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Bounds for the coefficients of powers of the Δ-function

Jeremy Rouse

Abstract

For k � 1, let
∑∞

n=k τk(n)qn = qk ∏∞
n=1(1 − qn)24k. It follows from Deligne’s proof of the Weil

conjectures that there is a constant Ck so that |τk(n)| � Ckd(n)n(12k−1)/2. We study the value
of Ck as a function of k, and show that it tends to zero very rapidly.

1. Introduction and statement of results

For an integer r, define the numbers pr(n) by
∞∑

n=0

pr(n)qn =
∞∏

n=1

(1 − qn)r.

For various values of r, these numbers capture important arithmetic objects. For example,
when r = −1, we recover the classical partition generating function

∞∑
n=0

p−1(n)qn =
∞∏

n=1

1
1 − qn

,

while for r = 1 and r = 3 we recover the identities of Euler and Jacobi,
∞∑

n=0

p1(n)qn =
∞∏

n=1

(1 − qn) =
∞∑

n=−∞
(−1)nq(3n2+n)/2,

∞∑
n=0

p3(n)qn =
∞∏

n=1

(1 − qn)3 =
∞∑

n=0

(−1)n(2n + 1)q(n2+n)/2.

In a series of papers ([9–12]), Newman studied the function pr(n), and proved a number of
identities for it. Newman was particularly interested in when the function pr(n) is zero and
computed pr(n) for small n (as a polynomial in r). These coefficients were later considered
by many authors, including Gupta, Atkin, Costello, Gordon, and finally Serre. Serre [16]
showed that if r is an even integer, then {n : pr(n) = 0} has density zero if and only if
r = 2, 4, 6, 8, 10, 14, or 26.

Another natural question is about how large (as a function of r and n) the coefficients pr(n)
are. In this regard, Newman’s approach of expressing the coefficients pr(n) as polynomials in
r is very ineffective. A stronger result follows from the work of Deligne [2] (at least when r is
even) and gives that pr(n) � n(r−1)/2+ε. In the case of r = 24, it implies Ramanujan’s famous
conjecture that if

∞∑
n=1

p24(n − 1)qn = q

∞∏
n=1

(1 − qn)24
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is the Fourier expansion of the weight 12 cusp form Δ(z), then

|p24(n − 1)| � d(n)n11/2,

where d(n) is the number of divisors of n.
Deligne’s bound applies to cuspidal Hecke eigenforms of all weights. Hence, if f(z) =∑∞
n=1 a(n)qn ∈ Sm is any cusp form of weight m, then by writing f(z) =

∑dim Sm

i=1 cifi,
where the fi are normalized Hecke eigenforms, we have that |a(n)| � Cd(n)n(m−1)/2, where
C =

∑dim Sm

i=1 |ci|.
For example, we may write

Δ2(z) =
∞∑

n=2

p48(n − 2)qn = q2 − 48q3 + 1080q4 + . . . ∈ S24

as a linear combination of the Hecke eigenforms

f1(z) = q + (540 + 12
√

144169)q2 + (169740 − 576
√

144169)q3 + . . . ,

f2(z) = q + (540 − 12
√

144169)q2 + (169740 + 576
√

144169)q3 + . . . .

Then, we have that

Δ2(z) =
f1 − f2

24
√

144169
,

and hence |p48(n − 2)| � (1/12
√

144169)d(n)n23/2. Note that (1/12
√

144169) ≈ 0.000219 is
quite small.

The aim of this paper is to compute explicit bounds for the coefficients pr(n), when r � 0
and is a multiple of 24. We then have that

Δk(z) :=
∞∑

n=k

p24k(n − k)qn.

Let Ck :=
∑k

i=1 |ci|, where Δk(z) =
∑k

i=1 cifi is the representation of Δk as a sum of Hecke
eigenforms. Then

|p24k(n − k)| � Ckd(n)n(12k−1)/2.

It suffices therefore to bound Ck. Our main result is the following theorem.

Theorem 1. For k � 2, we have

log(Ck) = −6k log(k) + 6k log
(

2π3e

27Γ(2/3)6

)
+ O(log(k)).

