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Consider the multiplication table

1 2 3 4 · · · N
1 1 2 3 4 · · · N
2 2 4 6 8 · · · 2N
3 3 6 9 12 · · · 3N
4 4 8 12 16 · · · 4N
...

...
...

...
...

...
N N 2N 3N 4N · · · N2

Question (Erdős, 1955)
How many distinct integers does this table contain?
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We may ask the same question for products of 3 integers, in
which case we have a multiplication ‘box’, or 4 integers, and so
on. To this end, define

Ak+1(N) := |{n1 · · · nk+1 : ni ≤ N (1 ≤ i ≤ k + 1)}|.

Then the problem is equivalent to estimating Ak+1(N).

The key to understanding the combinatorics of the
multiplication table is the function

Hk+1(x ,y , z) := |{n ≤ x :∃d1 · · · dk |n such that
yi < di ≤ zi (1 ≤ i ≤ k)}|,

where y = (y1, . . . , yk ) and z = (z1, . . . , zk ).
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The transition from Hk+1(x ,y , z) to Ak+1(N) is achieved via the
elementary inequalities

Hk+1

(
Nk+1

2k ,
(N

2
, . . . ,

N
2

)
, (N, . . . ,N)

)
≤ Ak+1(N)

≤
∑

2mi≤
√

N
1≤i≤k

Hk+1

(
Nk+1

2m1+···+mk
,

(
N

2m1+1 , . . . ,
N

2mk+1

)
,

(
N

2m1
, . . . ,

N
2mk

))

+ Nk+1/2.

Note that it suffices to study Hk+1(x ,y , z) when
z = 2y ;
the numbers log y1, . . . , log yk all have the same order of
magnitude.
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Set Q(u) := u log u − u + 1.

Then the following estimate holds.

Theorem (Ford (2004), K. (2008))
Let k ≥ 1, 0 < δ ≤ 1 and c ≥ 1. Assume that x ≥ 1 and
3 ≤ y1 ≤ y2 ≤ · · · ≤ yk ≤ yc

1 with x
y1···yk

≥ max{2k , yδ1}. Then

Hk+1(x ,y ,2y) �k ,δ,c
x

(log y1)
Q( k

log(k+1)
)
(log log y1)3/2

.

Consequently

Corollary

Ak+1(N) �k
Nk+1

(log N)
Q( k

log(k+1)
)
(log log N)3/2

(N ≥ 3).
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The following heuristic was first given by Ford when k = 1.

Assume that log y1, . . . , log yk have the same order of
magnitude. For n ∈ N write n = ab, where

a =
∏

pe‖n,p≤2y1

pe.

Assume that µ2(a) = 1 and a ≤ yC
1 .

Consider the set

Dk+1(a) = {(log d1, . . . , log dk ) : d1 · · · dk |a}.

Main assumption: Dk+1(a) is well-distributed in [0, log a]k .
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Then we would expect that

τk+1(a,y ,2y) := |{d1 · · · dk |a : yi < di ≤ 2yi (1 ≤ i ≤ k)}|

=
∣∣∣Dk+1(a) ∩

k∏
i=1

(log yi , log yi + log 2]
∣∣∣

≈ |Dk+1(a)|(log 2)k

(log a)k ≈
(k + 1)ω(a)

(log y1)k .

This expression is ≥ 1 when

ω(a) ≥ m :=
⌊ k

log(k + 1)
log log y1

⌋
+ O(1).

We have

|{n ≤ x : ω(a) = r}| ≈ x
log y1

(log log y1)
r

r !
.
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Therefore

Hk+1(x ,y ,2y) ≈ x
log y1

∑
r≥m

(log log y1)
r

r !

� x

(log y1)
Q( k

log(k+1)
)
(log log y1)1/2

.

This is slightly too big. The problem arises from the fact that
Dk+1(a) is usually not well-distributed, but instead it has many
clumps.

To see this define

Lk+1(a) := Vol
( ⋃

d1···dk |a

[log(d1/2), log d1)×· · ·×[log(dk/2), log dk )
)
,

which is a quantitative measure of how well-distributed Dk+1(a)
is.
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If a = p1 · · · pm, where p1 < · · · < pm ≤ 2y1, then we expect that

log log pj ∼
j
m

log log y1 = j
log(k + 1)

k
+ O(1).

But with probability tending to 1 there is a j so that

log log pj ≤ j
log(k + 1)

k
− (log log y1)

1/3,

which implies that

Lk+1(a) ≤ τk+1(pj+1 · · · pm)Lk+1(p1 · · · pj)

. (k + 1)m exp{−(log log y1)
1/3}.

This is much less than τk+1(a) = (k + 1)m and so most of the
time Dk+1(a) contains large clusters of points.
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We must focus on abnormal a’s for which

log log pj ≥ j
log(k + 1)

k
−O(1) (1 ≤ j ≤ m).

The probability that a has this property is about

1
m
� 1

log log y1
(Ford).

