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The multiplication table problem
Statement of results
A heuristic argument

The multiplication table and higher dimensional analogues

Consider the multiplication table

1 2 3 4 N
111 2 3 4 N
212 4 6 8 2N
3|3 6 9 12 3N
414 8 12 16 4N
N|N 2N 3N 4N ... N?

Question (Erdés, 1955)
How many distinct integers does this table contain?




The multiplication table problem

The multiplication table and higher dimensional analogues i g T

A heuristic argument

We may ask the same question for products of 3 integers, in
which case we have a multiplication ‘box’, or 4 integers, and so
on. To this end, define

Ak+1(N) ::|{n1"'nk+1 :n,-§N(1 §I§k+1)}|

Then the problem is equivalent to estimating Ax1(N).
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A heuristic argument

We may ask the same question for products of 3 integers, in
which case we have a multiplication ‘box’, or 4 integers, and so
on. To this end, define

Ak+1(N) ::|{n1"'nk+1 :n,-§N(1 §I§k+1)}|

Then the problem is equivalent to estimating Ax1(N).

The key to understanding the combinatorics of the
multiplication table is the function

Hiki1(x,y,2) .= |{n < x :3d; - - - dk|n such that
yi<di<zi(1<i<Kk)}l,

where y = (y1,...,yx)and z = (zy,. .., Zx).



The multiplication table problem

The multiplication table and higher dimensional analogues i g T

A heuristic argument

The transition from Hy1(x, ¥y, Z) to Ax.1(N) is achieved via the
elementary inequalities

Hk+1<Nk+1 (N N),(N,...,N)) < A1 (N)

77 27 9 2
NEH N N N N
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L NKFT/2.
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A heuristic argument

The transition from Hy1(x, ¥y, Z) to Ax.1(N) is achieved via the
elementary inequalities

Hk+1<Nk+1 (N N),(N,...,N)) < A1 (N)

77 27 9 2
NEH N N N N
S ZfHk+1 (2m1+"'+mk’ <2m1+1,-.-,2mk+1>7 (2,-”1, 72n7k>>
2m; N
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L NKFT/2.

Note that it suffices to study Hx.1(x, Yy, z) when
0 z=2y;
@ the numbers log y1, ..., log yk all have the same order of
magnitude.
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A heuristic argument

Set Q(u) :==ulogu —u-+1.
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Set Q(u) := ulogu — u+ 1. Then the following estimate holds.

Theorem (Ford (2004), K. (2008))

Letk >1,0< 6 <1andc>1. Assume that x > 1 and

3<y <yp <o < yk < yE with > max{2k, y9}. Then

X
Y1 Yk

X

Hki1(X,¥,2Y) =k s.c

(log y1) 2=t (log log y1)2/2
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The multiplication table and higher dimensional analogues

Set Q(u) := ulogu — u+ 1. Then the following estimate holds.
Theorem (Ford (2004), K. (2008))

Letk>1,0<d<1andc>1. Assume that x > 1 and

3<y <yp <o <y < yf wit ,y7}. Then

X

(log y1) 2=t (log log y1)2/2

Hki1(X,¥,2Y) =k s.c

Consequently

NKH
Ar1(N) =k (N=3).

(log N) AWrglery )(log log N)3/2
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The following heuristic was first given by Ford when k = 1.

Assume that log y4, . . ., log yx have the same order of
magnitude. For n € N write n = ab, where

a= J] »r°

pelln,p<2y

Assume that ;%(a) = 1 and a < yf.
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The following heuristic was first given by Ford when k = 1.

Assume that log y4, . . ., log yx have the same order of
magnitude. For n € N write n = ab, where

a= J] »r°
pelin.p<2y1
Assume that ;%(a) = 1 and a < yf.

Consider the set

Dyy1(a) = {(log dy,...,logdy) : di --- dk|a}.



The multiplication table problem

The multiplication table and higher dimensional analogues o S T

A heuristic argument

The following heuristic was first given by Ford when k = 1.

Assume that log y4, . . ., log yx have the same order of
magnitude. For n € N write n = ab, where

a= J] »r°

pelln,p<2y

Assume that ;%(a) = 1 and a < yf.

Consider the set

Dyy1(a) = {(log dy,...,logdy) : di --- dk|a}.

Main assumption: Dy (a) is well-distributed in [0, log a]*.
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Then we would expect that
Tk+1(a, y,2y) = [{dy---dkla: yi < di <2y (1 < i< K)}

K
= ‘Dkﬂ (a) N [J(log y;,log y; + log 2]
=1

(log2)k (k4 1)@
(loga)* =~ (logys)k -

~ [Diy1(a)]
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A heuristic argument

Then we would expect that
Tk+1(a, y,2y) = [{dy---dkla: yi < di <2y (1 < i< K)}

K
= ‘Dkﬂ (a) N [J(log y;,log y; + log 2]
=1

(log2)k (k4 1)@
(loga)* =~ (logys)k -

~ | Dys1(a)
This expression is > 1 when

w(@) > m:= Llog(kk+1) log Iogy1J + O(1).



