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I. Approximations of ζ(s)
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The Approximation of ζ(s) by Dirichlet Polynomials

We write s = σ + it and assume s is not near 1.

In the half–plane σ > 1

ζ(s) =
∞∑

n=1

n−s .

If X ≥ 1 and we estimate the tail trivially, we obtain

ζ(s) =
X∑

n=1

n−s + O
(

X 1−σ

σ − 1

)
.
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Approximation by Dirichlet Polynomials in the Strip

A crude form of the approximate functional equation extends this into
the critical strip:

ζ(s) =
X∑

n=1

n−s +
X 1−s

s − 1
+ O(X−σ) (σ > 0).

But X must be � t .

Example
When X = t we have

ζ(s) =
∑
n≤t

n−s + O(t−σ) (σ > 0) .
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Approximations Assuming the Lindelöf Hypothesis

Now recall the
Lindelöf Hypothesis (LH): ζ(1/2 + it) �

(
|t |+ 2

)ε
.

Assuming LH, we can do much better.

Theorem
The Lindelöf Hypothesis is true if and only if

ζ(s) =
∑
n≤X

1
ns + O

(
X 1/2−σ|t |ε

)
for 1

2 ≤ σ � 1 and 1 ≤ X ≤ t2.

Thus, on LH even short truncations approximate ζ(s) well in σ > 1/2.
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Approximations when σ ≤ 1
2

On the other hand, short sums can not approximate ζ(s) well in the
strip 0 < σ ≤ 1/2.

For example, let σ < 1/2 and compare∫ 2T

T
|
∑
n≤X

n−s|2dt ≈ T · X 1−2σ

and ∫ 2T

T
|ζ(σ + it)|2 dt ≈ T · T 1−2σ .

These are not equal if X is small relative to T .
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The Approximation of ζ(s) by Finite Euler Products

The zeta-function also has an Euler product representation

ζ(s) =
∏

p

(
1− 1

ps

)−1

(σ > 1) .

Trivially estimating the tail of the product, we obtain

ζ(s) =
∏
p≤X

(
1− 1

ps

)−1(
1 + O

(
X 1−σ

(σ − 1) log X

))
.

Can we extend this into the critical strip?
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Approximations in the Strip

Yes, but we need to work with a weighted Euler product.

Note that

∏
p≤X 2

(
1− 1

ps

)−1

= exp
( ∑

p≤X 2

∞∑
k=1

1
k pks

)

≈ exp
( ∑

pk≤X 2

1
k pks

)

= exp
( ∑

n≤X 2

Λ(n)

ns log n

)
.

Λ(n) = log p if n = pk , otherwise Λ(n) = 0. We “smooth” the Λ’s and
call the result PX (s) .
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Definition of PX (s)

Specifically, we set

PX (s) = exp

∑
n≤X 2

ΛX (n)

ns log n

 ,

where

ΛX (n) =


Λ(n) if n ≤ X ,

Λ(n)
(

2− log n
log X

)
if X < n ≤ X 2,

0 if n > X 2 .

Remember

PX (s) ≈
∏

p≤X 2

(
1− 1

ps

)−1

.
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Definition of QX (s)

We also write

QX (s) =

exp
(∑

ρ

F2
(
(s − ρ) log X

))
· exp

( ∞∑
n=1

F2
(
(s + 2n) log X

))
· exp

(
F2
(
(1− s) log X

))

with

F2(z) = 2
∫ ∞

2z

e−w

w2 dw −
∫ ∞

z

e−w

w2 dw (z 6= 0).

For z large F2(z) is small. For z near 0

F2(z) ∼ log(c z) .
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A Hybrid Formula for ζ(s)

It follows that in the critical strip away from s = 1

QX (s) ≈
∏

|ρ−s|≤1/ log X

(
c (s − ρ) log X

)

With this PX and QX we have

Theorem (G., Hughes, Keating)
For σ ≥ 0 and X ≥ 2,

ζ(s) = PX (s) ·QX (s) .