This result follows from explicit upper and lower bounds on Ck derived below. Our approach
is as follows. For f, g ∈ Sk, let

〈f, g〉k =
3
π

∫
SL2(Z)\H

f(x + iy)g(x + iy)yk dx dy

y2

be the normalized Petersson inner product of f and g. Elementary considerations provide
bounds on 〈Δk,Δk〉12k. If fi ∈ S12k is a normalized Hecke eigenform, then 〈fi, fi〉12k is
essentially the special value at s = 1 of the symmetric square L-function associated to fi.
Goldfeld, Hoffstein, and Lieman showed in the appendix to [5], that such an L-function can
have no Siegel zero. We make their argument explicit and derive an explicit lower bound on
〈fi, fi〉12k.

These bounds are translated to bounds on Ck using the well-known fact (see [6, Theorem
6.12]) that if fi �= fj are Hecke eigenforms, then 〈fi, fj〉12k = 0.
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Remark. It is plausible that in fact

Ck = sup
n�1

|p24k(n − k)|
d(n)n(12k−1)/2

.

This would follow if for each eigenform fi =
∑∞

n=1 ai(n)qn, we have |ai(p)| � (2 − ε)p(12k−1)/2

for a positive density set of primes, and if the coefficients a1(p), a2(p), . . . , ak(p) are ‘inde-
pendent’. The first statement would follow from the Sato–Tate conjecture. Recently, Richard
Taylor has achieved an important breakthrough by proving the Sato–Tate conjecture for a
wide class of elliptic curves. Taylor’s work establishes the automorphy of symmetric power
L-functions, which can be used (as in [14]) to produce lower bounds for Hecke eigenvalues.

Remark. The approach given here readily generalizes to powers of any fixed modular form,
provided that the powers are orthogonal to CM forms. One cannot (at present) exclude the
possible existence of a Siegel zero for the symmetric square of a CM form. For r ≡ 0, 12, 16
(mod 24), we can relate

∑
pr(n)qn to a modular form lying in a space with no CM forms.

In Section 2 we derive upper and lower bounds on the Petersson norms 〈Δk,Δk〉12k and
〈fi, fi〉12k. In Section 3 we use the results derived in Section 2 to prove Theorem 1, and in the
Appendix we present some numerical data.

2. Petersson norm bounds

First, we will compute bounds for the Petersson norm of Hecke eigenforms fi ∈ S12k. We will
repeatedly use the fact (see the second equation [6, p. 251]) that

L(Sym2fi, 1) =
6
π2

· (4π)12k〈fi, fi〉12k

Γ(12k)
.

If the normalized L-function of fi =
∑∞

n=1 ai(n)qn is

L(fi, s) =
∏
p

(1 − αpp
−s)−1(1 − βpp

−s)−1,

where αp + βp = ai(p)/p(12k−1)/2 and αpβp = 1, then

L(Sym2fi, s) =
∏
p

(1 − α2
pp

−s)−1(1 − p−s)−1(1 − β2
pp−s)−1.

This L-function is known by work of Gelbart and Jacquet [3] to be the L-function of a cuspidal
automorphic representation on GL(3). Hence, it is entire and if

Λ(Sym2fi, s) = π−3s/2Γ((s + 1)/2)Γ((s + (12k − 1))/2)Γ((s + 12k)/2)L(Sym2fi, s),

then Λ(Sym2fi, s) = Λ(Sym2fi, 1 − s).

Lemma 2. If fi ∈ S12k is a normalized Hecke eigenform, then

L(Sym2fi, s) �= 0

for s > 1 − (5 − 2
√

6)/10 log(12k).

Proof. Goldfeld, Hoffstein, and Lieman introduce the auxiliary function

L(s) = ζ(s)2L(Sym2fi, s)3L(Sym4fi, s).
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Here,

L(Sym4fi, s) =
∏
p

(1 − α4
pp

−s)−1(1 − α2
pp

−s)−1(1 − p−s)−1(1 − α−2
p p−s)−1(1 − α−4

p p−s)−1.

