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I. What is a mean value theorem?

In general it is an estimate for an average of a function. For example
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— | |f(z+ Re™)|*df.
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For a function with a Dirichlet series, F'(s) =) _ "~ , a,n™*, the aver-

age is typically along a vertical segment:

T
/ |F(o+at)|° dt
0
or
T
/ F(o+it)dt.
0
Note:
1) The path of integration might not be in the half-plane of conver-

gence.

2) It is customary not to divide by T
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There are many variants, for example, an average over a discrete set

of points:

Example 1. Take F(s) = ((s)*, 0 > 1/2, and k a positive integer.
We are interested in the means
T k|2
Ii(o,T) = [, |C(o+it)"|"dt

= [V [C(o +it)*dt.

Example 2. Take F(s) = (¢'(s))*, S a set of zeros p = 3 + iy of

((s). One can consider the means

ST

peES



Example 3. Let

F(s) = Fn(s) = Z apn”’

be a Dirichlet “polynomial” of “length” N. One can show that

"5 — |a,?
/O \;ann Pdt = (T + O(Nlog N)) > o

n=1

This is the “classical mean value theorem for Dirichlet polynomials”.

A stronger version, due to H. L. Montgomery and R. C. Vaughan, is

T N
/ > a7 Pt = Z‘ anl’ (T +O(n)).
0 n=1
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Il. Mean values and zeros.
Mean value estimates are used to study the zeros in a variety of ways.
One direct link between them and the zeros of an analytic function is

given by

Theorem. (Jensen’s Formula) Let f(z) be analytic for |z| <
R and suppose that f(0) # 0. Let r1,79,...,7r, be the moduli of

all the zeros of f(z) inside |z| < R. Then

0

riro - -1y 2T

log(

That is, the distribution of zeros of f(z) inside the circle is related to
the mean of log|f(2)| on the circle.
There is an analogous result for rectangles that is more useful when

working with Dirichlet series.
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Theorem. (Littlewood’s Lemma) Let f(s) be analytic and

nonzero on the rectangle C with vertices oy, o1, o1 +11", og+11".

T T
QWZdist(p)—/O log|f(00+it)\dt—/0 log | f(oy +it)| dt

+/gl arg f(o +1T) do — /U1 arg f(o)do,

00 00

where the sum runs over the zeros p of f(s) in C and dist(p) is

the distance from p to the left edge of the rectangle.
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Proof of Littlewood’s Lemma.
Let C" denote the rectangle C together with the “loops” L, around

each zero p (see the figure). Then

/Clogf(s)ds/logf ds+Z/ log f(s)

peC

Now log f(s) is analytic and single-valued in C’, so

/ log f(s)ds =0.
C/

Therefore,

/logf ds—Z/ log f(s)

If p = [+ 47, and the circle in £, has radius r, then

2T

B—r
/cp log f(s)ds = / log f(o +ivy™)do +/ log f(re”)ire®dd

o) 0

B—r
—/ log f(o +1iy") do.

00



The second integral — 0 as r — 07. The third integral is
B—r
/ (log f(o +iy™) + 2mi) do .
o0
Hence, as r — 0,
B
/ log f(s)ds — —27r73/ do = —2mi( — o) .
L, a9

Therefore

/log f(s)ds = —2mi Z(ﬂ — 09) -

¢ peC

We may write this as

T T
—27i Z(ﬁ —0g) = /0 log f(o1 + it) idt — /0 log f(op + it) idt

peC

+ [ e floyds — [ logflo+it)do

o)) o0

The result follows on equating imaginary parts.
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Only the first term on the right in Littlewood's Lemma will be signifi-

cant for us, so we will write

T T
27 Z dist(p) = / log | f(op +it)| dt — / log | f(o1 + it)| dt
e 0 0
01 g1
+/ argf(a—i—iT)da—/ arg f(o)do ,
00 00
as
T
27 Z dist(p) = / log|f(og+it)|dt + &
peC 0
and ignore £.

Usually we cannot estimate the integral directly, so we use the following

trick:

1

T
T/o log | f(o0 +it)|dt = 3 [ Tog(|f (o0 + it)[?) dt

< Llog(F fy 1/ (o0 +it)*dt),

(“The average of the log is < the log of the average.”)

