## Dirichlet Series for Weighted Convolutions of von Mangoldt Function

## Mohammad Zaki

Department of Mathematics University of Illinois at Urbana-Champaign

June 4, 2009

Graduate Workshop on Zeta-Functions, L-Functions and their Applications Utah Valley University, Orem, Utah



Let  $p(x_1, ..., x_r)$  be a polynomial with complex coefficients and let

$$\zeta_r(s;p) = \sum_{m_1=1}^{\infty} \cdots \sum_{m_r=1}^{\infty} p(m_1,\ldots,m_r)^{-s}, \quad s = \sigma + it.$$

In 1904 Barnes and Mellin proved that  $\zeta_4(s; p)$  has a meromorphic continuation to  $\mathbb{C}$ .

Then in 1995 Essouabri showed that

$$\zeta_r(s_1,\ldots,s_n;p_1,\ldots,p_n)$$

$$=\sum_{m_1=1}^{\infty}\cdots\sum_{m_r=1}^{\infty}p_1(m_1,\ldots,m_r)^{-s_1}\ldots p_n(m_1,\ldots,m_r)^{-s_n}$$

has meromorphic continuation to  $\mathbb{C}^n$ . A special case of this is the Euler-Zagier r-fold sum

$$\zeta_{EZ,r}(s_1,\ldots,s_r)$$

$$= \sum_{m_1=1}^{\infty} \cdots \sum_{m_r=1}^{\infty} m_1^{-s_1} (m_1 + m_2)^{-s_2} \ldots (m_1 + \cdots + m_r)^{-s_r}.$$

Let

$$\psi_k(s) = \sum_{m=1}^{\infty} \frac{a_k(m)}{m^s}, \quad \text{for } 1 \le k \le r.$$

Suppose that  $\psi_k(s)$ 

- 1. is absolutely convergent for  $\Re s > \alpha_k > 0$ ,
- 2. can be continued meromorphically to  $\mathbb{C}$ ,
- 3. is holomorphic but for a possible pole of order  $\leq 1$  at  $s = \alpha_k$ ,
- 4. is of polynomial order in any fixed strip  $\sigma_1 \leq \sigma \leq \sigma_2$ .

In 2003 Matsumoto and Tanigawa showed that the r-fold sum

$$\Psi_r(s_1, \ldots, s_r \mid \psi_1, \ldots, \psi_r) = \sum_{m_1=1}^{\infty} \cdots \sum_{m_r=1}^{\infty} \frac{a_1(m_1)}{m_1^{s_1}} \cdots \frac{a_2(m_2)}{(m_1 + m_2)^{s_2}} \cdots \frac{a_r(m_r)}{(m_1 + \cdots + m_r)^{s_r}}.$$

has a meromorphic continuation to  $\mathbb{C}^r$ .



Let

$$M(s) = -\frac{\zeta'(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s},$$

where  $\Lambda(n)$  be the von Mangoldt function. Also, define

$$\phi_2(s) = \Psi_2(0, s; M, M) = \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \frac{\Lambda(k)\Lambda(m)}{(k+m)^s} = \sum_{n=1}^{\infty} \frac{G_2(n)}{n^s},$$

where

$$G_2(n) = \sum_{k+m=n} \Lambda(k)\Lambda(n).$$

In 1991 Fuji showed that

$$\sum_{n \leq x} G_2(n) = \frac{1}{2}x^2 - 2\sum_{n} \frac{x^{1+\rho}}{\rho(1+\rho)} + O((x\log x)^{4/3}), \quad (1)$$

where  $\rho$  runs over the nontrivilal zeros of the zeta-function,  $\zeta(s)$ .



By Perron's formula,

$$\sum_{n \leq x} G_2(n) = \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \phi_2(s) \frac{x^s}{s} ds + O(T^{-1}x^{2+\epsilon}), \quad c > 2.$$

Shifting the path of integration to  $\Re(s) = 1 + \epsilon$ , we see that  $x^2/2 - H(x)$  equals the sum of the residues. So H(x) is closely related  $\phi_2(s)$  near  $\Re(s) = 3/2$ .

Also, for even values of n it is expected that  $G_2(n) \approx nS_2(n)$ , where

$$S_2(n) = \prod_{p|n} \left(1 + \frac{1}{p-1}\right) \prod_{(p,n)=1} \left(1 + \frac{1}{(p-1)^2}\right),$$

and since Montgomery and Vaughan showed that

$$\sum_{n \le x} nS_2(n) = \frac{1}{2}x^2 + O(x \log x),$$

Fujii's formula in (1) may be rewritten as

$$\sum_{n \in \mathbb{N}} (G_2(n) - nS_2(n)) = -H(x) + O((x \log x)^{4/3}).$$

Then in 2007 Egami and Matsumoto proved that  $\phi_2(s)$ 

- 1. can be continued meromorphically to  $\Re s > 1$ ,
- 2. is holomorphic except for simple poles at s=2 with residue 1, and at  $s=1+\rho$  with residue  $-2\eta(\rho)/\rho$ .

