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Approximation by Dirichlet Polynomials in the Strip

A crude form of the approximate functional equation extends this into
the critical strip:

(s) =S+ X0 ox7) (0>0).

But X must be > t.

When X = t we have

((s)=>_ n°+0(t°) (s>0).

n<t
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Lindeléf Hypothesis (LH): ¢(1/2+it) < (|t| +2)°.
Assuming LH, we can do much better.

Theorem
The Lindel6f Hypothesis is true if and only if

C(S) _ Z % + O(x1/2fa|t|e)

n<X

for} <o<1and1< X<t

Thus, on LH even short truncations approximate ¢((s) well in o > 1/2.
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. ’
Approximations when o < 3

On the other hand, short sums can not approximate ¢(s) well in the
strip0 <o <1/2.

For example, let 0 < 1/2 and compare

2T
/ Y Pt T X172

T n<X

and
2T
/ IC(o+it)Pdt~ T T2,
-

These are not equal if X is small relative to T.
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The Approximation of ((s) by Finite Euler Products

The zeta-function also has an Euler product representation

C(s):H<1 1>_1 (0> 1).

s
o p

Trivially estimating the tail of the product, we obtain

C(S)—pll((1 _,Js>_1 (1 +O<(0—)(11)_;:>9)(>) '

Can we extend this into the critical strip?
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Approximations in the Strip

Yes, but we need to work with a weighted Euler product.
Note that

L(-5) =% Xi)

p<X? p<X? k=1

]
zexp< > kpks>

pk<X?

o5 )

A(n) = log p if n = pk, otherwise A(n) = 0. We “smooth” the A’s and
call the result Px(s) .
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Definition of Px(s)

Specifically, we set

Px(s) = exp (Z nﬁfég)n) ,

n<X:
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Specifically, we set

Px(s) = exp (Z nﬁfég)n) ,

n<X:
where
A(n) if n< X,
Ax(n) = { A(n) (2 - I'g%) if X < n< X2,
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Definition of Qx(s)

We also write
Qx(s) =
exp (Z F2((s — p)log X)) - exp <Z F2((s + 2n)log X))
P n=1

- exp <F2((1 —s)log X)>
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P
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with o o
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Definition of Qx(s)

We also write

Qx(s) =
exp (Z F2((s — p)log X)) - exp <

- exp <F2((1 —s)log X)>

i F2((s + 2n)log X)>
n=1

with . .
* e- * e~
/ de (z#0).
V4

F2(Z)=2/2 W -

V4
For z large F»(z) is small. For z near 0
F2(z) ~log(cz).

11/40
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A Hybrid Formula for {(s)

It follows that in the critical strip away from s = 1

()~ ] (c(s — p)log X)

|[p—s|<1/log X

With this Px and Qx we have

Theorem (G., Hughes, Keating)
Foroc >0and X > 2,

¢(s) = Px(s) - Qx(s).

Thus, in the critical strip away from s = 1

)~ [] (1 —;s>1- 11 (C(s—p)logX)

p<X? lp—s|<1/log X
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Approximation by Finite Euler Products in the Strip

1

)~ I] (1 —’;s> - 11 (C(S—p)lOQX)

p<X? lp—s|<1/log X

We note that if RH holds and o > 1, then
¢(s) = Px(s).

Theorem

Assume RH. Let2 < X < 12 and § + S9! < 5 < 1 with C > 1.
Then

((s) = Px(s)(1+ O(log =92 1) ) .

Conversely, this implies ((s) has at most a finite number of complex
zeros in this region.
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Short products can not approximate ¢(s) well in the strip 0 < o < 1/2.

To see this compare, when o < 1/2 s fixed and X < T1/2~,

/ZT (log [¢(o + it)|)%dt ~ (1/2 — )2 Tlog? T
.

and

2T o X240
/T (log |Px(o +it))“dt ~ cT ( IogX> .

If X is a small power of T, the second is larger.

The last estimate also shows that if o < 1/2, then infinitely often in t

X1 —20

v/log X

Px(s) > exp ( ) , Which is very large.
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(=Y L) ¥
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Deficiency of the Sum Approximation on o = 1/2

On LH (and so on RH) we saw that for } < o < 1 fixed,

even if X is small. Buton o = % we needed more terms:

1 1
(s) = ZE + > — + o(1).
n<X X<n<t
Compare this with the approximate functional equation

()= S+ x(s) Y o)

n<Xx n<t/2nX

Here  x(s)==5""2r(1/2 - s/2)/T(s/2).