Thus, in the critical strip away from s = 1

ζ(s) ≈
∏

p≤X 2

(
1− 1

ps

)−1

·
∏

|ρ−s|≤1/ log X

(
c (s − ρ) log X

)
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Approximation by Finite Euler Products in the Strip

ζ(s) ≈
∏

p≤X 2

(
1− 1

ps

)−1
·

∏
|ρ−s|≤1/ log X

(
c (s − ρ) log X

)

We note that if RH holds and σ > 1
2 , then

ζ(s) ≈ PX (s).

Theorem

Assume RH. Let 2 ≤ X ≤ t2 and 1
2 + C log log t

log X ≤ σ ≤ 1 with C > 1.
Then

ζ(s) = PX (s)
(

1 + O
(

log(1−C)/2 t
))

.

Conversely, this implies ζ(s) has at most a finite number of complex
zeros in this region.
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Approximations when σ ≤ 1/2

Short products can not approximate ζ(s) well in the strip 0 < σ ≤ 1/2.

To see this compare, when σ < 1/2 is fixed and X < T 1/2−ε,∫ 2T

T

(
log |ζ(σ + it)|

)2dt ∼ (1/2− σ)2T log2 T

and ∫ 2T

T

(
log |PX (σ + it)|

)2dt ∼ cT
(

X 2−4σ

log X

)
.

If X is a small power of T , the second is larger.

The last estimate also shows that if σ < 1/2, then infinitely often in t

PX (s) � exp

(
X 1−2σ√

log X

)
, which is very large.
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II. A Function Related to ζ(s) and its Zeros
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Deficiency of the Sum Approximation on σ = 1/2

On LH (and so on RH) we saw that for 1
2 < σ ≤ 1 fixed,

ζ(s) =
∑
n≤X

1
ns + o(1) ,

even if X is small.

But on σ = 1
2 we needed more terms:

ζ(s) =
∑
n≤X

1
ns +

∑
X<n≤t

1
ns + o(1) .

Compare this with the approximate functional equation

ζ(s) =
∑
n≤X

1
ns + χ(s)

∑
n≤t/2πX

1
n1−s + o(1).

Here χ(s) = πs−1/2Γ(1/2− s/2)/Γ(s/2).
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Adding Back the Deficit

So essentially, ∑
X<n≤t

1
ns = χ(s)

∑
n≤t/2πX

1
n1−s .

In particular, putting X =
√

t/2π and σ = 1/2 in the approx. f. e.

ζ(s) =
∑
n≤X

1
ns + χ(s)

∑
n≤t/2πX

1
n1−s + o(1) ,

we see that

ζ(1
2 + it) =

∑
n≤
√

t/2π

1

n
1
2 +it

+ χ(1
2 + it)

∑
n≤
√

t/2π

1

n
1
2−it

+ o(1) .
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Deficiency of the Euler Product Approximation on
σ = 1/2

How much is the Euler product approximation

ζ(s) = PX (s)
(
1 + o(1)

)
off by as σ approaches 1/2 ?

A tempting guess is that for some range of X

ζ(s) ≈ PX (s) + χ(s)PX (1− s).

But this is far too large if X is a power of t because when σ > 1/2,

χ(s)PX (1− s) = Ω
(
t1/2−σ exp(Xσ− 1

2 / log X )
)
,

whereas ζ(s) � tε.
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Definition of ζX (s)

As an alternative to

ζ(s) ≈ PX (s) + χ(s)PX (1− s)

we consider
ζX (s) = PX (s) + χ(s)PX (s) .

These are identical on the critical line and

ζ(s), ζX (s) = PX (s)
(
1 + o(1)

)
when σ > 1/2 is fixed. To study ζX (s) further we need a lemma.