The multiplication table problem

The multiplication table and higher dimensional analogues o S T

A heuristic argument

Then we would expect that
Tk+1(a, y,2y) = [{dy---dkla: yi < di <2y (1 < i< K)}

K
= ‘Dkﬂ (a) N [J(log y;,log y; + log 2]
=1

(log2)k (k4 1)@
(loga)* =~ (logys)k -

~ | Dx+1(a)]

This expression is > 1 when
k

>m:=|—F— :

w(@ >m Llog(k+ 7 log Iogy1J + 0O(1)

We have

X (loglog y1)"

< . = ~
< x:wl@) =l = o)
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Therefore

X loglo r
Hi1(x,y,2y) = Z( 9log y1)

!
log y1 = rl
X

(log y1) i) (log log y1)1/2
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A heuristic argument

Therefore

X S (loglog y1)"
log y1 = rl
X

(log y1) i) (log log y1)1/2

Hki1(x,y,2y) =

~
—~

This is slightly too big. The problem arises from the fact that
Dk1(a) is usually not well-distributed, but instead it has many
clumps.
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Therefore

X loglo r
Hi1(x,y,2y) = Z( 9log y1)

log y4 r

r>m
X

(log y1) i) (log log y1)1/2

~
—~

This is slightly too big. The problem arises from the fact that
Dk1(a) is usually not well-distributed, but instead it has many
clumps.

To see this define

Lip1(a) = vOl( L llog(di/2).log ) - - -x[log(dk/2). log dk)),
d1---dk\a

which is a quantitative measure of how well-distributed Dy 1(a)

is.
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A heuristic argument

If a=ps---pm, where p;y < --- < pm < 2y4, then we expect that

J Jlog(k+1)

loglog p; ~ = log log y4 == + O(1).
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The multiplication table problem
Statement of results

A heuristic argument

If a=ps---pm, where p;y < --- < pm < 2y4, then we expect that

] log(k + 1

loglog p; ~ 1 log log y4 :jM + O(1).
m k

But with probability tending to 1 there is a j so that

log(k + 1)

lo
log log pj < e (loglog y1)'/3,



The multiplication table problem

The multiplication table and higher dimensional analogues o S T

A heuristic argument

If a=ps---pm, where p;y < --- < pm < 2y4, then we expect that

] log(k + 1
J log log y4 :jg(k)+0(1).

loglog p; ~ =

But with probability tending to 1 there is a j so that

Jlog(k + 1
loglog p; < /g(k) — (loglog y1)

1/3
which implies that

Lkr1(a) < 7ks1(Pjg1 -+ Pm)Lk+1(P1 - Pj)
< (k+1)"exp{—(loglog y1)"/%}.
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If a=ps---pm, where p;y < --- < pm < 2y4, then we expect that

] log(k + 1
J log log y4 :jg(k)+0(1).

loglog p; ~ =

But with probability tending to 1 there is a j so that

log(k + 1)

lo
log log p; S (loglog y1)'/3,

which implies that
Lkv1(a) < Tks1(Pjst - - Pm)Lk+1(P1 -~ - 1))
< (k+1)"exp{—(loglog y1)'/%}.

This is much less than 7, 1(a) = (k + 1)™ and so most of the
time Dy 1(a) contains large clusters of points.

[e}
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We must focus on abnormal a’s for which
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The probability that a has this property is about

1 1

= loglogys (Ford).



The multiplication table and higher dimensional analogues

The multiplication table problem
Statement of results

A heuristic argument

We must focus on abnormal a’s for which
Jog(k + 1 ,
oglogp; > /%D oy (1<j<m)

The probability that a has this property is about

1 1

= loglogys (Ford).

This leads to the refined heuristic estimate
X

(log y1) %7 (log log y1)3/2

Hk+1(X7.V72.V) ~

which is the correct one.
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Basic set-up

Adjusting the heuristic argument
General upper bounds

The case k = 2

Local to global estimates

Generalized multiplication tables

The natural generalization of the multiplication table problem is
the estimation of

Ak+1(N1,...,Nk+1) ::|{n1"‘nk+1 :nISNi (1 §I§k+1)}|

As before, to understand this question we study Hx1(x, y,2y).

The difference is that we now drop the assumption that the
numbers log y1, . .., log yx are of the same order of magnitude.

When k = 1, Ford’s result immediately implies that

Let3 < N1 < NQ. Then

Ny Ny

A2(N1, Ng) = o
(log Ny) 252 (log log N; 3/2
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Local to global estimates

Generalized multiplication tables

For n € Nwrite n= ay - - - axb, where

aj = H pe‘

peln.2yi_1<p<2y;

Assume that 1%(g;) = 1 and g; < yC for 1 <i < k.



Basic set-up

Adjusting the heuristic argument
General upper bounds

The case k = 2

Local to global estimates

Generalized multiplication tables

For n € Nwrite n= ay - - - axb, where

aj = H pe‘

peln.2yi_1<p<2y;

Assume that 1%(g;) = 1 and g; < yC for 1 <i < k.

