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MODULAR FORMS AND THE CHEBOTAREV 
DENSITY THEOREM 

By M. RAM MURTY,1 V. KUMAR MURTY,2 and N. SARADHA 

Introduction. Let N 2 1, k 2 2 be integers and let f be a cusp form 
of weight k for ro(N), which is a normalized eigenform for all the Hecke 
operators Tp, p 4 N. Let us write 

f (z) == an 2winz 
n>l 

for its Fourier expansion at ioo, and for simplicity of discussion, let us sup- 
pose that the an are rational integers. For each integral value of a, set 

7rf,a(X) = #{P s x :aap = a}. 

If a = 0 and f is of CM-type (in the sense of Ribet [11]), we know that 
lrf,a(X) r(x)/2. In the remaining cases, (i.e. f is not of CM type or a * 
0), Lang and Trotter [5] conjecture that 

l/2/log x if k = 2 

Wf,a(X) - Cf,a loglog x if k = 3 

1 if k 2 4 

where Cf a is a constant which is generally (though not always) nonzero (Cf,a 
can be zero for example if a = 1, k = 2 and f corresponds to an elliptic 
curve having a nontrivial Q-rational torsion point). Moreover, Atkin and 
Serre [15] conjecture that for k 2 4, 
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lap ?I>>E p((k-3)/2)-E 

for every E > 0. This is known to hold in the CM-case (cf. Serre [15]). 
From now on, we shall assume thatf is not of CM-type. Assuming the 

Riemann Hypothesis for all Artin L-functions (GRH), Serre [16] has re- 
cently shown that 

x7/8(lg X) -1/2 if a 0 
7rf,a(X) <<ifa0 

X3/4 ~~if a = O 

(Note that there is a misprint in the statement of [16, p. 174, Corollary 1]). 
His main tools were the Chebotarev density theorem in the effective form 
given by Lagarias and Odlyzko [3] and the f-adic representations attached 
to f by Deligne [2]. 

One of our main results here is the following (Section 4). 

THEOREM. Suppose that GRH holds. Then 

x4/5(logx)-1/5 if a * 0 
7rf,a(X)<< X3/4 if a=0. 

We then apply this in Section 5 to the Atkin-Serre conjecture to show the 
following. 

THEOREM. Suppose that GRH holds. Then for any E > 0, 

lapi 2p (1/4)-,E 

holds for a set of primes p of density 1. Unconditionally, there is a con- 
stant c > 0 such that 

Iap I > (log p)c 

holds for a set of primes p of density 1. 
We use this, together with results obtained by methods of transcen- 

dental number theory [10] and a sieve-theoretic argument to deduce the 
following. 

THEOREM. Suppose the GRH holds. There is a constant c > 0 such 
that the set 
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{n :a, = Oortla, > nC} 

has density 1. Unconditionally, the set 

{n: a = Oor Ia,t > (logn)c} 

has density 1. 
This result should be compared with Serre's observations on "non- 

lacunarity" of L-series attached to modular forms (cf. [16, Section 6]). 
To prove these results, we start as in Serre [16] with the f-adic repre- 

sentations 

Pe,f: Gal(Q/Q) -_ GL2(Zd) 

of Deligne [2]. We know that if p , 2N, then pe,f is unramified at p, and 
pf,f (up) has characteristic polynomial x2 - apx + pk-1. (Here, up is a Fro- 
benius element at p). Reducing this representation mod 4?n produces a fi- 
nite extension Ken/Q, namely the fixed field of the kernel of reduction 
mod 4?". It is essentially these extensions to which the effective version of 
the Chebotarev density theorem is applied. Our deviation from the method 
of Serre starts with the observation (Section 3) that "on the average", the 
Lagarias-Odlyzko estimate can be significantly improved, if we assume Ar- 
tin's conjecture on the holomorphy of Artin L-series at points s * 1. We 
then use ideas similar to Serre [16, Section 2.7] to reduce our problem to a 
case where we know Artin's conjecture to be true. The observation about 
averaging is well-suited for the estimation of lrf,a(X) since in this problem, 
we have to sum over a relatively large number of conjugacy classes. 

Finally, in Section 6, we apply our results to obtaining lower bounds 
for the largest prime divisor P(ap) (resp. P(an)) of ap (resp. an). We show 
that for each e > 0, 

P(ap) 2 exp((loglogp)1E) 

holds for a set of primes p of density 1. A similar result is also obtained for 
P(an). Of course, these can be improved if we assume GRH. In particular, 
loglog p can be replaced by log p in the above inequality. 

The first two sections contain notations and preliminary observations. 
All implied constants in 0-symbols are absolute and effective, unless oth- 
erwise specified. The letters p and Q will always be reserved for primes. 
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1. Group theoretic preliminaries. We collect some notation and 
facts about finite groups and their irreducible characters. 

1.1. Let G be a finite group and C a conjugacy class. Let bc denote 
the characteristic function of C and gc E G an element of C. By the ortho- 
gonality relations for characters, 

bc = ICI_ E X(gc)X 

where the sum is over all irreducible characters X of G. For an element g E 
G, we denote by CG(g) its conjugacy class in G. 

