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I. What is a mean value theorem?

In general it is an estimate for an average of a function. For example

1

2π

∫ 2π

0

|f (z0 + Reiθ)|2 dθ .

For a function with a Dirichlet series, F (s) =
∑∞

n=1 ann
−s , the aver-

age is typically along a vertical segment:∫ T

0

|F (σ + it)|2 dt ,

or ∫ T

0

F (σ + it) dt .

Note:

1) The path of integration might not be in the half–plane of conver-

gence.

2) It is customary not to divide by T .
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There are many variants, for example, an average over a discrete set

of points:

R∑
r=1

|F (σr + itr)|2 (σr + itr ∈ C) .

Example 1. Take F (s) = ζ(s)k, σ ≥ 1/2, and k a positive integer.

We are interested in the means

Ik(σ, T ) =
∫ T

0 |ζ(σ + it)k|2 dt

=
∫ T

0 |ζ(σ + it)|2k dt .

Example 2. Take F (s) = (ζ ′(s))k, S a set of zeros ρ = β + iγ of

ζ(s). One can consider the means

∑
ρ∈S

|ζ ′(ρ)|2k .
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Example 3. Let

F (s) = FN(s) =

N∑
n=1

ann
−s

be a Dirichlet “polynomial” of “length” N . One can show that

∫ T

0

|
N∑

n=1

ann
−σ−it|2dt = (T + O(N log N))

N∑
n=1

|an|2

n2σ
.

This is the “classical mean value theorem for Dirichlet polynomials”.

A stronger version, due to H. L. Montgomery and R. C. Vaughan, is

∫ T

0

|
N∑

n=1

ann
−σ−it|2dt =

N∑
n=1

|an|2

n2σ
(T + O(n)) .
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II. Mean values and zeros.

Mean value estimates are used to study the zeros in a variety of ways.

One direct link between them and the zeros of an analytic function is

given by

Theorem. (Jensen’s Formula) Let f (z) be analytic for |z| ≤

R and suppose that f (0) 6= 0. Let r1, r2, . . . , rn be the moduli of

all the zeros of f (z) inside |z| ≤ R. Then

log(
|f (0)|Rn

r1r2 · · · rn
) =

1

2π

∫ 2π

0

log |f (Reiθ)| dθ .

That is, the distribution of zeros of f (z) inside the circle is related to

the mean of log |f (z)| on the circle.

There is an analogous result for rectangles that is more useful when

working with Dirichlet series.
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Theorem. (Littlewood’s Lemma) Let f (s) be analytic and

nonzero on the rectangle C with vertices σ0, σ1, σ1 + iT , σ0 + iT .

Then

2π
∑
ρ∈C

dist(ρ) =

∫ T

0

log |f (σ0 + it)| dt−
∫ T

0

log |f (σ1 + it)| dt

+

∫ σ1

σ0

arg f (σ + iT ) dσ −
∫ σ1

σ0

arg f (σ) dσ ,

where the sum runs over the zeros ρ of f (s) in C and dist(ρ) is

the distance from ρ to the left edge of the rectangle.



8

Proof of Littlewood’s Lemma.

Let C ′ denote the rectangle C together with the “loops” Lρ around

each zero ρ (see the figure). Then∫
C
log f (s) ds =

∫
C′

log f (s) ds +
∑
ρ∈C

∫
Lρ

log f (s) ds .

Now log f (s) is analytic and single–valued in C ′, so∫
C′

log f (s) ds = 0 .

Therefore, ∫
C
log f (s) ds =

∑
ρ∈C

∫
Lρ

log f (s) ds .

If ρ = β + iγ, and the circle in Lρ has radius r, then∫
Lρ

log f (s) ds =

∫ β−r

σ0

log f (σ + iγ−) dσ +

∫ 2π

0

log f (reiθ) ireiθdθ

−
∫ β−r

σ0

log f (σ + iγ+) dσ .
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The second integral → 0 as r → 0+. The third integral is∫ β−r

σ0

(
log f (σ + iγ−) + 2πi

)
dσ .