(University of Rochester) 16 /40



Adding Back the Deficit

So essentially,

1 1
Z EZX(S) Z m-s"

X<n<t n<t/2m X

(University of Rochester) 17/ 40



Adding Back the Deficit

So essentially,
1 1

X<n<t n<t/2m X

In particular, putting X = /t/27 and ¢ = 1/2 in the approx. f. e.

(University of Rochester) 17/ 40



Adding Back the Deficit

So essentially,

1 1
Z EZX(S) Z m-s"

X<n<t n<t/2m X

In particular, putting X = /t/27 and ¢ = 1/2 in the approx. f. e.

1 1
()= —+x(s8) D —+o1),
n<X n<t/2n X

(University of Rochester) 17/ 40



Adding Back the Deficit

So essentially,

1 1
Z EZX(S) Z m-s"

X<n<t n<t/2m X

In particular, putting X = /t/27 and ¢ = 1/2 in the approx. f. e.

1 1
()= —+x(s8) D —+o1),
n<X n<t/2n X

we see that

(University of Rochester) 17/ 40



Adding Back the Deficit

So essentially,

1 1
Z EZX(S) Z m-s"

X<n<t n<t/2m X

In particular, putting X = /t/27 and ¢ = 1/2 in the approx. f. e.

1 1
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we see that

. 1 . 1
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Deficiency of the Euler Product Approximation on

o=1/2

How much is the Euler product approximation

¢(s) = Px(s)(1 +0(1))

off by as o approaches 1/27?

A tempting guess is that for some range of X
((s) = Px(s) + x(s)Px(1 —s).
But this is far too large if X is a power of t because when o > 1/2,
X(8)Px(1 — s) = Q(t"/%7 exp(X? 2/ log X)) ,

whereas ((s) < ft°.
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Definition of (x(s)
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¢(8) = Px(s) + x(s)Px(1 — )
we consider
(x(8) = Px(s) + x(s)Px(s) .
These are identical on the critical line and
¢(s), ¢x(s) = Px(s)(1+0o(1))

when o > 1/2 is fixed. To study (x(s) further we need a lemma.

In 0<o<1,|t>10, |x(s)|=1ifandonlyifc =1/2.
Furthermore,

N\ 1/2oit
x(s) = (E) e”+’“/4<1 + O(t‘1)).
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The Riemann Hypothesis for (x(s)

All of the zeros of

(x(s) = Px(s) + x(s)Px(s)

in0<oc<1and|tfj>10lieonoc =1/2.

(x(8) = Px(s) (1 T (s)

Also, Px(s) is never 0. Thus, if s is a zero, |x(c + it)| = 1. By the
lemma, when |f| > 10 this implies that o = 1/2. O]

Px(g))
Px(s) )
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The Number of Zeros of (x(5)

The number of zeros of {(s) up to height T is

1 . 1 .
N(T) = 5 argx(1/2+1iT) + - arg¢(1/2+1iT) +1
T T T 7 1
How many zeros does (x(s) have? Write

(x(1/2 + it) =Px(1/2 + it) <1 Fadizzs ”’W>

—Px(1/2 + it) (1 I e2mi( 3= arg x(1/2+it)— L arg PX(1/2+it))) ‘

This vanishes if and only if

Zlargx(1/2+it) — 1arg Px(1/2+it)= 1/2 (mod 1) .
m s
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Then the zeros of

Cx(1/2 + it) = Px(1/2 + it)(1 + e 2mFx(D)
are the solutions of Fx(t) = 1/2 (mod 1).
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Detecting Zeros of (x(s)

Set

1 . 1 )
Fx(t) = —5-arg x(1/2+it) + —arg Px(1/2 + it) .