The work of Kim [7] implies that this is the L-function of a cuspidal automorphic representation
on GL(5). From this, it follows that L(Sym4fi, s) has an analytic continuation and functional
equation of the usual type (see the paper of Cogdell and Michel [1] for details about computing
the sign of the functional equation and the Γ-factors of symmetric power L-functions using the
local Langlands correspondence for GL(n)).

If we let Λ(s) = s2(1 − s)2G(s)L(s), where

G(s) = π−16s/2Γ(s/2)3Γ((s + 1)/2)3Γ((s + (12k − 1))/2)4Γ((s + 12k)/2)4

Γ((s + (24k − 2))/2)Γ((s + (24k − 1))/2),

then Λ(1 − s) = Λ(s). Writing Λ(s) = eA+Bs
∏

ρ (1 − s/ρ) es/ρ and taking the logarithmic
derivative gives ∑

ρ

1
s − ρ

+
1
ρ

=
2
s

+
2

1 − s
+

L′(s)
L(s)

+
G′(s)
G(s)

− B.

Now, the Dirichlet coefficients of L(s) are non-negative. This implies that for Re(s) > 1, we get
L′(s)/L(s) < 0. Taking the real part of this equation and noting that Re(B) = −∑

ρ Re(1/ρ)
gives ∑

ρ

Re
(

1
s − ρ

)
� 2

s
+

2
1 − s

+
G′(s)
G(s)

.

Assume that s = 1 + α, where 0 < α � 1/2 will be chosen later. Noting that Γ′(s)/Γ(s) � log(s)
for s � 1 gives that, in this range, G′(s)/G(s) � 10 log(12k) − 2.

Suppose that L(Sym2f, β) = 0. Then we have

3
α + 1 − β

� 2
α

+ 10 log(12k).

Solving for β and choosing α optimally yields the desired result.

Next, we follow the argument of Hoffstein [4] to translate this into an explicit lower bound
on L(Sym2fi, 1).

Lemma 3. If f ∈ S12k is a normalized Hecke eigenform, then

L(Sym2f, 1) >
1

64 log(12k)
.

Proof. Let

L(f ⊗ f, s) = ζ(s)L(Sym2f, s) =
∞∑

n=1

a(n)
ns

.

Then a(n) � 0 for all n � 1. Also, its functional equation is well known (for example, it follows
from that of L(Sym2f, s)).

Let β = 1 − (5 − 2
√

6)/10 log(12k). We set x = (12k)A. It will turn out that the optimal A
is about 8/5 and we choose A = 8/5 + 10/ log(12k). We consider

I =
1

2πi

∫2+i∞

2−i∞

L(f ⊗ f, s + β)xs ds

s
∏10

k=2(s + k)
.
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We use the fact that

1
2πi

∫2+i∞

2−i∞

xs ds

s
∏10

k=2(s + k)
=

⎧⎨
⎩

(x + 9)(x − 1)9

10!x10
, x > 1

0, x < 1,

and conclude that

I =
1

2πi

∫2+i∞

2−i∞

L(f ⊗ f, s + β)xs

s
∏10

k=2(s + k)
=

∑
n�x

a(n) (x/n + 9) (x/n − 1)9

10!nβ(x/n)10
.

One can easily show that a(n2) � 1. We consider only those terms for which x/n � 559. This
gives a lower bound on the integral of 1.6442234/10!.

Now, we move the contour to Re(s) = α, where α = −3/2 − β. The poles at s = 1 − β, s = 0
and s = −2 contributed residues. This gives

I =
1

2πi

∫α+i∞

α−i∞

L(f ⊗ f, s + β)xs ds

s
∏10

k=2(s + k)
+

L(Sym2f, 1)x1−β

(1 − β)
∏10

k=2(1 − β + k)

+
L(f ⊗ f, β)

10!
+

L(f ⊗ f,−2 + β)x−2

2 · 8!
.