Hence, as r → 0+,∫
Lρ

log f (s) ds → −2πi

∫ β

σ0

dσ = −2πi(β − σ0) .

Therefore ∫
C
log f (s) ds = −2πi

∑
ρ∈C

(β − σ0) .

We may write this as

−2πi
∑
ρ∈C

(β − σ0) =

∫ T

0

log f (σ1 + it) idt−
∫ T

0

log f (σ0 + it) idt

+

∫ σ1

σ0

log f (σ) dσ −
∫ σ1

σ0

log f (σ + iT ) dσ .

The result follows on equating imaginary parts.
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Only the first term on the right in Littlewood’s Lemma will be signifi-

cant for us, so we will write

2π
∑
ρ∈C

dist(ρ) =

∫ T

0

log |f (σ0 + it)| dt−
∫ T

0

log |f (σ1 + it)| dt

+

∫ σ1

σ0

arg f (σ + iT ) dσ −
∫ σ1

σ0

arg f (σ) dσ ,

as

2π
∑
ρ∈C

dist(ρ) =

∫ T

0

log |f (σ0 + it)| dt + E

and ignore E .

Usually we cannot estimate the integral directly, so we use the following

trick:

1

T

∫ T

0

log |f (σ0 + it)| dt = 1
2T

∫ T

0 log(|f (σ0 + it)|2) dt

≤ 1
2 log( 1

T

∫ T

0 |f (σ0 + it)|2 dt) ,

(“The average of the log is ≤ the log of the average.”)

Note: Our mean values appear!
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III. A sample of important estimates.

Recall that

Ik(σ, T ) =

∫ T

0

|ζ(σ + it)|2k dt .

The case k = 1.

If σ > 1/2,

I1(σ, T ) =

∫ T

0

|ζ(σ + it)|2 dt ∼ c1(σ) T ,

as T →∞.

Hardy and Littlewood (1918) proved that if σ = 1/2, then

I1(1/2, T ) ∼ T log T .

In particular, |ζ(σ + it)| is smaller on average for σ > 1/2 then for

σ = 1/2.

Since ζ(1
2 + it) has many zeros, we should expect ζ(s) to be very

erratic on σ = 1
2.
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The case k = 2.

If σ > 1/2,

I2(σ, T ) =

∫ T

0

|ζ(σ + it)|4 dt ∼ c2(σ) T ,

as T →∞.

Ingham (1926) proved that

I2(1/2, T ) ∼ T

2π2
log4 T .

The case k > 2.

No asymptotic has yet been proven.

Balasubramanian and Ramachandra have shown that

Ik(1/2, T ) � T logk2
T ,

and we expect that

Ik(1/2, T ) ∼ ckT logk2
T .
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Conrey and Ghosh conjectured that

ck =
akgk

Γ(k2 + 1)
.

That is, that

Ik(1/2, T ) ∼ akgk

Γ(k2 + 1)
T logk2

T .

Here

ak =
∏

p

((
1− 1

p

)(k−1)2 k−1∑
r=0

(
k − 1

r

)2

p−r

)
and gk is some (then unknown) constant.

J. Keating and N. Snaith used random matrix theory to conjecture the

value of gk for all k. When k is an integer their conjecture is

Conjeture. (Keating–Snaith)

gk = (k2!)

k−1∏
j=0

j!

(j + k)!
.
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Another important mean is

(1)

∫ T

0

|ζ(j)(σ + it)MN(σ + it)|2 dt ,

where

MN(s) =
∑

1≤n≤N

µ(n)

ns
(1− log n

log N
) .

MN(s) approximates 1/ζ(s) when σ > 1. This continues for σ ≤ 1

in some sense. Hence,

ζ(s)MN(s)

should be tamer than ζ(s) on σ = 1
2.

General estimates for means like (1) were proved by Conrey, Ghosh,

and Gonek with

N = T θ and θ < 1/2 .

