2009 Graduate Workshop on Zeta functions, *L*-functions and their Applications

Steven J. Miller

June 9, 2009

Contents

1	Hun	dley: Integral Representations: What we've found, what we're	
	look	ing for and why we're looking there	1
	1.1	Langlands (Partial) L-functions	2
	1.2	Integral Representations	2
	1.3	Recent Examples	3
	1.4	Where are we looking and why?	3
	1.5	Ginzburg's dimension heuristics	4

Abstract

These notes were TeXed in real-time by Steven J. Miller; all errors should be attributed to the typist.

1 Hundley: Integral Representations: What we've found, what we're looking for and why we're looking there

NOTE: these notes are much rougher than the others, due to lateness of the day. All omissions should be attributed to the typist.

I want to mention a copy of major sources for everything I'm going to say: surveys of Bump in the Selberg volume and the Rallis volume. Also a lot of this was picked up from Ginzburg.

1.1 Langlands (Partial) *L*-functions

Data:

- $\pi \cong \otimes_v' \pi_v$ irreducible cuspidal (generic) representation, G a quasi-split connected reductive algebraic group, $\mathbf{A} = \prod_v' F_v$ adele ring. Such π 's can be obtained from classical Dirichlet, Hecke characters, modular forms, Maass forms, Siegel (not gen.) modular forms.
- S: finite set of places including $v|\infty$ and all v where π_v is not unramified principal series.
- r: finite dimensional representation of LG .

$$L^{S}(s,\pi,r) = \prod_{v \in S} \det(I - q_{V}^{S} r(t_{\pi_{v}}))^{-1}, \tag{1}$$

with $s \in \mathbb{C}$ and $q_v = \#(\mathcal{O}_v/p_v)$ and ${}^LG \ni t_{\pi_v} \leftrightarrow \pi_v$.

1.2 Integral Representations

- Different usage of representation.
- Express given L-function as integral using automorphic form from π .
- Failing that, find an integral which when evaluated gives some L-functions.

Classical examples:

• Hecke: $\int_0^\infty f(iy) y^s dy/y$ with $F = \mathbb{Q}$, $G = \mathrm{GL}(2)$, π generated by f and $^LG = \mathrm{GL}(2,\mathbb{C})$, $r = \mathrm{std}$ representation.

- Rankin-Selberg: $\int_{\mathrm{SL}(2,\mathbb{Z})\backslash\mathcal{H}} f_1(z) f_2(z) E(z,s) dx dy/y^2$ with $E(z,s) = \sum_{\mathbb{Z}^2-(0,0)} y^s/|mz+n|^{2s}$. Here $F=\mathbb{Q}, G=\mathrm{GL}(2)^2, \pi$ generated by $f_1\cdot f_2, {}^LG=\mathrm{GL}(2,\mathbb{C})^2, r(g,h)\cdot X=gX+h$.
- $\int_0^1 E(z,s)dx = \cdots$, involves $\zeta(2s)$ and $\zeta(2s-1)$.

1.3 Recent Examples

- Dutta-She: uses four-fold cover of GL(3). Doesn't have a unique Whittaker model.
- Ishii-Moriyama: Archimedean (introduced by Novodvorsky).
- Pitale-Schmidt: $GSp_4 \times GL_2$: non-generic (after Furusawa).
- Qin: G = U(n, n).
- Soudry: book (in progress for some time): has some general constructions for GL cross a classical group.
- Wambach: published details of above.
- Ginzburg: Doubling method for G₂
- Ginzurg-Hundley: local computations get nasty. Here $G = \operatorname{GL}_5$, ${}^LG = \operatorname{GL}_5(\mathbb{C})$, $r = \operatorname{Ad}$, $G = \operatorname{Spin}_{11}$, ${}^LG = \operatorname{Sp}_{10}(\mathbb{C})$, $r = \Lambda_0^2$.
- Hundley: $G = SU_{2,1}...$

There are constructions where you get the adjoint for GL_4 . These use Eisenstein series. Also constructions for GL_3 , use the same Eisenstein series on GL_2 . A third construction studied by Jiang-Rallis, get a ratio of Dedekind zeta functions.

1.4 Where are we looking and why?

Goal: find Eulerian integrals.

Paradigm: They come from uniqueness principles. The classical Rankin-Selberg can be considered as coming from a trilinear form. Can prove that trilinear form is unique. Bernstein-Reznikov were trying to compute

$$\int_{\mathrm{SL}(2,\mathbb{Z})\backslash\mathcal{H}} f_1(z) f_2(z) f_3(z) dx dy / y^2 \tag{2}$$

from uniqueness of trilinear forms without unfolding.

Sakellaridis put up a very interesting preprint on the arxiv about a week ago. Extremely relevant to this. He seems to have a way to generate a lot of multiplicity one statements through the theory of spherical varieties, recovering many of the best examples. He is not claiming to have all of them for everything called Rankin-Selberg. Gets three new integrals out of this, promise of some conceptual picture of where many of these come from.

1.5 Ginzburg's dimension heuristics

P=MU parabolic, M acts on characters of U via rational representation defined over F. Some cases U has generalized Heisenberg structure. Characters correspond to nilpotent elements of Lie algebra. Fourier coefficients correspond to nilpotent orbits.

Heuristic: the sum of the GK dimensions of the representations involved must equal the dimension of the domain of integration. Ask: do there exist a parabolic Q=LV and a representation τ of L with GK dimension such that GK dimension plus GK dimension τ plus $\dim V$ equals $\dim U$ plus $\dim H_{\psi_0^0}$.