This leads to the refined heuristic estimate

Hk+1(x ,y ,2y) ≈ x

(log y1)
Q( 1

log ρ
)
(log log y1)3/2

,

which is the correct one.
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The natural generalization of the multiplication table problem is
the estimation of

Ak+1(N1, . . . ,Nk+1) := |{n1 · · · nk+1 : ni ≤ Ni (1 ≤ i ≤ k + 1)}|.

As before, to understand this question we study Hk+1(x ,y ,2y).

The difference is that we now drop the assumption that the
numbers log y1, . . . , log yk are of the same order of magnitude.

When k = 1, Ford’s result immediately implies that

Corollary
Let 3 ≤ N1 ≤ N2. Then

A2(N1,N2) �
N1N2

(log N1)
Q( 1

log 2 )
(log log N1)3/2

.
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For n ∈ N write n = a1 · · · akb, where

ai =
∏

pe‖n,2yi−1<p≤2yi

pe.

Assume that µ2(ai) = 1 and ai ≤ yC
i for 1 ≤ i ≤ k .

Set
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and assume that Dk+1(a) is well-distributed in
[0, log y1]× · · · × [0, log yk ].
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Then

τ(n,y ,2y) = {(d1, . . . ,dk ) : d1 · · · di |a1 · · · ai ,

yi < di ≤ 2yi (1 ≤ i ≤ k)}

=
∣∣∣Dk+1(a) ∩

k∏
i=1

(log yi , log yi + log 2]
∣∣∣

≈
∏k

i=1(k − i + 2)ω(ai )∏k
i=1 log yi

.

Set `i := log 3 log yi
log yi−1

and

H :=
{

(r1, . . . , rk ) ∈ (N∪{0})k :
k∑

i=1

ri log(k−i+2) ≥
k∑

i=1

`i(k−i+1)
}
.

Then, heuristically, τ(n,y ,2y) ≥ 1 if-f (ω(a1), . . . , ω(ak )) ∈H .
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We have that

|{n ≤ x : ω(ai) = ri (1 ≤ i ≤ k)}| ≈ x
log yk

k∏
i=1

`ri
i

ri !
.

So using Taylor’s theorem and Lagrange multipliers we find that

Hk+1(x ,y ,2y) ≈ x
log yk

∑
r∈H

k∏
i=1

`ri
i

ri !

� x√
log log yk

∏k
i=1

(
log yi

log yi−1

)Q((k−i+2)α)
,

where α = α(k ,y) satisfies
k∑

i=1

(k − i + 2)α log(k − i + 2)`i =
k∑

i=1

(k − i + 1)`i .
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We have that

|{n ≤ x : ω(ai) = ri (1 ≤ i ≤ k)}| ≈ x
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i=1

`ri
i

ri !
.

So using Taylor’s theorem and Lagrange multipliers we find that
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r∈H
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i
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Indeed, we may prove the following estimate.

Theorem (K, 2008)

Let 3 = y0 ≤ y1 ≤ · · · ≤ yk with x
y1···yk

≥ max{2k , yk}. Then

Hk+1(x ,y ,2y)

x
�k

min
{

1,
(log log 3yi0−1)(log 3 log yk

log yi0
)

`i0

}
√

log log yk

k∏
i=1

( log yi

log yi−1

)Q((k−i+2)α)
,

where i0 is such that `i0 = max1≤i≤k `i .
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When k = 2, this upper bound is the correct order of
H3(x ,y ,2y).

Theorem (K, 2008)

Let 3 ≤ y1 ≤ y2 so that x
y1y2
≥ max{4, y2}. Then

H3(x ,y ,2y)

x
�

(log log 3y1)(log 3 log y2
log y1

)

(log log y2)5/2(log y1)Q(3α)
(

log y2
log y1

)Q(2α)
,

where y = (y1, y2).
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As a direct corollary we obtain the order of magnitude of the
number of integers in a 3-dimensional multiplication table.

Corollary
For 3 ≤ N1 ≤ N2 ≤ N3 we have that

A3(N1,N2,N3)

N1N2N3
�

(log log N1)(log 3 log N2
log N1

)

(log log N2)5/2(log N1)Q(3α)
(

log N2
log N1

)Q(2α)
.
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In general, we may reduce the counting in Hk+1(x ,y ,2y) (local
distribution of factorizations) to estimating averages of

Lk+1(a) := Vol
( ⋃

d1···di |a1···ai
1≤i≤k

[log(d1/2), log d1)×· · · [log(dk/2), log dk )
)

(global distribution of factorizations).

Proposition (Ford (2004), K. (2008))
Let k ≥ 1, x ≥ 1 and 3 ≤ y1 ≤ · · · ≤ yk with

x
y1···yk

≥ max{2k , yk}. Then

Hk+1(x ,y ,2y)

x
�k

k∏
i=1

( log yi

log yi−1

)−(k−i+2) ∑
ai∈P(yi−1,yi )

1≤i≤k

Lk+1(a)

a1 · · · ak
.
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Thank you for your attention!
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