1.2. Let H be a subgroup of G, and s an element of H. Let CH = 

CH(S) and C = CG(S). Let 6CH: H -+ { 0, 1 } denote the characteristic func- 
tion of CH. We use the same letter to denote the extension by zero of 6CH to 

all of G. Now set 

sp = Ind GcH 

From the definition of induction, we see that op(g) = 0 if g 0 C and so so = 

X6c. The value of X is easily computed by Frobenius reciprocity: 

x IGI = <(S, 1G> = <(CH, 1H> 
= ICHI 

Thus X = ICHI * IGI IHI-1 ICI-1. 

1.3. Let C(G) denote the space of complex-valued class functions on 
G and let 7r be a linear function 7r : C(G) C. 

PROPOSITION. 

1 IC 2 1 
CI |r(6c) IGI |r(1G) = | E I 7r(x)12 

where the sum on the left is over conjugacy classes C of G, and the sum on 
the right is over the irreducible nonidentity characters. 
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Proof. By linearity 

O(6) = E G X(gc)7r(X). 

Hence, 

7r(6c) - |G 7r(1 G) - IGI X g(g c) 7r(X), 

and 

1 ~~~CI 2 
Ir(6c)- 7r(1G) 

CI IGI~~~~7rX1 r( ) jC 9 X29C 

I GI XI,X2*1G (Xlr(X2) IGI 
S ICI x1(gc)x2(gc) 

= IGI E I7r(x)12 

using the orthogonality relations. 

1.4. We recall some observations of Serre [16, pp. 136-140] which 
will be used in Section 3 and Section 4. Let L/K be a Galois extension of 
number fields, with group G. For each place w of L, let DW and I, denote 
the decomposition and inertia group at w (respectively). For each place v of 
k, let au E DW/Iv denote the Frobenius element at v. Let so be a class func- 
tion on G, and define 

*r,(x) = - (uko. 
Nvmcx m 

(If v is ramified in L and w/v, p(aum) denotes the sum Iv E - o(g) over 
elements g E Dw whose image in Dv/II is am). 

We also define 

7r',(x) = S p(u0) 
Nv'x 
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where the sum is over places v of K unramified in L and where N denotes 
NormK/Q. If C is a conjugacy class and 6 is its characteristic function, we 
shall often write 7rc(x) (resp. *c(x)) for 7r6(x) (resp. ir(x)). Let H be a 
subgroup of G and Ha class function on H. Let <p = IndH OH. From the 
inductive property of L-functions, it follows that 

if (X) = *IH(X). 

If H is normal, let f G/H be a class function on G/H, and let <p denote its 
pullback to G. Then 

fr,(X) = *PG/H(X). 

In particular, if g E G and Hg C CG(g) (= the conjugacy class of g in G), 
then the above applies with so the characteristic function of CG(g) and 

G/H the characteristic function of the class of Hg in G/H. 
Finally, let so again be any class function on G, and let dL denote the 

absolute value of the discriminant of L. Then 

7r,(x) = *r,(x) + 0 {o (p 
I 

log dL + [K: Q]xl/2}) 

where lk ol = SUpS,G I <(S) I . 

2. Growth of conductors and discriminants. 

2.1. Let LIK be a finite extension of number fields, ZL/K its differ- 
ent, and bL/K its discriminant. Thus, L/K is an integral ideal of L and 
6L/K = NormL/K(ZL/K). Let v be a place of K and w a place of L dividing v. 
Let pv denote the residue characteristic at v. The following estimate of 
Hensel is quite useful (see for example, Math. Ann. 55 (1902) 301-336). 

LEMMA. W(ZL/K) = ev- 1 + sw/v where ev/v denotes the ramifi- 
cation index in L of the ideal P vof K attached to v, and 0 s w/v ' w(ewlv) 

2.2. Hensel's lemma can be used to get an estimate for 
NormK/Q(6L/K). Let nL = [L : Q], nK = [K: Q], n = nL/nK= [L : K], 
and set P(L/K) = {p: there is a prime p of K with P I P and p is ramified in 
L }. The following is [16, p. 128, Proposition 4]. 



MODULAR FORMS 259 

PROPOSITION. Log NormK/Q(bL/K) ' (nL - nK) EpeP(L/K) log p + 

nL(log n) I P(L/K) |. Using this and the relation dL = d7 NormKKQ(aL/K), 
where dK is the absolute value of the discriminant of K/Q and n = [L: KI, 
we get a bound for log dL also. 

2.3. Now we assume that LIK is Galois with group G. In this case, 
the estimates of 2.2 can be slightly improved. The following is [16, p. 128, 
Proposition 51. 

PROPOSITION. Log NormK/Q(5L/K) C (nL - nK) -peP(L/K) log p + 
nL log n. 

2.4. We now discuss an analogue of Proposition (2.3) for Artin con- 
ductors. Let X be an irreducible character of G. We begin by recalling the 
definition of the Artin conductor ax of X. For each finite place v of K, let w 
be a place of L dividing v and let Gi denote the i-th ramification group at w 
(i > 0). Thus, Go is the inertia group and we have a descending filtration 

Go G G2 .... 