There are no zeroes of L(Sym2f, s) to the right of β and hence L(Sym2f, β) � 0. Since ζ(β) < 0,
it follows that L(f ⊗ f, β) � 0. Also L(f ⊗ f,−2 + β) < 0. It follows that

1.6442234
10!

− 1
2πi

∫α+i∞

α−i∞

L(f ⊗ f, s + β)xs ds

s
∏10

k=2(s + k)
� L(Sym2f, 1)x1−β

(1 − β)
∏10

k=2(1 − β + k)
. (1)

Now, we bound the integral in the above inequality. The functional equation for L(f ⊗ f, s)
implies that

|L(f ⊗ f,−3/2 + it)|
|L(f ⊗ f, 5/2 − it)| = |1/2 + it|2|3/2 + it|2

4∏
m=1

|12k − 3 + m/2 + it|.

Also |L(f ⊗ f, 5/2 − it)| � ζ(5/2)4. Hence |I| is bounded above by

ζ(5/2)4

29π9
(12k)A(−3/2−β) ·

∫∞

−∞

|1/2 + it|2|3/2 + it|2 ∏4
m=1 |12k − 3 + m/2 + it| dt

|9/4 + it||1/4 + it|∏10
n=3 |n − 5/2 + it|

� ζ(5/2)4(12k)4−A(3/2+β)

29π9

∫∞

−∞

|1/2 + it||3/2 + it||1 + it|3|25/24 + it|
|1/4 + it||9/4 + it|∏7

n=2 |n + 1/2 + it|
� (12k)4−A(3/2+β) · 0.181266

10!
.

Hence, returning to equation (1), we have

L(Sym2f, 1) � (1 − β)
(

1.6442234
(12k)A(1−β)

− 0.181266
(12k)(5/2)A−4

)
.

We choose A = 8/5 + 10/ log(12k) and obtain the desired result.

Next, we use an elementary argument to obtain an upper bound for 〈fi, fi〉12k.

Lemma 4. If fi is a normalized Hecke eigenform of weight k and k � 48, then

〈fi, fi〉k � 3.182
Γ(k) log3(k)

(4π)k
.

Remark. This result could also be obtained from the convexity bound for L(Sym2fi, s).
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Proof of Lemma 4. For brevity we will explain only the main ideas. One can extend the
integral for 〈fi, fi〉k to the region {x + iy : −1/2 � x � 1/2, y �

√
3/2}. If

fi(z) =
∞∑

n=1

ai(n)qn,

and we replace fi(z) by its Fourier expansion, then we obtain the upper bound

〈fi, fi〉k � 3
π

∞∑
n=1

|ai(n)|2
∫∞
√

3/2

e−4πnyyk−2 dy.

Changing variables, we get

1
(4π)k−1

∞∑
n=1

|ai(n)|2
nk−1

∫∞

π
√

3n

e−uuk−2 du.

The Deligne bound implies that |ai(n)|2/nk−1 � d(n)2. The integrand also does not depend on
n. Replacing the order of the sum and the integral we obtain

1
(4π)k−1

∫∞

π
√

3

uk−2e−u
∑
n�u

d(n)2 du.

An asymptotic for
∑

n�u d(n)2 was given by Ramanujan [13, Equation (B)]. The elementary
proof of

∑
n�u d(n)2 ∼ (1/π2)u log3(u) in [8, Theorem 7.8], can be easily modified to show that∑

n�u d(n)2 � (19/3 log3(6))u log3(u) for all u � 1. Hence, it suffices to estimate
∫∞

π
√

3

e−uuk−2 log3(u) du.

One can easily check that the integrand decays rapidly for u � k log(k). The remainder is easy
to estimate by comparison with the Γ-function.

The next result is of independent interest and is useful in bounding 〈Δk,Δk〉12k.

Lemma 5. Let f(x, y) = |Δ(x + iy)|2y12. Then for y > 0 we have

f(x, y) � B :=

( √
2π

3Γ(2/3)3

)24

with equality if and only if x + iy = (aω + b)/(cω + d) for a, b, c, d ∈ Z with ad − bc = 1 and
ω = (−1 + i

√
3)/2.