They also introduced the following

Hypothesis (B): Let  $\mathcal{I}$  be the set of ordinates of the nontrivial zeros of  $\zeta(s)$ . There exists a constant  $\alpha$ , with  $0 < \alpha < \pi/2$ , such that if

- 1.  $\gamma_j \in \mathcal{I}$ , where  $1 \leq j \leq 4$ ,
- 2.  $\gamma_1 + \gamma_2 \neq 0$ ,
- 3.  $(\gamma_3, \gamma_4) \neq (\gamma_1, \gamma_2)$  and  $(\gamma_3, \gamma_4) \neq (\gamma_2, \gamma_1)$ ,

then

$$|(\gamma_1 + \gamma_2) - (\gamma_3 + \gamma_4)| \ge \exp(-\alpha(|\gamma_1| + |\gamma_2| + |\gamma_3| + |\gamma_4|)).$$



Egami and Matsumoto showed that, on the Riemann Hypothesis and Hypothesis (B),  $\Re s=1$  is the natural boundary of  $\phi_2(s)$ . They also conjectured that the error term in Fuji's formula (1) is at most  $O(x^{1+\epsilon})$  and  $\Omega(x)$ .

Now, let  $H: \mathbb{R} \to \mathbb{C}$  be periodic with period 1 such that

$$H(t) = \sum_{n \in \mathbb{Z}} c_n e^{2\pi i n t},$$

and suppose that H(t) is  $C^2$ . Also, let  $\alpha > 0$  and define

$$F_{2,H,\alpha}(s) = \sum_{m_1=1}^{\infty} \sum_{m_2=1}^{\infty} \frac{\Lambda(m_1)\Lambda(m_2)}{(m_1+m_2)^s} H(\alpha \log(m_1+m_2)).$$

**Theorem 1.** The function  $F_{2,H,\alpha}(s)$  is meromorphic in  $\Re s > 3/2$ , with poles at  $s = 2 + 2\pi i \alpha n$ , where  $n \in \mathbb{Z}$ . Also, for most values of  $\alpha$ ,  $\Re s = 3/2$  is the natural boundary of  $F_{2,H,\alpha}(s)$ .

**Theorem 2.** If b, q > 0 and (b, q) = 1, then

$$F_{2,q,b,H,\alpha}(s) = \sum_{\substack{m_1,m_2 \geq 1 \\ m_1m_2 \equiv b \pmod{q}}} \frac{\Lambda(m_1)\Lambda(m_2)}{(m_1 + m_2)^s} H(\alpha \log(m_1 + m_2))$$

is holomorphic in  $\Re s > 3/2$ .

Outline of the proof of Theorem 1. The first assertion in Theorem 1 follows from an application of the Mellin-Barnes integral formula, which is:

$$(1+\lambda)^{-s} = \frac{1}{2\pi i} \int_{(c)} \frac{\Gamma(s-z)\Gamma(z)}{\Gamma(s)} \lambda^{-z} dz,$$

where  $s, \lambda \in \mathbb{C}$ ,  $\lambda \neq 0$ ,  $|\arg \lambda| < \pi$ , and  $0 < c < \Re s$ .

In the second assertion, we can show that, for each  $n \in \mathbb{Z}$  and  $\gamma \in \mathcal{I}$ ,  $F_{2,H,\alpha}(s)$  has a singularity at each point

$$P_{\gamma,n}=\frac{3}{2}+i(\gamma+2\pi\alpha n).$$

Because the sequence  $\{\gamma/(2\pi\alpha)\}$  is uniformly distributed, the set

$$D_{\alpha} = \{ \gamma + 2\pi \alpha \mathbf{n} : \mathbf{n} \in \mathbb{Z}, \gamma \in \mathcal{I} \}$$

is dense in  $\mathbb{R}$ . Next, we show the behavior of  $F_{2,H,\alpha}(s)$  near the points  $P_{\gamma,n}$ . Note that we may write

$$F_{2,H,\alpha}(s) = \sum_{m \in \mathbb{Z}} c_m \phi_2(s - 2\pi \alpha im).$$

Now fix  $n \in \mathbb{Z}$ ,  $\gamma \in \mathcal{I}$ , and  $\kappa = \gamma + 2\pi \alpha n$ . Also, fix  $0 < \eta < 1$ . We write

$$\phi_2(z - 2\pi\alpha in) = \frac{a_{-1}}{z - (3/2 + i\kappa)} + \sum_{k=0}^{\infty} a_k \left(z - \left(\frac{3}{2} + i\kappa\right)\right)^k$$

for the Laurent series expansion of  $\phi_2(z)$  at  $z = 3/2 + i\kappa$ .

Then

$$\phi_2(\eta + 3/2 + i\gamma) = \frac{a_{-1}}{\eta} + \sum_{k=0}^{\infty} a_k \eta^k.$$

Note that

$$F_{2,H,\alpha}(s) = h_n(s) + c_n\phi_2(s - 2\pi\alpha in),$$

where

$$h_n(s) = \sum_{\substack{m \in \mathcal{Z} \\ m \neq n}} c_m \phi_2(s - 2\pi \alpha i m).$$

Putting  $s = \eta + 3/2 + i\kappa$ , we obtain

$$h_n(\eta + 3/2 + i\kappa) = \sum_{\substack{m \in \mathbb{Z} \\ m \neq n}} c_m \phi_2(\eta + 3/2 + i(\kappa - 2\pi\alpha m)).$$

It remains to estimate the sum.