Let V be a C-vector space affording X. Then we set 

n(x, v) = E codim(VGi). 
i =o Gol 

Implicit in this definition is that the right hand side does not depend on the 
choice of w over v, or on the choice of V. The Artin conductor is then de- 
fined by 

Z o n(x,v) 

where the product is over all finite v. Note that n(x, v) = 0 for all but 
finitely many v, so that the product is well-defined. The conductor-dis- 
criminant formula states 

NorMK/Q(aL/K) = I (NorMK/Q~X)X(l) X 

where the product is over all irreducible characters X of G. 

PROPOSITION 2.5. log(NormK/Qax) c 2X(1)nK{EpeP(L/K) log p + 
log n }. 
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Proof. Firstly, we observe that for each i > 0, 

1 
dim VGi- E=Xa) 

|Gi I aeG, 

and so for each finite v, 

(2.5.1) n(x, v) = Gt (X1 - 1 , GG X(a)) 

Denote by Ov (respectively (9w) the ring of integers of Kv (resp. Lw). Define 
a function iG on G by 

iG(g) = w(gx - x) = max{i: g e Gi-} 

where Ow = (9O[x]. Rearranging (2.5.1) gives 

n (x, V) =X (1) G (IGI - 1) - 1 1 X(a)iG(a). 
i Gol I Got 1*aEGo 

Applying this formula for x the trivial character, and the character of the 
regular representation of Go, we find that 

S iG(a) = G (|GiI - 1) = W(TL/K). 
1*aeG0 

Hence, 

n(x, v) = iGa)(x(l)-x(a)) 
IGol I*aeGo 

2X(1 )W(Z)L/K) 

e W/V 

Now using Lemma (2.1), we deduce that (with fv = degree of the residue 
field of v over the prime field) 

1 
log(Norm Wx) c 2X(l) S( (e wl-1 + s wv)fv logp v e W/V 

< 2X(l) Efv(i vlgv+Ef vwe/)op X\I(JV\ / ) 
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where ev, ew denote the absolute ramification indices at v and w respec- 
tively and we have used ewlv = ew/ev. Also, as w(ewlv) = ewvp(ewlv) and as 
L/K is Galois, ewlv divides n. Thus, 

log Norm W, < 2x(1)nK{ pF log p + log n}. 
pEP(L/K) 

Remark. The coefficient 2 has entered as we did not have a nontri- 
vial estimate for the character sums EaeGi X(a). 

3. Effective versions of the Chebotarev theorem. Let LIK be a finite 
Galois extension of number fields with group G. We retain the notation of 
Section 2. 

3.1. Let C be a subset of G stable under conjugation, and define 
7rc(x) = #{v a place of K unramified inL, NormK/Q pv ' x and av C C}. 
The Chebotarev density theorem asserts that 

7rc(x) - 1l 7rK(X) 

where 7rK(x) denotes the number of primes of K of norm c x. Effective 
versions were given by Lagarias and Odlyzko [3]. 

PROPOSITION 3.2. Suppose the Dedekind zeta function !L(s) satis- 
fies the Riemann Hypothesis. Then 

7rc(X) Cl Lix +0( x x"2(LogdL + nlogx)). 

(This form of their result is due to Serre [16, p. 133]). 

PROPOSITION 3.3. If log x >> nL(log dL)2, then 

7rc(X) I G I- 
Li x |< I G ILi(xO) + O(I CIx exp(-cnEl/2(1ogx)l/2)) 

where I C 1 is the number of conjugacy classes contained in C and the term 

I C l Li(xO)/ I G I is suppressed if the exceptional zero 3 does not exist. 
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PROPOSITION 3.4. We have 

Xrc(X)<< ? I Lix 
IGI 

provided log x >> (log dL)(loglog dL)(logloglog e20dL). 
This is due to Lagarias, Montgomery and Odlyzko [4]. 

3.5. These estimates can be significantly improved if we know Ar- 
tin's conjecture on the holomorphy of L-series. The improvement is in the 
dependence of the error term on C. We shall only discuss Proposition (3.2) 
here. Let X be a character of G and denote by 7r(x, X) the function denoted 

7rx(x) in Section 1.4. Let a(X) denote the multiplicity of the trivial character 
in X. 

Set 

A = dx(') NormK/QWx 

and 

A(s, X) = As12'y(s)L(s, X) 

where -y(s) is a certain product of powers of 7r and r-functions (see for 
example, Martinet [6, p. 12] for a detailed description). 

PROPOSITION. Suppose that the Artin L-series L(s, X) is analytic for 
all s ? 1 and is nonzero for Re(s) * 1/2, 0 < Re(s) < 1. Then 

7r(x, X) = 6(X)Li(x) + O(x1/2(log Ax + x(l)nK log x)) 

+ O(X(l)nK log M(L/K)) 

where 

M(L/K) = nd'/"K HI p. 