Note: Our mean values appear!
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I1l. A sample of important estimates.

Recall that
T
Li(o.T) = / (o + i) dt
0
The case k = 1.
If o > 1/2,
T
Li(o,T) = / C(o +it)|*dt ~ ci(0) T,
0

as ' — oo.

Hardy and Littlewood (1918) proved that if o = 1/2, then

L(1/2,T) ~ TlogT .

In particular, |((o + it)| is smaller on average for 0 > 1/2 then for
o=1/2.
Since ((3 + it) has many zeros, we should expect ((s) to be very

N |[—

erratic on g =
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The case k£ = 2.

If o > 1/2,

T
(o, T) = /O C(o +it)| dt ~ es(0) T,

as T' — oo.

Ingham (1926) proved that

T
I(1/2,T) ~ ﬁlog‘LT.

The case k > 2.
No asymptotic has yet been proven.

Balasubramanian and Ramachandra have shown that
I(1/2,T) > Tlog"'T .
and we expect that

[(1/2,T) ~ ;T log" T
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Conrey and Ghosh conjectured that

o — argr
TR+ 1)
That is, that
argk k2
0[.(1/2,T) ~ T1 T
k( / Y ) F(k_Q 1) Og
Here
1 (k—1)% k—1 L1\ 2 B
() S
p p r=0 r

and g, is some (then unknown) constant.
J. Keating and N. Snaith used random matrix theory to conjecture the

value of g, for all k. When £ is an integer their conjecture is

Conjeture. (Keating—Snaith)

k—

!

j:

—_
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Another important mean is
T )

(1) / ICY) (0 4 it) My (o +it)|” dt,
0

where

Myls) = Y “(?(1 logn ).

N n log N

My/(s) approximates 1/((s) when o > 1. This continues for o < 1

In some sense. Hence,
C(s)Mn(s)

should be tamer than ((s) on o = 1.
General estimates for means like (1) were proved by Conrey, Ghosh,

and Gonek with
N=T1% and 0<1/2.

Later, Conrey used Kloosterman sum techniques to show these formu-

las also hold for 6 < 4/7.
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Assuming the Riemann Hypothesis and the Generalized Lindelof Hy-
pothesis are true, Conrey, Ghosh, and Gonek also proved discrete ver-
sions of this, including estimates for sums like

2

|

> 1 (p)My(p)

0<y<T

Here ~v runs over the ordinates of the zeros p = %—l— iy of ((s). Again

N=1" and 6<1/2.
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IV. Application: A simple zero—density estimate.

Let

N(o,T) = E 1.
p=0+1y
0<~<T
o<p<1

We want an upper bound for N (o, T) when 1 < o <1 is fixed.
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We apply Littlewood's Lemma on the rectangle C with vertices oy, 2,

24111, o9 +1T, where%<00§1isfixed.

Zdist(p) = i/0 log(|¢ (oo +it)|) dt + &

21
peC

Let o be a real number with o) < o < 1.

On the one hand,

> dist(p) > ) dist(p) > (o — 00)N(o, T).
peC peC
o<p

On the other hand,

e Lot
%/0 1og(|§(ao—i—it)|)dt5/0 log(|¢ (00 + it)[*) dt

T

<
Yy

T
log(% /0 (o0 + t)|?) dt

by our “trick”.
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Hence

(0 —09)N(o,T) < % log(% /OT ((og +it)|?) dt + £ .
The integral is
Li(00,T) ~ ci1(00) T .
Therefore,
(0 —09)N(o,T) < —logci(oy),
and
N(o,T) < T.

Since N(T') ~ L log T, we see that

1
log T

N(o,T)/N(T) = O(-—=)

for any fixed o > 1/2.
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We may interpret this as saying that only an infinitesimal proportion

of the zeros are to the right of any line Res =0 > 1/2 .

This was the first zero—density estimate. It was proved by H. Bohr

and E. Landau (1914).

Since then, much stronger results have been proven, typically of the
form

N(o,T) << TN

where A(0) < 1 and A(o) is decreasing for o > 1/2.
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V. Application: Levinson’s method.