Then the zeros of

Cx(1/2 + it) = Px(1/2 + it)(1 + e 2mFx(D)
are the solutions of Fx(tf) = 1/2 (mod 1). Now

: t 1 1
argx(1/2+it) = —tlogg +t+ Zw+ O (t)
and
arg Px(1/2 + it) = Imlog Px(1/2 + it) = Im Z n1/2+:t Iog E

B Z Ax(n) sin(tlog n)

n'/Z2logn

n< X2
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Lower Bound for the Number of Zeros
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So

1 t ot 1.1 Ax(n)sin(tlog n) 1
Fx(t) = ZHOQZ 2r 8 mw Z n'/2logn +0 t)
n< X2

Ignoring the O(1/t), the condition that {x(1/2 + it) = 0 is that this is
= 1/2 (mod 1).
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Lower Bound for the Number of Zeros

So

1 t t 1 1 Z Ax(n)sin(tlog n) +O(1).

Ax(t) =5 tlog s — 5~ = n'7Zlog n i

n< X2

Ignoring the O(1/t), the condition that {x(1/2 + it) = 0 is that this is
= 1/2 (mod 1).

If Nx(T) denotes the number of times this happens in [0, T], we have
the
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Lower Bound for the Number of Zeros

So

_ 1 t t1 1 Z Ax(n)sin(tlog n) L0 1 '

T n'/2logn t
Ignoring the O(1/t), the condition that {x(1/2 + it) = 0 is that this is
= 1/2 (mod 1).

If Nx(T) denotes the number of times this happens in [0, T], we have
the

T r T 1 Ax(n)sin(T log n)
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Lower Bound for the Number of Zeros

So

_ 1 t t1 1 Z Ax(n)sin(tlog n) L0 1 '

T n'/2logn t
Ignoring the O(1/t), the condition that {x(1/2 + it) = 0 is that this is
= 1/2 (mod 1).

If Nx(T) denotes the number of times this happens in [0, T], we have
the

T r T 1 Ax(n)sin(T log n)
Nx(T) > 51005~ 50 =2 2 = iiogn T (1)

How large can the sum be?
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Admissible Functions

Call an increasing function ®(t) admissible if
|S(t)] < P(F) and IC(1/2 + it)| < exp(®(1)) .

Montgomery on RH and then Balasubramanian and Ramachandra
unconditionally showed that

o(t) = Q(+/logt/loglogt).

®(t) = Clogt is admissible
®(t) = elog t is admissible on LH
®(t) = (1/2+¢)log t/loglog t is admissible on RH.

(University of Rochester) 24 /40



The Sum on RH

Conjecture (Farmer, G., Hughes)
®(t) = \/(1/2 + €)log tlog log t is admissible, but

®(t) = +/(1/2 — €)log tloglog t is not.
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Conjecture (Farmer, G., Hughes)
®(t) = \/(1/2 + €)log tlog log t is admissible, but

®(t) = +/(1/2 — €)log tloglog t is not.

In terms of admissible functions we have

Assume RH. Then

1 Z Ax(n)sin(tlog n) <<d>(t)-|-O<IOgt).

n'/2logn log X

T
n<X2
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The Sum on RH

Conjecture (Farmer, G., Hughes)
®(t) = \/(1/2 + €)log tlog log t is admissible, but

®(t) = +/(1/2 — €)log tloglog t is not.

In terms of admissible functions we have

Assume RH. Then

71_T Z Ax(n)sin(tlog n) <<d>(t)-|-O<IOgt).

n'/2logn log X

<X

This is < ®(t) if X > exp(clog t/®(t)) for some ¢ > 0.
( Same bound as for S(t)!)
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Extra Solutions

If Fx(t) is not monotonically increasing, there could be “extra” solutions
of

Fx(t)= 1/2 (mod 1),
and so of {x(1/2 + it) = 0.
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Extra Solutions

If Fx(t) is not monotonically increasing, there could be “extra” solutions
of
Fx(t)= 1/2 (mod 1),

and so of {x(1/2 + it) = 0.
Now

/ 1 t 1 Ax(n)cos(tlogn 1
Fi(t) = 5-log - — 1y~ P costtios Mo(tz).

On RH the sum is < ®(t) log X.