Proof. The argument proceeds along standard lines and so we just 
sketch it here. Artin [1] proved the functional equation 

(3.5.1) A(s, X) = W(X)A(1 - s, X) 
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where W(X) E C, I W(X) = 1 and X is the complex conjugate of x. We 
know that (s(s - 1))6(x)A(s, X) is entire and we have the Hadamard factori- 
zation 

(3.5.2) A(s, X) = ea(x)+b(x)sll(- -)es/P (ss -1))-b(x) 

where a(x), b(X) E C, and the product runs over all zeroes p of A(s, X) 
(necessarily, 0 c Re p < 1). From the equality 

(3.5.3) A(s, X) = A(S, X) 

we deduce the relation 

A' A' 
A (s, x) = x(, X) 

Moreover, (3.5.1) implies the relation 

A' A't 
A (s, X) =- A (1-S, ). 

From these two relations, we deduce that 

Re A 29 X) = 

Now, (3.5.1) and (3.5.3) also imply that if p is a zero of A(s, X), then so is 
1-p. Hence, 

Re l -p =0 

as is seen by grouping together the terms corresponding to p and 1 - p in 
the absolutely convergent sum. Logarithmically differentiating (3.5.2) at 
s = 1/2, and taking real parts, we deduce that 

Re(b(x) + E = 0. 
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Hence, 

A' 
(3.5.4) Re (s, X) Re 6(X)Re + 

Let N(t, X) denote the number of zeroes p = 3 + i'y, 0 < 3 < 1, 

y- t I c 1 of L(s, X). Evaluating (3.5.4) at s = 2 + it, and observing 
that 

Re/ 1 = 2 -3 {> for all p Re 
+ it- (2 - 0)2 + (t - )2if t-61 1 

we deduce that 

N(t, X) << Re A (2 + it, X). 
A 

Since the Dirichlet series for L(s, X) converges at 2 + it, the right hand 
side is easily estimated, the essential contribution coming from log Ax and 
the number of F-factors. We get 

(3.5.5) N(t, X) << log Ax + X(l)nK log(l t I+ 5). 

By developing an explicit formula as in [3] or [7], we find that 

' x(uv)log Nv = 6(x)x - E -+ O(X(l)nKlog M(L/K)) 
Nv<x yjI<x p 

+ O(xl/2(logx)(logAx + x(l)nK log1x)), 

where the prime on the sum indicates that we only include places v that are 
unramified in L. The sum over zeroes can be estimated by observing that 

1 N(j, X) 
lyI<x p j<x j 

and using (3.5.5). The estimate for 7r(x, X) can be deduced by partial sum- 
mation. 
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PROPOSITION 3.6. Suppose that all Artin L-series of the extension 
L/K are analytic at s * 1, and that GRH holds. Then 

1 2 
_ 

(3.6.1) I7rc(x) - II Li x << xn2(log M(L/K)x)2. c ICII GI / 

Proof. We first observe that 

S 1 ( ICI 7(1) C7 ILix = 1 
- (7r(x, 1G)-LiX)2. 

cl \C GI i(,G-IGI Li) IGI 

Using the identity of Proposition (1.3), the left hand side is, therefore, 

< 
I 

( 1 7r(x, X) 12 + (7r(X I1G)- Li X)2) IGI X: 

where the sum is over the nontrivial irreducible characters of G. By Propo- 
sition (2.5) and Proposition (3.5), 

7r(x, X) - 6(X)Lix << X(1)nKx/2 log(M(L/K)x). 

The result follows on noting that E X(1)2 = IG . 

COROLLARY 3.7. Let D be a union of conjugacy classes. Under the 
same hypotheses as in Proposition (3.6), 

7rD(X) = I I_ Lix + O(ID 11'2x112nK log M(L/K)x). 
IGI 

Proof. We have 

7rD(x)- DI Li x S7rc(x)- ICIGILix) IGI c IGI / 

where the sum is taken over all conjugacy classes C contained in D. Now 
applying the Cauchy-Schwartz inequality gives 

CI 1 Cl~~~~~~~~~~~~2 / 
7r|xc(x) - I Lix << ( C1)1/2( l7rc(X) ic Lix ) 

Thec c now IGI 

The result now follows from Proposition (3.6). 
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Remark 3.8. Using Proposition (2.3) we can write the error term in 
Proposition (3.2) as 

O(j Clx112nK log M(L/K) x). 

Thus Artin's conjecture allows us to replace I C I with I C 1 1/2 in this esti- 
mate. 

3.9. In some cases, Corollary (3.7) can be used to get refinements of 
Proposition (3.2) even without assuming Artin's conjecture. We give two 
such cases here. 

PROPOSITION. Let D be a union of conjugacy classes in G and let H 
be a subgroup of G satisfying 

(1) Artin 's conjecture is true for the irreducible characters of H 
(2) H meets every class in D. 