Lemma
In 0 ≤ σ ≤ 1, |t | ≥ 10, |χ(s)| = 1 if and only if σ = 1/2.
Furthermore,

χ(s) =

(
t

2π

)1/2−σ−it

eit+iπ/4
(

1 + O(t−1)
)
.
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The Riemann Hypothesis for ζX (s)

Theorem
All of the zeros of

ζX (s) = PX (s) + χ(s)PX (s)

in 0 ≤ σ ≤ 1 and |t | ≥ 10 lie on σ = 1/2.

Proof.

ζX (s) = PX (s)

(
1 + χ(s)

PX (s)

PX (s)

)
.

Also, PX (s) is never 0. Thus, if s is a zero, |χ(σ + it)| = 1. By the
lemma, when |t | ≥ 10 this implies that σ = 1/2.
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The Number of Zeros of ζX (s)

The number of zeros of ζ(s) up to height T is

N(T ) = − 1
2π

arg χ(1/2 + iT ) +
1
π

arg ζ(1/2 + iT ) + 1

=
T
2π

log
T
2π
− T

2π
+

7
8

+ S(T ) + O(
1
T

) .

How many zeros does ζX (s) have? Write

ζX (1/2 + it) =PX (1/2 + it)
(

1 + χ(1/2 + it)
PX (1/2− it)
PX (1/2 + it)

)
=PX (1/2 + it)

(
1 + e2πi( 1

2π
arg χ(1/2+it)− 1

π
arg PX (1/2+it))

)
.

This vanishes if and only if

1
2π

arg χ(1/2 + it)− 1
π

arg PX (1/2 + it) ≡ 1/2 (mod 1) .
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=PX (1/2 + it)
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1 + e2πi( 1

2π
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π
arg PX (1/2+it))

)
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Detecting Zeros of ζX (s)

Set

FX (t) = − 1
2π

arg χ(1/2 + it) +
1
π

arg PX (1/2 + it) .

Then the zeros of

ζX (1/2 + it) = PX (1/2 + it)(1 + e−2πiFX (t))

are the solutions of FX (t) ≡ 1/2 (mod 1). Now

arg χ(1/2 + it) = −t log
t

2π
+ t +

1
4
π + O

(
1
t

)
and

arg PX (1/2 + it) = Im log PX (1/2 + it) = Im
∑

n≤X 2

ΛX (n)

n1/2+it log n

= −
∑

n≤X 2

ΛX (n) sin(t log n)

n1/2 log n
.
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Lower Bound for the Number of Zeros

So

FX (t) =
1

2π
t log

t
2π
− t

2π
− 1

8
− 1

π

∑
n≤X 2

ΛX (n) sin(t log n)

n1/2 log n
+ O

(
1
t

)
.

Ignoring the O(1/t), the condition that ζX (1/2 + it) = 0 is that this is
≡ 1/2 (mod 1).

If NX (T ) denotes the number of times this happens in [0, T ], we have
the

Theorem

NX (T ) ≥ T
2π

log
T
2π
− T

2π
− 1

π

∑
n≤X 2

ΛX (n) sin(T log n)

n1/2 log n
+ O(1) .

How large can the sum be?
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Admissible Functions

Call an increasing function Φ(t) admissible if

|S(t)| ≤ Φ(t) and |ζ(1/2 + it)| � exp(Φ(t)) .

Montgomery on RH and then Balasubramanian and Ramachandra
unconditionally showed that

Φ(t) = Ω(
√

log t/ log log t ).

Φ(t) = C log t is admissible
Φ(t) = ε log t is admissible on LH
Φ(t) = (1/2 + ε) log t/ log log t is admissible on RH.
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The Sum on RH

Conjecture (Farmer, G., Hughes)

Φ(t) =
√

(1/2 + ε) log t log log t is admissible, but
Φ(t) =

√
(1/2− ε) log t log log t is not .

In terms of admissible functions we have

Theorem
Assume RH. Then

1
π

∑
n≤X 2

ΛX (n) sin(t log n)

n1/2 log n
� Φ(t) + O

(
log t
log X

)
.