Set
Dk+1(a) = {(|09d1,...,|09dk) o -~d,-|a1 <o d@j (1 <i< k)}

and assume that Dy {(a) is well-distributed in
[0,log y1] x -+ x [0, log yk].
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Adjusting the heuristic argument
General upper bounds

The case k = 2

Local to global estimates

Generalized multiplication tables

Then

T(nay72y):{(d1,...,dk):d1-'-dl-|a1...ai’
yi<di <2y (1<i<k)}

k
= |Dis1(a) N TJ(log yi,log yi + log 2

i=1
Ik — i+ 2)(@
I1% log y;
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Adjusting the heuristic argument
General upper bounds

The case k = 2

Local to global estimates

Generalized multiplication tables

Then

7(n,y,2y) ={(dh,...,dk) : di---djlas ---a,
yi<di <2y (1<i<k)}

k
= |Dis1(a) N TJ(log yi,log yi + log 2

i=1
Ik — i+ 2)(@
- Hﬁﬂbg” .
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Basic set-up

Adjusting the heuristic argument
General upper bounds

The case k = 2

Local to global estimates

Generalized multiplication tables

Then

T(nay72y):{(d1,...,dk):d1-'-dl-|a1...ai’
yi<di <2y (1<i<k)}

k
= |Dis1(a) N TJ(log yi,log yi + log 2

i=1
Ik — i+ 2)(@
- Hﬁﬂbg” .
Set&::I093bgiﬁ1and
k k
H = {(n, <o) € (NU[ONK Y rilog(k—i+2) > Ze,(k_m)}.
i=1 i=1

Then, heuristically, 7(n, y,2y) > 1 if-f (w(ay),...,w(ak)) € H#
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Adjusting the heuristic argument
General upper bounds

The case k = 2

Local to global estimates

Generalized multiplication tables

We have that

k

X g

n<x:w@)=r(1<i<k)}y|~ —— L.
< xewta) = (1 <<= o 1T
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Adjusting the heuristic argument
General upper bounds

The case k = 2

Local to global estimates

Generalized multiplication tables

We have that

k fr,v
{n<x:w@)=rn(1<i<k}~ |ogykIH1r,l

So using Taylor’s theorem and Lagrange multipliers we find that

NIk

re i=1

Hki1(x,y,2y) =~ Iogy

X

Vioglog i T (es
where o = a(k, y) satisfies
k k

D (k—i+2)%log(k —i+2)ti=> (k—i+1)t.

i=1 i=1

)o((k_i+2)a) g
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Generalized multiplication tables T

Local to global estimates

Indeed, we may prove the following estimate.

Theorem (K, 2008)

Let3=yo <y < - <y with ;25 > max{2%, yx}. Then

(loglog3y;,—1)(log 3 fggf,f, )

min< 1,
Hk+1 (Xu Y, 2y) <k {

A
X k © L oE)
log y; \ Qk—i+2)%)
loglo —
V/log gykg(logyi_1)

where Iy is such that /;; = maxi<j<k ;.
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Generalized multiplication tables T

Local to global estimates

When k = 2, this upper bound is the correct order of
HS(X7 Y, 2y)

Theorem (K, 2008)
Let3 < y; < y» so thatﬁ > max{4, y»}. Then

Hs(x,y,2y) _ (loglog 3y4)(log 3:8%?)
x . Q@)
(loglog y2)%/2(log y1)4® )(:ggim

where y = (y1, Y2).
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Generalized multiplication tables The case k — 2

Local to global estimates

As a direct corollary we obtain the order of magnitude of the
number of integers in a 3-dimensional multiplication table.

For3 < Ni < N> < N5 we have that

As(Ny, No, Ng) (loglog Ny )(log 3;2242)

< _—
MiNes " (1oglog Nz)5/2(log ) (e )
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The case k = 2

Local to global estimates

Generalized multiplication tables

In general, we may reduce the counting in Hyx1(x, y,2y) (local
distribution of factorizations) to estimating averages of

Lepi(a):=Vol( | J  llog(ch/2),log ) - [log(ak/2),log )

ai--dilar--a;
1<i<k

(global distribution of factorizations).
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The case k = 2

Local to global estimates

Generalized multiplication tables

In general, we may reduce the counting in Hyx1(x, y,2y) (local
distribution of factorizations) to estimating averages of

Lepi(a):=Vol( | J  llog(ch/2),log ) - [log(ak/2),log )
ai--dilar--a;
1<i<k

(global distribution of factorizations).

Proposition (Ford (2004), K. (2008))

Letk >1,x>1and3 < y; <--- <y with

e > max{2X, yx}. Then

Hi1(x,y.2y) _ ﬁ( log yj )*("*"*2) 3 Lksi(a)

=k .
X 3 \log ;-1 100 8k

a
€2 (Yi-1.Yi)
1<i<k
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The case k = 2

Local to global estimates

Generalized multiplication tables

Thank you for your attention!
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