Suppose the GRH holds. Then 

7rD(X) D I Li x + O(x12( C1 )/2 nK log Mx) 

where M = M(L/K), and CH = CH(Y) for some oy E H n c. 
COROLLARY 3.10. Under the same hypotheses as above, 

DI GID1/X12 1j)'2n Mx 
lrD(X)= Lix + 0 IDI X2X (/2 -_ nKlog Mx 

where ID I is the number of conjugacy classes contained in D. 
The corollary follows from the proposition on noting that I C I/ CH I< 

IGI/IHI. 

3.11. Proof of Proposition 3.9. Firstly, from Section 1.4, 

(3.11.1) 7rD(X) = rD(X) + ? IG log dL + nKX) 

Using Proposition (2.3), we find 

I 
IGI log dL< ?nKl109MX. 
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Also, from Section 1.4, 

(3.11.2) *D(X) = E 1rC(X) CC l HI 
CH|XC 

CcZD C-D IGI ICHI c() 

Now 

CCD IHI (*CH(X) 
- 

7CH(X)) 
CDI G IICHI 

< HI i Cl 6CH(UV)) ( CH(Uv ) + S bHa) 
IGI CCD I CHI NVm X Nv5X 

m > 2 v ramified 
in L/K 

IHjI ICI \ GI 2 1 
Gj \maD I H y11fKX 1/2+ HI d 

IGI CmaD ICHI ) IHI 2 IogL 

<(max ic1) (nKX1/2 + nK 1ogMx) 

and this can be absorbed into the error term. Therefore, we can replace 
*rCH by 7rcH in (3.11.2). Now, 

(3.11.3) E Cl IHI rCH I DI_Lx 
CCD IGI ICHI H(x) = IGLix 

( I G I CCHD 1/2 ICHI1/2 7rCH(X)- 1IH1 Li x) 

Now applying the Cauchy-Schwartz inequality and using Proposition 
(3.6), we find that the 0-term in (3.11.3) is 

<< IIG ( I II)X1/2. nK I lo I M(LIK')x. 
IGI \czD ICHI/ HI 

where K' is the fixed field of H. Combining this with (3.11.1)-(3.11.3) 
proves the Proposition, since M(L/K') << M(L/K). 

PROPOSITION 3.12. Suppose the GRH holds. Let D be a nonempty 
union of conjugacy classes in G and let H be a normal subgroup of G such 
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that Artin's conjecture is true for the irreducible characters of G/H, and 
HD C D. Then 

7rD(X) Lix + o(()l x1 /2nK logMx), 

where M is as in Proposition (3.9). 

Proof. Let D be the image of D in G/H. It is a union of conjugacy 
classes in G/H and 

lrb(x) = IDI HI Lix + O(lD /2 Xl/2nKlog M(K'/K)x) D ~~IGI 

where K' is the fixed field of H. As HD C D, IDI HI = DI and 
7rD(X) = 7r-(x) + O((log dL)/IGI). Also, M(K'/K) << M(L/K). The 
result follows. 

3.13. Observe that the estimate above is sharper than that predicted 
by Artin's conjecture if I HI > 1. This leads us to ask what the true order of 
the error term should be. Let a (G) denote the number of conjugacy classes 
of G. 

Question. Is it true that for any conjugacy set D C G, 

D I IDI \1 /22 
7rD(X) Lix + )x 12nKlogMx ? 

IGI Z(-G-) 

This would be implied by (3.6.1) for example, if all the terms are of the 
same order. In the case K = Q and L/K is abelian, our question is a well- 
knQwn conjecture of Montgomery. 

4. Estimates for 7rf,a (x). 

4.1. We return to the situation described in the Introduction. Thus, 
f is a cusp form of weight k for Fo(N) with Fourier expansion 

f (z) = a a 2inz 

n21 
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at ioo. Suppose that 

(i) f is an eigenform for all the Hecke operators Tp, p 4 N and 

a, = 1 

(ii) k 2 2 
(iii) f is not of CM type 
(iv) the a,, are rational integers. 

Let h(T) be a polynomial in Z[T]. 

THEOREM 4.2. Suppose GRH holds. Then 

#{p ' x: ap = h(p)} << x45(logx)-5. 

where the implied constant depends only on f and the degree of h. 

Remarks 4.3. 

(i) If h = 0, the estimate can be improved to x3/4. We do not discuss 
this further as Serre has also obtained O(x3'4) in this case. 

(ii) Assumption (iv) above is made only for convenience and is easily 
removed as in Serre [16, pp. 175-176]. 

(iii) If f has CM, we can obtain the sharper estimate x 12(log x)2 
when h * 0. 

(iv) Our proof of Theorem (4.2) uses only the mod e reduction of the 
e-adic representation and we vary e. This should be compared with Serre's 
method where the (mod gn) reductions are used for all n 2 1 (Cf. [16, 
p. 190, Remark (1)]). 

The proof of Theorem (4.2) will require some preliminaries. For each 
prime p, let us denote by Q(w1) the field Q( ap - 4pk-l), and define for 
each e, 

rh(X, Q) = #{p ' x: ap = h(p) and Q splits in Q(wp)}. 

Note that Q(wp) is of degree c 2 over Q. 