This is � Φ(t) if X ≥ exp(c log t/Φ(t)) for some c > 0.
( Same bound as for S(t) ! )
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Extra Solutions

If FX (t) is not monotonically increasing, there could be “extra” solutions
of

FX (t) ≡ 1/2 (mod 1),

and so of ζX (1/2 + it) = 0.

Now

F
′

X (t) =
1

2π
log

t
2π
− 1

π

∑
n≤X 2

ΛX (n) cos(t log n)

n1/2 + O
(

1
t2

)
.

On RH the sum is � Φ(t) log X .

Thus, on RH there is a positive constant C, such that FX (t) is strictly
increasing if

X < exp
(

C log t
Φ(t)

)
.

(University of Rochester) 26 / 40



Extra Solutions

If FX (t) is not monotonically increasing, there could be “extra” solutions
of

FX (t) ≡ 1/2 (mod 1),

and so of ζX (1/2 + it) = 0.
Now

F
′

X (t) =
1

2π
log

t
2π
− 1

π

∑
n≤X 2

ΛX (n) cos(t log n)

n1/2 + O
(

1
t2

)
.

On RH the sum is � Φ(t) log X .

Thus, on RH there is a positive constant C, such that FX (t) is strictly
increasing if

X < exp
(

C log t
Φ(t)

)
.

(University of Rochester) 26 / 40



Extra Solutions

If FX (t) is not monotonically increasing, there could be “extra” solutions
of

FX (t) ≡ 1/2 (mod 1),

and so of ζX (1/2 + it) = 0.
Now

F
′

X (t) =
1

2π
log

t
2π
− 1

π

∑
n≤X 2

ΛX (n) cos(t log n)

n1/2 + O
(

1
t2

)
.

On RH the sum is � Φ(t) log X .

Thus, on RH there is a positive constant C, such that FX (t) is strictly
increasing if

X < exp
(

C log t
Φ(t)

)
.

(University of Rochester) 26 / 40



Extra Solutions

If FX (t) is not monotonically increasing, there could be “extra” solutions
of

FX (t) ≡ 1/2 (mod 1),

and so of ζX (1/2 + it) = 0.
Now

F
′

X (t) =
1

2π
log

t
2π
− 1

π

∑
n≤X 2

ΛX (n) cos(t log n)

n1/2 + O
(

1
t2

)
.

On RH the sum is � Φ(t) log X .

Thus, on RH there is a positive constant C, such that FX (t) is strictly
increasing if

X < exp
(

C log t
Φ(t)

)
.

(University of Rochester) 26 / 40



There are No Extra Solutions When X is Small

We therefore have the

Theorem
Assume RH. There is a constant C > 0 such that if
X < exp

(
C log t/Φ(t)

)
, then

NX (t) =
t

2π
log

t
2π
− t

2π
− 1

π

∑
n≤X 2

ΛX (n) sin(t log n)

n1/2 log n
+ O(1) .

Unconditionally we can take X larger, but then we only obtain an
asymptotic estimate.

Theorem
If X ≤ to(1), then

NX (t) ∼ t
2π

log
t

2π
.
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Simple Zeros of ζX (s)

1/2 + iγ is a simple zero of ζX (s) if ζX (1/2 + iγ) = 0, but
ζ

′

X (1/2 + iγ) 6= 0.

Now

ζX (1/2 + it) =PX (1/2 + it)
(

1 + χ(1/2 + it)
PX (1/2− it)
PX (1/2 + it)

)
=PX (1/2 + it)

(
1 + e−2πi FX (t)

)
,

and

ζ
′

X (1/2 + it) =P
′

X (1/2 + it)
(

1 + e−2πi FX (t)
)

− 2πPX (1/2 + it)F
′

X (t)e−2πi FX (t).

This vanishes at 1/2 + iγ if and only if F
′

X (γ) = 0.