Proof. First, the equality when x = −1/2 and y =
√

3/2 is very classical (see, for example,
[15, equation (2), p. 110]).

Next, the function |Δ(z)|2Im(z)12 is invariant under the action of SL2(Z). It suffices therefore
to find its maximum on the usual fundamental domain for SL2(Z), namely {z ∈ H : −1/2 �
Re(z) � 1/2 and |z| � 1}. Moreover, since the Fourier coefficients of Δ(z) are real, it follows
that Δ(x + iy) = Δ(−x + iy). Thus f(x, y) = f(1 − x, y), and it suffices to consider −1/2 �
x � 0.

We approximate the size of |Δ(x + iy)| by
∣∣∣∑4

n=1 τ(n)qn
∣∣∣. We can easily see that for any y

this is maximized when x = −1/2. One can also show that y6
∣∣∣∑4

n=1 τ(n)qn
∣∣∣ is maximized when

y =
√

3/2. It follows from this that if f(x, y) � f(−1/2,
√

3/2) for x + iy in the fundamental
domain, then y � 0.8676 and hence −1/2 � x � −0.497.
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Differentiating the equality f(x, y) = f(1 − x, y) with respect to x and setting x = −1/2
shows that fx(−1/2, y) = 0 for all y. Using the transformation law with the matrix

[−1 −1
1 0

]
shows that

f

(−x2 − y2 − x

x2 + y2
,

y

x2 + y2

)
= f(x, y).

Differentiating this with respect to x, setting x = −1/2, y =
√

3/2 and using that
fx(−1/2,

√
3/2) = 0 shows that fy(−1/2,

√
3/2) = 0. Since the maximum of f(x, y) occurs

where fx and fy both vanish, it suffices to show that this does not occur elsewhere in the
box −1/2 � x � −0.497,

√
3/2 � y � 0.8676.

Next, we use the product expansion f(x, y) = y12
∏∞

n=1 |1 − qn|48. This implies that

fx

f
= 24

∞∑
n=1

2πn sin(2πnx)e−2πny

1 − 2 cos(2πnx)e−2πny + e−4πny
.

We note that
fxx

f
=

d

dx

(
fx

f

)
+

(
fx

f

)2

.

Trivially estimating fx/f , we see that |fx/f | � 0.665 in this box. We estimate all but the first
two terms of d

dx (fx/f) trivially and obtain the bound fxx/f � −1.9.
Now, we assume that x = −1/2. Using

fy

f
=

12
y

− 4π + 96π

∞∑
n=1

(−1)nne−2πny

1 − (−1)ne−2πny
,

we will estimate
fyy

f
=

d

dy

(
fy

f

)
+

(
fy

f

)2

.

We see that |fy/f | � 0.048. The main term is −12/y2, and for y � 1.1, this dominates and
fyy/f < 0. This establishes the desired result since we have fx < 0 for x �= −1/2, and if x =
−1/2 then we have that fx = 0 and fy < 0 unless y =

√
3/2.

With a little bit of work, the above lemma can be translated into bounds on 〈Δk,Δk〉12k.

Lemma 6. For k � 1, we have

0.08906Bk

k
� 〈Δk,Δk〉12k � 76.4Bk

k
.

Proof. For the lower bound, similar arguments to those in the proof of Lemma 5 imply that
for all x and y, fxx � −4.251 · f and for x = −1/2, fyy � −8.652 · f . Using the upper bound
on f established above, we obtain that if C := −3.555 · 10−5, then fxx � C for all x and y and
fyy � C for x = −1/2 and y �

√
3/2. Integrating from (−1/2,

√
3/2) to (−1/2, y) and then to

(x, y) shows that

f(x, y) − f(−1/2,
√

3/2) � −(C/2)((x + 1/2)2 + (y −
√

3/2)2).

If we fix ε > 0 then it follows that f(x, y) � B − ε on a set of measure at least (2π/3(3.555 ·
10−5))ε. This gives a lower bound for the Petersson norm of

2π

3(3.555 · 10−5)
ε(B − ε)k.