LEMMA 4.4. Suppose for some c > 0, y 2 u 2 Y 1/2(log y) I+E(log 

xy). Then assuming the GRH, we have 

#{p < x: ap = h(p)} << max 7rh(X, Q) 
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where the maximum is taken over primes e in the interval 

I = [y, y + u]. 

Proof. We have 

(4.4.1) S 7rh(X, Q) = rp(I) 
CeI p x 

ap=h(p) 

where 

7rp(= #{e e: e splits in Q(wp) }. 

We know (for example, from Proposition 3.2) that uniformly in p, 

1 Xr(y) + O(y"12 log(py)) if Wp Q 

#{Q c y: esplits in Q(wp)I = i 
t(Y) if wp c-Q 

Using the Riemann Hypothesis, and recalling that u > y "2(log y)2+E, we 
see that 

ir(y + u) - __(y) >> _ 

log u' 

Therefore, if we take u as in the statement of the Lemma, we find that 
uniformly for each p c x, 

#{Q: y e Q c y + u, esplits in Q(&p1)} , 7r(y + u) - xr(y). 

Hence, from (4.4.1), 

#{p < x: ap = h(p)} << max lrh(X, Q) 

4.5. Reducing the representation PC,f (see Introduction) mod e gives 
(for large Q) a field Ke which is Galois over Q with group 

G = = {g e GL2(Ff) : detg e (Fx)k-I} 
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(see, for example, Ribet [12]). We also know that K0/Q is unramified out- 
side QN. 

Now, we fix Q and drop it from the subscripts. We consider the Borel 
subgroup 

B { eG: =( *) 

For p { NQ, the condition that e splits in Q(wp) means that up is conjugate 
to an element of B. 

Define a polynomial 

H(U, Tk-1) = (U - h(wT)) 
w 

where the product is over the (k- 1)st roots of unity. Then, as in Serre 
[16, p. 176], ap = h(p) implies that H(tr up, det up) = 0. Choose a maxi- 
mal set F of elements -y in B which are nonconjugate in G, so that H(tr 'y, 
det y) = 0, and set 

D = U CG(Y):'YeF. 

(Recall that CG(Y) is the conjugacy class of -y in G.) Our problem is to 
estimate 7rD(X). 

4.6. Proof of Theorem (4.2). Let DI be the union of the singleton 
classes in D (i.e. the set of scalars in F) and set D2 = D - D1. Clearly, 
D1 c (k - 1)(1 + 2 deg h) = A (say), and so from Proposition (3.2), 

lrD1(X) << ? 
t 

r(x) + O(AX112 log eNx). 

It remains to estimate lrD2(X). For any nonscalar -y E B, we observe that 

I CB(Y)IIBI= 
1 + 0(1) 

JCG('Y)JJGI= 
1 + 0(1). 
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Hence, from the discussion in Section 1.4, 

*CG(Y)(X) = *CB(Y)(X). 

Consider the subgroup 

A{ geB:g=( *)}) 

Then A is a normal subgroup of B with the property that if y e B has 
distinct eigenvalues, A'y = CB('Y). Moreover, 

A.(aI)={( ) 

(0 a) 

fora eFe. 
Let so: B -+ B/A be the quotient map, and y = sp(zy). As B/A is 

abelian, (P-1CB/A(Y) = A'y. Thus, 

(4.6.1) lrD2(X) ?< ? *CB(Y)(X) 

where the sum is over nonscalar elementsy E 1r. As B/A is abelian, Artin's 
conjecture holds for the characters of B/A and so by Proposition (3.12), 

(4.6.2) L' 7rCB(Y)(x) c ? - Lix + O(r 112 XP 2 -2e log(eNx)) 
(f - 1)2 

Now, let s? be the characteristic function of the set 

U CB(#y): nonscalar y E r. 

Then the right hand side of (4.6.1) differs from the left hand side of (4.6.2) 
by 

*<(x) - x,(x) 

which by Section 1.4 and Proposition (2.3) is 

<< ? log(QNx) + fx 1/2. 
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Thus as I F << ? , 

7rD2(X) << - i(x) + O(e312X1/2 log(eNx)). 

Putting everything together, we deduce that 

7rh(X, Q) = 7rD(X) <<- 7r (x) + o (Q 312X 1/2 log (QNx)). 

Now choosing y = x 15(log x)-415 and Q E I, and using Lemma (4.4), we 
find that 

#{p ' x: ap = h(p)} << x4/5(logx)-5. 

5. Lower bounds for ap and a,. Theorem (4.2) implies that (assum- 
ing GRH) for any c > 0, 

I ap 2 p(l/5)E 

holds for a set of primes of density 1. We now refine this lower bound. 

THEOREM 5.1. Suppose GRHis true. Then, we havefor any c > 0, 

I api >- p(l/4)-E 

for a set of primes of density 1. Unconditionally, there is a constant c > 0 
such that 

|ap|I (log p)c 

holds for a set of primes of density 1. 

Remark 5.2. It is clear that the factor p-e in the above bounds can 
be replaced by 1/F(p) where F is any real-valued function, tending mono- 
tonically and sufficiently rapidly to co. In fact, our proof produces such 
an F. 