(University of Rochester) 28 / 40



Simple Zeros of ζX (s)

1/2 + iγ is a simple zero of ζX (s) if ζX (1/2 + iγ) = 0, but
ζ

′

X (1/2 + iγ) 6= 0. Now

ζX (1/2 + it) =PX (1/2 + it)
(

1 + χ(1/2 + it)
PX (1/2− it)
PX (1/2 + it)

)
=PX (1/2 + it)

(
1 + e−2πi FX (t)

)
,

and

ζ
′

X (1/2 + it) =P
′

X (1/2 + it)
(

1 + e−2πi FX (t)
)

− 2πPX (1/2 + it)F
′

X (t)e−2πi FX (t).

This vanishes at 1/2 + iγ if and only if F
′

X (γ) = 0.

(University of Rochester) 28 / 40



Simple Zeros of ζX (s)

1/2 + iγ is a simple zero of ζX (s) if ζX (1/2 + iγ) = 0, but
ζ

′

X (1/2 + iγ) 6= 0. Now

ζX (1/2 + it) =PX (1/2 + it)
(

1 + χ(1/2 + it)
PX (1/2− it)
PX (1/2 + it)

)
=PX (1/2 + it)

(
1 + e−2πi FX (t)

)
,

and

ζ
′

X (1/2 + it) =P
′

X (1/2 + it)
(

1 + e−2πi FX (t)
)

− 2πPX (1/2 + it)F
′

X (t)e−2πi FX (t).

This vanishes at 1/2 + iγ if and only if F
′

X (γ) = 0.

(University of Rochester) 28 / 40



Simple Zeros of ζX (s)

1/2 + iγ is a simple zero of ζX (s) if ζX (1/2 + iγ) = 0, but
ζ

′

X (1/2 + iγ) 6= 0. Now

ζX (1/2 + it) =PX (1/2 + it)
(

1 + χ(1/2 + it)
PX (1/2− it)
PX (1/2 + it)

)
=PX (1/2 + it)

(
1 + e−2πi FX (t)

)
,

and

ζ
′

X (1/2 + it) =P
′

X (1/2 + it)
(

1 + e−2πi FX (t)
)

− 2πPX (1/2 + it)F
′

X (t)e−2πi FX (t).

This vanishes at 1/2 + iγ if and only if F
′

X (γ) = 0.

(University of Rochester) 28 / 40



Simple Zeros of ζX (s)

1/2 + iγ is a simple zero of ζX (s) if ζX (1/2 + iγ) = 0, but
ζ

′

X (1/2 + iγ) 6= 0. Now

ζX (1/2 + it) =PX (1/2 + it)
(

1 + χ(1/2 + it)
PX (1/2− it)
PX (1/2 + it)

)
=PX (1/2 + it)

(
1 + e−2πi FX (t)

)
,

and

ζ
′

X (1/2 + it) =P
′

X (1/2 + it)
(

1 + e−2πi FX (t)
)

− 2πPX (1/2 + it)F
′

X (t)e−2πi FX (t).

This vanishes at 1/2 + iγ if and only if F
′

X (γ) = 0.

(University of Rochester) 28 / 40



The Number of Simple Zeros When X is Small

Recall that if X is not too large,

F
′

X (t) =
1

2π
log

t
2π
− 1

π

∑
n≤X 2

ΛX (n) cos(t log n)

n1/2 + O
(

1
t2

)
> 0.

Thus we have the

Theorem
Assume RH. There is a constant C > 0 such that if
X < exp

(
C log t/Φ(t)

)
, all the zeros of ζX (1/2 + it) with imaginary part

≥ 10 are simple.

Unconditionally we have

Theorem

If X ≤ exp
(

o(log1−ε t)
)

, then ζX (1/2 + it) has ∼ T/2π log (T/2π)

simple zeros up to height T .
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Simple Zeros of ζX (s) When X is Large

A zero 1/2 + iγ of ζX (s) is simple if and only if F
′

X (γ) 6= 0.

We have just seen that on RH F
′

X (t) > 0 if
X < exp

(
C log t/Φ(t)

)
(for some C), so all zeros are simple.