Recall that

N(T)=##{p=0+iv|Clp) =0, 0<y<T}

T
~ —logT
27TOg
and let
1
No(T) = # p=§+w!C(p>:0, 0<y<T

denote the number of zeros on the critical line up to height 7.

G. H. Hardy (1914) :  Ny(T') — ¢ (as T — o0)
G. H. Hardy-J. E. Littlewood (1921) :  Ny(T') > ¢T
A. Selberg (1942) :  Ny(T) > ¢ N(T)

N. Levinson (1974) :  Ny(T) > i N(T)

J. B. Conrey (1989) :  No(T) > 2N(T)



21

Levinson’s method begins with the following fact first proved by Speiser.

Theorem. (Speiser) RH < ('(s) #0 in0 <o < 3.

In the early seventies, N. Levinson and H. L. Montgomery proved a

quantitative version of this:

Theorem. (Levinson-Montgomery) ((s) and ('(s) have the

same number of zeros inside C up to O(logT).

Proof.

/

A arg =(s)| =O0O(logT),

and

A arg Z/(S) = 2m(# zeros of ('(s)inC — # zeros of ((s)inC).
C
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Sketch of Levinson's method
¢'(s) has N'(T)

zeros here

So does ((s)

(up to O(logT))

and here

Therefore
N(T) = No(T) +2N'(T) + O(log T),
or

No(T) = N(T) — 2N'(T) + O(log T).

We know N (T'), so we need an upper bound for N'(T)).



N'(T) = the no. of zeros of ('(s) here

= the no. of zeros of {'(1 — s) here

By the functional equation for ((s), ('(s) has the same zeros in

1/2<0<2 0<t<Tas

where L(s) ~ 5=log s

23

So we need an upper bound for the number of zeros of G(s) in the

rectangle on the right.
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We apply Littlewood's Lemma to C, with a = % — logT and ¢ > 0.
1 [T

— [ log|G(a +it) dt + &

21 0

zeros of G
€Cqy

> ) dist(p)

zerosof G
€Cq
f*>1/2

> (1/2 — a)N'(T).



Thus,

2m
I o

=— [ log|GM(a+it)|°dt+ &
41 0

T I i
< —log T |GM (a +it)|°dt | + &,
0

A7

(1/2 — a)N'(T) < — /OT log |GM(a + it)|dt + €

approximates 1/((s).

Thus, we require an estimate for
T
/ |G M (a + it)|*dt .
0

This is similar to mean values mentioned before.

25
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Levinson (1974) : One can take § = 1/2 — €. This gives

No(T) > %N(T) (asT — o0).

J. B. Conrey (1989) : One can take § = 4/7 — €. This gives

No(T) > %N(T) (asT — 00).

As a function of #, the asymptotic estimate for
T
/ |G M (a + it)|*dt .
0

is the same in both cases.

D. Farmer has argued that this remains true for 6 arbitrarily large.

Farmer’s conjecture imples that

No(T) ~ N(T) .



VI. Application: The number of simple zeros.

Let

Ny(T)=4Hp=B+iv| C(p) =0, (p) #0, 0<~y<T}

We believe that for all 7" > 0,

H. Montgomery (1974) :

RH — N.(T) > %N(T)

via the pair correlation method.

Conrey, Ghosh, Gonek (1999):

19

N(T) = (.703.. )N(T) .

27
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Sketch of the method

This time we use discrete mean values. By the Cauchy—Schwarz in-

equality
‘ > CI(1/2+M)‘2 S( > 1)( > ]g’(1/2+w)12),
0<y<T 0<y<T 0<y<T

1/2+i7yis simple

An asymptotic estimate for the means provides a lower bound for

N(T). But this only leads to Ny(T') > cT.

We lose in applying the Cauchy-Schwarz inequality. To minimize the

loss we mollify ¢'(1/2 + i) by a Dirichlet polynomial My(s).

0<y<T
/ 2
<( X (X Kmal).
0<~<T 0<y<T
p=1/2+i~y
15 simple

An elaboration of the method shows that on the same hypotheses at

least 95.5% of the zeros of ((s) are either simple or double.