Applying the Mellin-Barnes integral to  $\phi_2(\eta + 3/2 + i(\kappa - 2\pi\alpha m))$ , we find that it equals

$$\frac{M\left(\eta + \frac{1}{2} + i\left(\kappa - 2\pi\alpha m\right)\right)}{\eta + \frac{1}{2} + i\left(\kappa - 2\pi\alpha m\right)} - \log(2\pi)M\left(\eta + \frac{3}{2} + i\left(\kappa - 2\pi\alpha m\right)\right)$$

$$+ \frac{1}{2\pi i} \int_{(-\delta)} \frac{\Gamma\left(\eta + \frac{3}{2} + i\left(\kappa - 2\pi\alpha m\right) - z\right)\Gamma(z)M(z)M\left(\eta + \frac{3}{2} + i\left(\kappa - 2\pi\alpha m\right) - z\right)}{\Gamma\left(\eta + \frac{3}{2} + i\left(\kappa - 2\pi\alpha m\right)\right)} dz$$

$$- \sum_{\rho \in I} \frac{\Gamma\left(\eta + \frac{3}{2} + i\left(\kappa - 2\pi\alpha m\right) - \rho\right)\Gamma(\rho)M\left(\eta + \frac{3}{2} + i\left(\kappa - 2\pi\alpha m\right) - \rho\right)}{\Gamma\left(\eta + \frac{3}{2} + i\left(\kappa - 2\pi\alpha m\right)\right)}.$$

Then employing Sterling's formula, summation by parts, and

$$M(s) = -\frac{\zeta'(s)}{\zeta(s)} = -\sum_{\substack{\rho \\ |\gamma-t| \leq 1}} \frac{1}{s-\rho} + O(\log|t|+2),$$

which holds uniformly for  $s = \sigma + it$ , where  $-1 \le \sigma \le 2$ , to the four quantities above, we find that

$$h_n(\eta + 3/2 + i\kappa) \leq C(\epsilon) + \frac{\epsilon\beta}{n} + D,$$

where  $C(\epsilon)$ ,  $\beta$ , and D are constants such that  $C(\epsilon)$  is independent of  $\eta$ ,  $\beta$  is independent of  $\epsilon$  and  $\epsilon$ , and  $\epsilon$  is independent of  $\epsilon$ .

Outline of the proof of Theorem 2. Simply note that

$$F_{2,q,b,H,\alpha}(s) = \sum_{\substack{m,k \geq 1 \\ mk \equiv b \pmod{q}}} \frac{\Lambda(m)\Lambda(k)}{(m+k)^s} H(\alpha \log(m+k))$$
$$= \sum_{\substack{\chi \pmod{q}}} \overline{\chi}(b) F_{2,\chi,H,\alpha}(s),$$

where

$$F_{2,\chi,H,\alpha}(s) = \sum_{n \in \mathbb{Z}} c_n \phi_2(s - 2\pi i \alpha n, \chi).$$

Here

$$\phi_2(s,\chi) = \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} \frac{\Lambda(k)\Lambda(m)\chi(k)\chi(m)}{(k+m)^s} = \sum_{n=1}^{\infty} \frac{G_2(n,\chi)}{n^s}$$

with

$$G_2(n,\chi) = \sum_{k+m=n} \Lambda(k) \Lambda(m) \chi(k) \chi(m).$$

**Theorem 3.** Assume the Generalized Riemann Hypothesis. Let b, q>0, and  $r\geq 2$  be any integers with (b,q)=1. Also, let  $H\in \mathcal{C}^r(\mathbb{R})$  be periodic with period 1, and  $\alpha>0$ . Then

$$F_{r,q,b,H,\alpha}(s) = \sum_{\substack{m,\ldots,m_r \geq 1 \\ m_1 \cdots m_r \equiv b \pmod{q}}} H(\alpha \log(m_1 + \ldots + m_r)) \times \frac{\Lambda(m_1) \cdots \Lambda(m_r)}{(m_1 + \ldots + m_r)^s}.$$

is analytic in the half plane  $\Re(s) > r - 1/2$ , except for simple poles at  $s = r + 2\pi i \alpha n$ ,  $n \in \mathbb{Z}$ .

As an immediate corollary, we have the following result.

**Corollary 4.** Assume the Generalized Riemann Hypothesis. Let  $(b_1,q)=1$ ,  $(b_2,q)=1$ , and  $H\in\mathcal{C}^r(\mathbb{R})$  be as in Theorem 3. Then  $F_{r,q,b_1,H,\alpha}(s)-F_{r,q,b_2,H,\alpha}(s)$  is analytic on the half plane  $\Re(s)>r-1$ .