But even when X is very large, the odds that F
′

X (γ) = 0 are quite
small.
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III. The Relation Between ζ(s) and ζX (s)
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Comparing ζ(s) and ζX (s)

Here are graphs of 2|ζ(1/2 + it)| and |ζX (1/2 + it)|:
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Figure: Graphs of 2|ζ(1/2 + it)| (solid) and |ζX (1/2 + it)| (dotted) near
t = 114 for X = 10 and X = 300, respectively.
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Figure: Graphs of 2|ζ( 1
2 + it)| (solid) and |ζX ( 1

2 + it)| (dotted) near t = 2000
for X = 10 and X = 300, respectively.
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Comparing ζ(s) and ζX (s)

There are two striking features:

Zeros of ζX (1/2 + it) and ζ(1/2 + it) are close, even for small
values of X .

|ζX (1/2 + it)| seems to approach 2 |ζ(1/2 + it)| as X increases.

Why?
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The Heuristic Reason Why
|ζX (1/2 + it)| ≈ 2 |ζ(1/2 + it)|

PX (s) approximates ζ(s) in σ > 1/2.

Since χ(s) is small in σ > 1/2, ζX (s) = PX (s) + χ(s)PX (s) also
approximates ζ(s).

But ζX (s) approximates F(s) = ζ(s) + χ(s)ζ(s) even better.

On σ = 1/2

F(1/2 + it) =ζ(1/2 + it) + χ(1/2 + it)ζ(1/2− it)
=ζ(1/2 + it) + ζ(1/2 + it)
=2ζ(1/2 + it).

In fact, this suggests that ζX (1/2 + it) ≈ 2 ζ(1/2 + it).
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Why Zeros of ζX (s) and ζ(s) are Close

FX (t) =− 1
2π

arg χ(1/2 + it) + S(t)− 1
π

Im
∑

γ

F2(i(t − γ) log X ) + E

=N(t)− 1− 1
π

Im
∑

γ

F2(i(t − γ) log X ) + E .

Zeros of ζX (1/2 + it) occur when FX (t) ≡ 1/2 (mod 1).

N(t)− 1 is an integer between zeros of ζ(s).

If the sum over zeros is small, FX (t) ≡ 1/2 (mod 1) cannot happen.

If t is in a closed subinterval I between two consecutive zeros, the
sum is

�I
1

log2 X

∑
γ

1
(t − γ)2 → 0 as X →∞.
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Theorem Relating ζX (s) and ζ(s)

A similar argument shows that ζX (1/2 + it) → 2 ζ(1/2 + it).

Theorem

Assume RH. Let I be a closed interval between two consecutive zeros
of ζ(s) and let t ∈ I. Then

ζX (1/2 + it) → 2ζ(1/2 + it) as X →∞, and

ζX (1/2 + it) has no zeros in I for X sufficiently large.
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Work of Jon Keating et al.

Jon Keating studied ζt/2π(s) restricted to the one-half line in the early
90’s.

He noticed that the zeros are quite close to those of the zeta-function.

Later Jon Keating and Eugene Bogomolny used ζt/2π(1/2 + it) as a
heuristic tool for calculating the pair correlation function of the zeros of
ζ(s).
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Other Questions

The general problem is to see what further insights we can gain
into the behavior of ζ(s) and other L-functions from these models.

Study the number of zeros of ζX (s) and the number of simple
zeros when X is large, say X = tα.

ζX (s) approximates F = ζ(s) + χ(s)ζ(s) well in
σ > 1/2 + log log t/ log X and on σ = 1/2 when X is large.
What about in between?
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Another Question

Finite Euler products like
∏

p≤X (1− p−s)−1 play a prominent role here
and also in the hybrid Euler-Hadamard product representation of ζ(s).

Very little is known analytically about the behavior of such products.

For instance, how large is
∫ T

0 |
∏

p≤X (1− p−s)−1|2k dt ?

Together with Jon Keating, we are beginning to determine the outlines
of a theory of such moments, even when X is much larger than T .
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