Thus, on RH there is a positive constant C, such that Fx(t) is strictly

increasing if
Clogt
o) )

X<exp<
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There are No Extra Solutions When X is Small

We therefore have the
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There are No Extra Solutions When X is Small

We therefore have the

Theorem

Assume RH. There is a constant C > 0 such that if
X < exp (Clogt/®(t)), then

_ t t 1 Ax(n)sin(tlog n)
Nx(1) = 2r log 2r 21 o« Z n'/2logn +001).
n<X 9
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There are No Extra Solutions When X is Small

We therefore have the

Theorem

Assume RH. There is a constant C > 0 such that if
X < exp (Clogt/®(t)), then

Nx(t) log— — — — —

:E 2r 2w 7

n'/2logn
n<X

t t t 1 Z Ax(n)sin(tlog n) +o(1).

Unconditionally we can take X larger, but then we only obtain an
asymptotic estimate.
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There are No Extra Solutions When X is Small

We therefore have the

Theorem

Assume RH. There is a constant C > 0 such that if
X < exp (Clogt/®(t)), then

t t t 1 Z Ax(n)sin(tlog n) +o(1).

o7 957 27 & n'/2logn
n<X

Nx(t)

Unconditionally we can take X larger, but then we only obtain an
asymptotic estimate.

If X < t°) then
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Simple Zeros of (x(s)

1/2 + i~y is a simple zero of (x(s) if (x(1/2 + iv) = 0, but
Ce(1/2+ i) #0.
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Simple Zeros of (x(s)

1/2 + i~y is a simple zero of (x(s) if (x(1/2 + iv) = 0, but
¢y (1/2 4 iv) # 0. Now

; , Py(1/2 i
Cx(1/2+it) =Px(1/2 + it) <1 +x(1/2+ ,0/%)
—Px(1/2 + it) (1 n e—ZWfo(t)> ’
and
G172+ it) =P(1/2 + it) (1 + e—2m’Fx(t))
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(University of Rochester) 28/40



Simple Zeros of (x(s)

1/2 + i~y is a simple zero of (x(s) if (x(1/2 + iv) = 0, but
¢y (1/2 4 iv) # 0. Now

(x(1/2+ it) =Px(1/2 + it) <1 +x(1/2+ it)w>
=Px(1/2+it) (1+ &2 F0),
and

C(1/2 +it) =Py (1/2 + i) (1 + e—2m‘Fx(t))
— 21Px(1/2 + it)Fy(t)e~2m Fx(t),

This vanishes at 1/2 + iv if and only if Fy () = 0.
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The Number of Simple Zeros When X is Small

Recall that if X is not too large,

/ 1 t 1 Ax(n)cos(tlogn 1
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Thus we have the

Assume RH. There is a constant C > 0 such that if
X < exp (Clogt/®(t)), all the zeros of (x(1/2 + it) with imaginary part
> 10 are simple.
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F),((t) = ;—Wlogi 1 Z Ax(n)cos(tlog n) o <1> o

nl/2

Thus we have the
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The Number of Simple Zeros When X is Small

Recall that if X is not too large,

F)/((t) = ;—Wlogi 1 Z Ax(n)cos(tlog n) o <1> o

nl/2

Thus we have the

Assume RH. There is a constant C > 0 such that if

X < exp (Clogt/®(t)), all the zeros of (x(1/2 + it) with imaginary part
> 10 are simple.

Unconditionally we have

If X < exp (o(|og1—f t)), then Cx(1/2 + it) has ~ T/2xlog (T/2r)
simple zeros up to height T.
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@ We have just seen that on RH F,(t) > 0 if
X < exp (Clogt/®(t)) (for some C), so all zeros are simple.

(University of Rochester) 30/ 40



Simple Zeros of (x(s) When X is Large

A zero 1/2 + i of Cx(s) is simple if and only if Fy(v) # 0.

@ We have just seen that on RH F,(t) > 0 if
X < exp (Clogt/®(t)) (for some C), so all zeros are simple.

@ But even when X is very large, the odds that F, () = 0 are quite
small.
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Comparing ¢(s) and ¢(x(s)
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Comparing ¢(s) and ¢(x(s)

Here are graphs of 2|¢(1/2 + it)| and |(x(1/2 + it)|:
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Figure: Graphs of 2|¢(1/2 + it)| (solid) and |{x(1/2 + it)| (dotted) near
t =114 for X = 10 and X = 300, respectively.
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Figure: Graphs of 2|¢(3 + it)| (solid) and |(x(} + it)| (dotted) near ¢t = 2000
for X = 10 and X = 300, respectively.
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Comparing ¢(s) and ¢(x(s)

There are two striking features:

@ Zeros of (x(1/2 + it) and ((1/2 + it) are close, even for small
values of X.