Later, Conrey used Kloosterman sum techniques to show these formu-

las also hold for θ < 4/7.
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Assuming the Riemann Hypothesis and the Generalized Lindelöf Hy-

pothesis are true, Conrey, Ghosh, and Gonek also proved discrete ver-

sions of this, including estimates for sums like

∑
0<γ<T

|ζ ′(ρ)MN(ρ)|
2
.

Here γ runs over the ordinates of the zeros ρ = 1
2 + iγ of ζ(s). Again

N = T θ and θ < 1/2 .
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IV. Application: A simple zero–density estimate.

Let

N(σ, T ) =
∑

ρ=β+ıγ
0<γ≤T
σ<β≤1

1 .

We want an upper bound for N(σ, T ) when 1
2 < σ ≤ 1 is fixed.
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We apply Littlewood’s Lemma on the rectangle C with vertices σ0, 2,

2 + iT , σ0 + iT , where 1
2 < σ0 ≤ 1 is fixed.

∑
ρ∈C

dist(ρ) =
1

2π

∫ T

0

log(|ζ(σ0 + it)|) dt + E .

Let σ be a real number with σ0 < σ < 1.

On the one hand,

∑
ρ∈C

dist(ρ) ≥
∑
ρ∈C
σ≤β

dist(ρ) ≥ (σ − σ0)N(σ, T ).

On the other hand,

1

2π

∫ T

0

log(|ζ(σ0 + it)|) dt =
1

4π

∫ T

0

log(|ζ(σ0 + it)|2) dt

≤ T

4π
log(

1

T

∫ T

0

|ζ(σ0 + it)|2) dt

by our “trick”.
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Hence

(σ − σ0)N(σ, T ) ≤ T

4π
log(

1

T

∫ T

0

|ζ(σ0 + it)|2) dt + E .

The integral is

I1(σ0, T ) ∼ c1(σ0) T .

Therefore,

(σ − σ0)N(σ, T ) ≤ T

4π
log c1(σ0) ,

and

N(σ, T ) � T .

Since N(T ) ∼ T
2π log T , we see that

N(σ, T )/N(T ) = O(
1

log T
)

for any fixed σ > 1/2.
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We may interpret this as saying that only an infinitesimal proportion

of the zeros are to the right of any line Res = σ > 1/2 .

This was the first zero–density estimate. It was proved by H. Bohr

and E. Landau (1914).

Since then, much stronger results have been proven, typically of the

form

N(σ, T ) << T λ(σ) ,

where λ(σ) < 1 and λ(σ) is decreasing for σ > 1/2.
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V. Application: Levinson’s method.

Recall that

N(T ) = #{ρ = β + iγ | ζ(ρ) = 0, 0 < γ < T}

∼ T

2π
log T

and let

N0(T ) = #

{
ρ =

1

2
+ iγ | ζ(ρ) = 0, 0 < γ < T

}
denote the number of zeros on the critical line up to height T .

G. H. Hardy (1914) : N0(T ) →∞ (as T →∞)

G. H. Hardy-J. E. Littlewood (1921) : N0(T ) > cT

A. Selberg (1942) : N0(T ) > c′N(T )

N. Levinson (1974) : N0(T ) > 1
3N(T )

J. B. Conrey (1989) : N0(T ) > 2
5N(T )
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Levinson’s method begins with the following fact first proved by Speiser.

Theorem. (Speiser) RH ⇐⇒ ζ ′(s) 6= 0 in 0 < σ < 1
2 .

In the early seventies, N. Levinson and H. L. Montgomery proved a

quantitative version of this:

Theorem. (Levinson-Montgomery) ζ(s) and ζ ′(s) have the

same number of zeros inside C up to O(log T ).

Proof.