5.3. Proof of Theorem (5.1). We shall prove the first assertion. 
The second will follow from an unconditional version of Theorem (4.2). 
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We proceed as in the proof of Theorem (4.2). Let z > 0 and consider the 
sum 

# #{p sx:ap =a}. 
IaI<z 

By Lemma (4.4), this sum is 

< max 7 'ra(x, Q) 
eeI Lal<z 

where I = (y, y + u) with y and u yet to be specified. For each a, we 
construct sets Fa and Da as in Section 4.5. Thus, Fa is a maximal set of 
elements y in B which are nonconjugate in G, so that tr 'y a and 

Da = U CG(Y): y E ra 

Each Da contains at most one scalar matrix, call it Di(a) and let D2(a) 
Da - D1(a). From Proposition (3.2), 

(5.3.1) E WDi(a)(x) << 
z 

7r(x) + O(ZX'/2 log CNx). 

For D2(a), we proceed as in Section 4.6 to get 

7rD2(a)(x) C S CB(-Y)(x) 

where the sum is over elements -y E rIa. Note that 1a I a< Q. Now summing 
over a we find 

(5.3.2) 1 7IrD2(a)(X) < E' 7rCB(7)(X) + r,(x) - 7r,(x) 
Lal<z Ial<z 

<< - 7r(x) + O((zx)"2C312logQCx) ? Clog(fNx) + Qx1/2 

where s? is the characteristic function of 

U U CB(-Y) 
IaI<z yEra 
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and we have used Corollary (3.7), Section 1.4 and Proposition (2.3). There- 
fore, from (5.3.1) and (5.3.2), 

7ra (x, e) ? - 7r(x) + zx112 log eNx + (zx)112e312 log(eNx) + ex112 
jaI<z e 

We choose y = z(log x)E and any u satisfying the conditions of Lemma 
(4.4). With these choices, 

max E 7ra(X, Q) 
feI IaI<z 

z ~ ~ ~ ~ ~~{+Z 1/2x3/8 
__________ 1 x3/4 __X112___gNX_ 

((log 1 )3/4 
(logx3 + x"2(og Nx) Z (ox)3/8 Y 

We choose z = x 14(log x)-(5/4)-E(log Nx)-2 and deduce that 

x 
#{p <x :ap =a)}? +I 

=o0(ir(x)). 
IaI<z (log x) 

This proves that 

I ap? 1 p 1/4(log p)-(5/4)-E(log pN)-2 

for a set of primes p of density 1. This proves the theorem. 

5.4. We can use Theorem (5.1) to obtain a result about a, also. 

THEOREM. Suppose that the GRH is true. Then there is a constant 
c > 0 such that the set 

{n:an=OorIanI >nc} 

has density 1. Unconditionally, the set 

{n : an = O or IanI > (log n)c} 

has density 1. (The constant c is absolute and effectively computable.) 

Remark. Serre [16, Section 6] showed that the set {n: a, * 0} has a 
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density a > 0. Combined with the above Theorem, we see that the set { n: 
a,I > nC}hasadensityao > 0. 

The proof of Theorem (5.4) will require several lemmas. For a set of 
natural numbers S, we let S(x) denote the number of elements of S which 
are cx. 

LEMMA 5.5. Let P denote a set of primes and set 

Sp = {n : p|n =* p EP}. 

If P has density 6 < 1, then for any r, satisfying 6 < -q < 1, 

Sp(x) = O(x/(logx)1_,). 

Proof. If P denotes the set of primes not in P, then Sp consists of 
natural numbers not divisible by any prime p E P. The result now follows 
from Brun's sieve [13]: 

Sp(x) << x 1 << x 

p5X 

5.6. Now -let P denote any set of primes. We can then write every 
natural number n as a product n = np* mp where np is not divisible by any 
prime in P and mp has all its prime divisors in P. 

LEMMA. Let P be a set of primes satisfying P(x) O(x,?) with < 
1. Then for any 6 satisfying O < 6 < 1, the set 

Sb = {n : np > n } 

has density 1. 

Proof. Let 0 < 6 < 1 and consider 

Sb = {n: np ' nb}. 

Then 

Sb(x) <-- xt 1 
xa<n <x 

npnxb 
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for any a with 0 c a < 6. Thus, 

X 
Sb(x) c xa + , -. 

mp >xa- mp 

Since P(x) = O(x21) with 71 < 1, it follows that E 1/mp converges, and so 
the sum in the penultimate steps is o(x). This proves the result. 

Remark 5.7. The result holds with nb replaced by n/F(n) where 
F(x) is any function tending monotonically to co as n -m co. 

LEMMA 5.8. There is an absolute and effectively computable con- 
stant c > 0 such thatfor each prime p, and each positive integer m * 1, 2, 
4, we have 

apm = 0 or I apm | 2 pmc. 

If we assume GRH, then 

#{p c x : min(| ap |, I ap2 |, I ap4 |) < p4c) << XI-E. 