@ |(x(1/2 + it)| seems to approach 2 |((1/2 + it)| as X increases.

Why?
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The Heuristic Reason Why

[x(1/2+it)| ~2|¢(1/2 + it)]

Px(s) approximates ((s) ino > 1/2.

Since x(s)issmallino > 1/2, (x(s) = Px(s) + x(s)Px(3s) also
approximates ((s).

But (x(s) approximates  F(s) = ¢(s) + x(8)¢(S) even better.
Onoc=1/2
F(/2+it)=¢C(1/2+it)+ x(1/2+it)¢(1/2 — it)

=c(1/2+ it) + ¢(1/2 + it)
—2¢(1/2 + it).

In fact, this suggests that {x(1/2 + it) =~ 2¢(1/2 + it).

(University of Rochester)
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=N(t)—1— %Imz Fo(i(t —~)log X) + E.

Zeros of (x(1/2 + it) occur when Fx(t) =1/2 (mod 1).
N(t) — 1 is an integer between zeros of {(s).
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Why Zeros of (x(s) and ((s) are Close

’
Fx(t) =— 5-argx(1/2 + it) + S(t ——ImZFgl(t— )log X) +

=N(t)—1— %Imz Fo(i(t —~)log X) + E.

Zeros of (x(1/2 + it) occur when Fx(t) =1/2 (mod 1).

N(t) — 1 is an integer between zeros of {(s).

+E

If the sum over zeros is small, Fx(t) = 1/2 (mod 1) cannot happen.

If tis in a closed subinterval Z between two consecutive zeros, the
sum is
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Why Zeros of (x(s) and ((s) are Close

’
Fx(t) =— 5-argx(1/2 + it) + S(t ——ImZFgl(t— )log X) +

=N(t)—1— %Imz Fo(i(t —~)log X) + E.

Zeros of (x(1/2 + it) occur when Fx(t) =1/2 (mod 1).

N(t) — 1 is an integer between zeros of {(s).

+E

If the sum over zeros is small, Fx(t) = 1/2 (mod 1) cannot happen.

If tis in a closed subinterval Z between two consecutive zeros, the
sum is ’

1
<K

(University of Rochester)
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Theorem Relating (x(s) and ((s)

A similar argument shows that (x(1/2 + it) — 2{(1/2 + it).

Theorem

Assume RH. LetZ be a closed interval between two consecutive zeros
of((s) andlett € Z. Then

@ (x(1/2+it) — 2¢(1/2 + it) as X — oo, and

@ (x(1/2+ it) has no zeros in T for X sufficiently large.
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Work of Jon Keating et al.

Jon Keating studied ¢;/2(s) restricted to the one-half line in the early
90’s.
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Work of Jon Keating et al.

Jon Keating studied ¢;/2(s) restricted to the one-half line in the early
90’s.

He noticed that the zeros are quite close to those of the zeta-function.

Later Jon Keating and Eugene Bogomolny used (;/>.(1/2 + it) as a
heuristic tool for calculating the pair correlation function of the zeros of

¢(s)-

(University of Rochester) 38/40



Other Questions

(University of Rochester) 39/40



Other Questions

@ The general problem is to see what further insights we can gain
into the behavior of ((s) and other L-functions from these models.
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Other Questions

@ The general problem is to see what further insights we can gain
into the behavior of ((s) and other L-functions from these models.

@ Study the number of zeros of (x(s) and the number of simple
zeros when X is large, say X = *.

@ (x(s) approximates F = ((s) + x(s)¢(S) well in

o>1/2+loglogt/log X and on o = 1/2 when X is large.
What about in between?
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Another Question

Finite Euler products like H ~x(1—p~ $)~1 play a prominent role here
and also in the hybrid Euler- Hadamard product representation of ¢(s).

Very little is known analytically about the behavior of such products.
For instance, how large is fOT Tlpex(1—p~5)" "2k at?

Together with Jon Keating, we are beginning to determine the outlines
of a theory of such moments, even when X is much larger than T.
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