institute of Mathematics School of Mathematics
360 Portage Ave University of Bristol
Palo Alto, CA 94306 Bristol

USA BS8 1TW

and United Kingdom

School of Mathematics

N.C.Snaith@bris.ac.uk

University of Bristol
Bristol

BS8 1TW

United Kingdom

conrey@aimath.org

“~d1021”7 — 2006/12/4 — pace 53 — 453

Q6
Q7

Q8