Proof. The first assertion is proved in [10]. It follows from the proof 
of Theorem (5.1) that 

#{p x: apI <p4c} <<X1-e 

if c is smaller than 1/16. For m = 2, 4, we consider 

- Pe ~~~~~Sym"n 
Pe,m: Gal(Q/Q) - > GL2(Fe) GLm+1(Fe) 

where Symm denotes the m-th symmetric power of the standard represen- 
tation. It then is easy to see that if p ' QN, 

tr p,m (up) apm (mod Q). 

We proceed as in the proof of Theorem (5.1) for the field Ke,m/Q where 
Ke,m is the fixed field of ker Pe,m This proves the lemma. 

LEMMA 5.9. There is an absolute and effectively computable con- 
stant c > 0 such that for each prime p, and each positive integer m 2 2, 

| apm I = 0 or I apm I 2 (log pm)c. 
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Form =1, we have 

Iap|I (log p)C 

for all but O(x/(log x)1+') primes p ' x, for some y > 0. 

Proof. This is proved in [10] for m 2 2. For m = 1 it follows from 
Theorem (5.1). 

5.10. Proof of Theorem (5.4). Let DA consist of prime powers pm 
satisfying I apm I 2 p mc where c is the constant of Lemma (5.8). Let DB 

consist of prime powers pm satisfying I apm I 2 (log pm)C where c is the 
constant of Lemma (5.9). For any integer, write n = n 1n2 where 

n2= II pm. 

ptm 11 n 
pn EDA 

Then if an * 0, 

I ani |' 2|an2 m apm 2 n2 

pnZEDA 

Now we apply Lemma 5.6 to DA to find that for a set of integers n of 
density 1, n2 2 n6. This proves the first part of Theorem (5.4). The second 
part is proved similarly using DB instead of DA in the above proof. 

6. Large prime divisors of ap and a". 

6.1. Our third application is to large prime divisors of ap and an. If 
P(n) denotes the largest prime divisor of n, then, it was essentially shown 
in [8] that under GRH, 

P(ap) > exp((logp)'-,,) 

for any c > 0, and for a set of primes p of density 1. Now, we shall use a 
similar method to obtain an unconditional result. We suppress the details 
that overlap with [8]. The main difference in the argument here is in the 
handling of the Siegel zeros of the Dedekind zeta function. 

THEOREM 6.2. For any c > 0, andfor almost all primes p, we have 

P(ap) 2 exp((loglogp)1-E). 
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Proof. As in [8], let us set 

Z(x) = #{p ' x: ap = 0} 

and 

ir(x, ) -#{p c x :0 * ap--O(modQ)}. 

Then by Proposition 3.3, 

Iir(x, Q) - 6(Q)Li x l '6()Li(x0) + O(ex exp (-c2( 4l )/)) 

where 6(e) = (1/Q) + O(1/l2). We have the estimate of Stark [17] that for 
any normal extension L/Q of degree nL and discriminant dL, there is an 
effectively computable absolute constant cl such that 

(3< max (1 -4log dL' dLInLL) 

In our case, log dL = O(Q4 log Q) so that for some absolute constant c > 0, 

< 1- -. 

Hence, for some small constant c2 > 0, and e c (log X)c2, 

I r(x, Q) - b(e)Li x I << ex exp(-c2(10g x) 12/e2). 

It is then easy to see that if Py(n) denotes the number of prime factors of n 
which are 'y, then for any n2 < (log X)c3, 

E {Iu(ap) - loglog n }2 = Z(X) (loglog u)2 + O(ir(X) loglog u), 
p<x 

by the methods of [8] and the effective estimate for-r(x, Q) given above. As 
in [8], it is then straightforward to deduce that for almost all primes p, 

P(ap) 2 exp((loglogp)l-E), 

for any e > 0. This completes the proof. 
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Finally, we find an analogous result for a,. 

THEOREM 6.3. The set 

{n: a, = 0 or P(aj) 2 exp((log n)1E)} 

has density 1, assuming GRH. The set 

{n: an = 0 or P(an) 2 exp((loglog n)1-)} 

has density 1 unconditionally. 

Proof. Let 

E = { p: p prime, P(a p) > exp ((loglog p)1E)}. 

We first show that almost all n s x have a prime divisor p > exp ((loglog 
X)-E), p e E. Indeed, from Theorem (6.2), E has density 1 and so, by 
Brun's sieve, the number of n s x not having any such prime divisor is 

p? ( ( E ) (log z)ln = o(x) 
p<z 

where z = exp((log x)lE-) and v, > 0. If 

F(x) = {n s x: 3p EE, p2 In, p > exp((logx)1-)}, 

We find 

x 
IF(x)I S - = o (x). 

z<p<x p2 

Therefore, for almost all n < x, there exists a prime divisor p E E, p li n 
such that p > exp((log x)1-). Hence, for almost all n, 

IanI a pa I 2 exp((loglogp)1E) 

2 exp((loglog n)1E') 
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for any z' > 0. The proof of the conditional assertion of the Theorem is 
similar. 
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