∆ arg
ζ ′

ζ
(s)

∣∣∣∣
C

= O(log T ),

and

∆ arg
ζ ′

ζ
(s)

∣∣∣∣
C

= 2π(# zeros of ζ ′(s) in C −# zeros of ζ(s) in C) .
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Sketch of Levinson’s method

ζ ′(s) has N ′(T )

zeros here

So does ζ(s)

(up to O(log T ))

and here

Therefore

N(T ) = N0(T ) + 2N ′(T ) + O(log T ),

or

N0(T ) = N(T )− 2N ′(T ) + O(log T ).

We know N(T ), so we need an upper bound for N ′(T ).
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N ′(T ) = the no. of zeros of ζ ′(s) here

= the no. of zeros of ζ ′(1− s) here

By the functional equation for ζ(s), ζ ′(s) has the same zeros in

1/2 < σ < 2, 0 < t < T as

G(s) = ζ(s) +
ζ ′(s)

L(s)
,

where L(s) ∼ 1
2π log s .

So we need an upper bound for the number of zeros of G(s) in the

rectangle on the right.
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We apply Littlewood’s Lemma to Ca with a = 1
2 −

c
log T and c > 0.

1

2π

∫ T

0

log |G(a + it) |dt + E

=
∑

zeros of G
∈Ca

dist(ρ∗)

≥
∑

zeros of G
∈Ca

β∗>1/2

dist(ρ∗)

≥ (1/2− a)N ′(T ) .
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Thus,

(1/2− a)N ′(T ) ≤ 1

2π

∫ T

0

log |GM(a + it)|dt + E

=
1

4π

∫ T

0

log |GM(a + it)|2dt + E

≤ T

4π
log

(
1

T

∫ T

0

|GM(a + it)|2dt

)
+ E ,

where

M(s) =
∑
n≤T θ

an

ns
, an = µ(n)na−1/2

(
1− log n

log T θ

)
,

approximates 1/ζ(s) .

Thus, we require an estimate for∫ T

0

|GM(a + it)|2dt .

This is similar to mean values mentioned before.



26

Levinson (1974) : One can take θ = 1/2− ε. This gives

N0(T ) >
1

3
N(T ) (asT →∞) .

J. B. Conrey (1989) : One can take θ = 4/7− ε. This gives

N0(T ) >
2

5
N(T ) (asT →∞) .

As a function of θ, the asymptotic estimate for∫ T

0

|GM(a + it)|2dt .

is the same in both cases.

D. Farmer has argued that this remains true for θ arbitrarily large.

Farmer’s conjecture imples that

N0(T ) ∼ N(T ) .
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VI. Application: The number of simple zeros.

Let

Ns(T ) = #{ρ = β + iγ | ζ(ρ) = 0, ζ ′(ρ) 6= 0, 0 < γ < T}

We believe that for all T > 0,

N(T ) = N0(T ) = Ns(T ) .

H. Montgomery (1974) :

RH =⇒ Ns(T ) >
2

3
N(T )

via the pair correlation method.

Conrey, Ghosh, Gonek (1999):

RH + GLH =⇒ Ns(T ) >
19

27
N(T ) = (.703 . . .)N(T ) .
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Sketch of the method

This time we use discrete mean values. By the Cauchy–Schwarz in-

equality

∣∣∣ ∑
0<γ<T

ζ
′
(1/2+iγ)

∣∣∣2 ≤ ( ∑
0<γ≤T

1/2+iγ is simple

1
)( ∑

0<γ<T

|ζ ′(1/2 + iγ)|
2
)

,

An asymptotic estimate for the means provides a lower bound for

Ns(T ). But this only leads to Ns(T ) > cT .

We lose in applying the Cauchy–Schwarz inequality. To minimize the

loss we mollify ζ
′
(1/2 + iγ) by a Dirichlet polynomial MN(s).

∣∣∣ ∑
0<γ<T

ζ
′
(ρ)MN(ρ)

∣∣∣2
≤
( ∑

0<γ≤T
ρ=1/2+iγ
is simple

1
)( ∑

0<γ<T

|ζ ′(ρ)MN(ρ)|
2
)

,

An elaboration of the method shows that on the same hypotheses at

least 95.5% of the zeros of ζ(s) are either simple or double.