This is maximized with ε = B/(k + 1) and gives the desired result.
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For the upper bound, we let

Sε = {(x, y) : −1/2 � x � 1/2, x2 + y2 � 1, and f(x, y) � B − ε}.
One can check that there is a constant C2 so that if ε is small enough then μ(Sε) � C2ε, where
μ = (3/π)(dx dy/y2). Choose ε small enough so that μ(Sδ) � C2δ for all δ � ε and let n be a
positive integer. For (x, y) ∈ S(l+1)ε/n − Slε/n, we have f(x, y) � B − εl/n. It follows that

〈Δk,Δk〉12k �
n−1∑
l=0

μ
(
S(l+1)ε/n − Slε/n

) (
B − εl

n

)k

+
3
π

(B − ε)k.

Let al = μ
(
S(l+1)ε/n − Slε/n

)
and bl = (B − εl/n)k. Notice that b0 � b1 � . . . � bn−1. Also for

0 � m � n − 1,
m∑

l=0

al = μ
(
S(m+1)ε/n

)
� C2(m + 1)ε/n.

Since the bl are decreasing, the sum
∑n−1

l=0 albl �
∑n−1

l=0 (C2ε/n)bl. It follows that

〈Δk,Δk〉12k � C2

n−1∑
l=0

ε

n

(
B − εl

n

)k

+
3
π

(B − ε)k.

Taking the limit as n → ∞ gives that the first term above is∫ ε

0

C2(B − x)k dx =
C2

k + 1
[
Bk+1 − (B − ε)k+1

]
.

Hence we have

〈Δk,Δk〉12k � C2B
k+1

k + 1

[
1 − (1 − ε/B)k+1 +

3(k + 1)
πBC2

(1 − ε/B)k

]
.

Computations similar to those above show that we may take ε = 1.93553 × 10−8, and
C2 = 729582. This gives that for k � 1,

〈Δk,Δk〉12k � 76.4Bk

k
.

Note however, that for small k and for k � 300, the above inequality is better.

3. Proof of Theorem 1

Proof of Theorem 1. We assume that k � 4 and write

Δk =
k∑

i=1

cifi,

where the fi are normalized Hecke eigenforms. Since the Fourier coefficients of the fi are real,
the ci are real. As noted in the introduction, if i �= j, then 〈fi, fj〉 = 0. Computing the inner
product of Δk with itself, we obtain

〈Δk,Δk〉12k =
k∑

i=1

c2
i 〈fi, fi〉12k.

Let B1 and B2 be the lower and upper bounds on 〈fi, fi〉12k furnished by Lemmas 3 and 4,
respectively. We obtain

〈Δk,Δk〉12k

B2
�

k∑
i=1

c2
i � 〈Δk,Δk〉12k

B1
.
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We use Lemma 6 together with the simple inequalities√√√√ k∑
i=1

c2
i �

k∑
i=1

|ci| �
√

k

√√√√ k∑
i=1

c2
i

to complete the proof. This gives the explicit bound

(4π)6kBk/2

6
√

(12k − 1)!
√

k log3/2(12k)
� Ck � 55(4π)6kBk/2 log1/2(12k)√

(12k − 1)!

Taking logarithms easily yields the desired result.

Appendix. Numerical data

Using Magma, if k is small, then we can compute the Fourier expansions of the normalized
Hecke eigenforms fi and hence compute Ck =

∑k
i=1 |ci|. Table A.1 is a list of k values and the

logarithms of the bounds derived in this paper.

Table A.1. Upper bounds, lower bounds and values of Ck.

k log(lower bound) log(Ck) log(upper bound)

1 −2.9232 0.0000 2.7527
2 −11.706 −8.4243 −4.8448
3 −23.369 −19.657 −15.862
4 −36.977 −33.072 −29.028
5 −52.053 −47.874 −43.769
6 −68.308 −64.102 −59.754
7 −85.549 −81.120 −76.771
8 −103.64 −99.160 −94.665
9 −122.46 −117.84 −113.33
10 −141.96 −137.40 −132.66
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