MEAN VALUE THEOREMS AND THE ZEROS OF THE ZETA FUNCTION

S.M. Gonek University of Rochester

June 1, 2009/Graduate Workshop on Zeta functions, L-functions and their Applications

1

OUTLINE

- I. What is a mean value theorem?
- II. Mean values and zeros.
- III. A sample of important estimates.
- IV. Application: A simple zero-density estimate.
- V. Application: Levinson's method.
- VI. Application: The number of simple zeros.

3

I. What is a mean value theorem?

In general it is an estimate for an average of a function. For example

$$\frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + Re^{i\theta})|^2 d\theta$$
.

For a function with a Dirichlet series, $F(s)=\sum_{n=1}^{\infty}a_nn^{-s}$, the average is typically along a vertical segment:

$$\int_0^T |F(\sigma+it)|^2 dt,$$

or

$$\int_0^T F(\sigma + it) dt.$$

Note:

- 1) The path of integration might not be in the half-plane of convergence.
- 2) It is customary not to divide by T.

4

There are many variants, for example, an average over a discrete set of points:

$$\sum_{r=1}^{R} |F(\sigma_r + it_r)|^2 \qquad (\sigma_r + it_r \in \mathbb{C}).$$

Example 1. Take $F(s) = \zeta(s)^k$, $\sigma \ge 1/2$, and k a positive integer.

We are interested in the means

$$I_k(\sigma, T) = \int_0^T |\zeta(\sigma + it)^k|^2 dt$$
$$= \int_0^T |\zeta(\sigma + it)|^{2k} dt.$$

Example 2. Take $F(s)=(\zeta'(s))^k$, $\mathcal S$ a set of zeros $\rho=\beta+i\gamma$ of $\zeta(s)$. One can consider the means

$$\sum_{\rho \in \mathcal{S}} \left| \zeta'(\rho) \right|^{2k}.$$

Example 3. Let

$$F(s) = F_N(s) = \sum_{n=1}^{N} a_n n^{-s}$$

be a Dirichlet "polynomial" of "length" N. One can show that

$$\int_0^T |\sum_{n=1}^N a_n n^{-\sigma - it}|^2 dt = (T + O(N \log N)) \sum_{n=1}^N \frac{|a_n|^2}{n^{2\sigma}}.$$

This is the "classical mean value theorem for Dirichlet polynomials".

A stronger version, due to H. L. Montgomery and R. C. Vaughan, is

$$\int_0^T |\sum_{n=1}^N a_n n^{-\sigma - it}|^2 dt = \sum_{n=1}^N \frac{|a_n|^2}{n^{2\sigma}} (T + O(n)).$$

II. Mean values and zeros.

Mean value estimates are used to study the zeros in a variety of ways.

One direct link between them and the zeros of an analytic function is given by

Theorem. (Jensen's Formula) Let f(z) be analytic for $|z| \le R$ and suppose that $f(0) \ne 0$. Let r_1, r_2, \ldots, r_n be the moduli of all the zeros of f(z) inside $|z| \le R$. Then

$$\log(\frac{|f(0)|R^n}{r_1 r_2 \cdots r_n}) = \frac{1}{2\pi} \int_0^{2\pi} \log|f(Re^{i\theta})| \, d\theta \, .$$

That is, the distribution of zeros of f(z) inside the circle is related to the mean of $\log |f(z)|$ on the circle.

There is an analogous result for rectangles that is more useful when working with Dirichlet series.

Theorem. (Littlewood's Lemma) Let f(s) be analytic and nonzero on the rectangle C with vertices σ_0 , σ_1 , $\sigma_1 + iT$, $\sigma_0 + iT$.

Then

$$2\pi \sum_{\rho \in \mathcal{C}} dist(\rho) = \int_0^T \log|f(\sigma_0 + it)| dt - \int_0^T \log|f(\sigma_1 + it)| dt$$
$$+ \int_{\sigma_0}^{\sigma_1} \arg f(\sigma + iT) d\sigma - \int_{\sigma_0}^{\sigma_1} \arg f(\sigma) d\sigma,$$

where the sum runs over the zeros ρ of f(s) in C and $dist(\rho)$ is the distance from ρ to the left edge of the rectangle.

Proof of Littlewood's Lemma.

Let \mathcal{C}' denote the rectangle \mathcal{C} together with the "loops" \mathcal{L}_{ρ} around each zero ρ (see the figure). Then

$$\int_{\mathcal{C}} \log f(s) \, ds = \int_{\mathcal{C}'} \log f(s) \, ds + \sum_{\rho \in \mathcal{C}} \int_{\mathcal{L}_{\rho}} \log f(s) \, ds.$$

Now $\log f(s)$ is analytic and single-valued in \mathcal{C}' , so

$$\int_{\mathcal{C}'} \log f(s) \, ds = 0 \, .$$

Therefore,

$$\int_{\mathcal{C}} \log f(s) \, ds = \sum_{\rho \in \mathcal{C}} \int_{\mathcal{L}_{\rho}} \log f(s) \, ds.$$

If $\rho=\beta+i\gamma$, and the circle in \mathcal{L}_{ρ} has radius r, then

$$\int_{\mathcal{L}_{\rho}} \log f(s) \, ds = \int_{\sigma_0}^{\beta - r} \log f(\sigma + i\gamma^{-}) \, d\sigma + \int_{0}^{2\pi} \log f(re^{i\theta}) \, ire^{i\theta} d\theta$$
$$- \int_{\sigma_0}^{\beta - r} \log f(\sigma + i\gamma^{+}) \, d\sigma \, .$$

The second integral $\to 0$ as $r \to 0^+$. The third integral is

$$\int_{\sigma_0}^{\beta-r} \left(\log f(\sigma + i\gamma^-) + 2\pi i \right) d\sigma.$$

Hence, as $r \to 0^+$,

$$\int_{\mathcal{L}_{\rho}} \log f(s) \, ds \to -2\pi i \int_{\sigma_0}^{\beta} d\sigma = -2\pi i (\beta - \sigma_0) \, .$$

Therefore

$$\int_{\mathcal{C}} \log f(s) \, ds = -2\pi i \sum_{\rho \in \mathcal{C}} (\beta - \sigma_0) \, .$$

We may write this as

$$-2\pi i \sum_{\rho \in \mathcal{C}} (\beta - \sigma_0) = \int_0^T \log f(\sigma_1 + it) i dt - \int_0^T \log f(\sigma_0 + it) i dt$$
$$+ \int_{\sigma_0}^{\sigma_1} \log f(\sigma) d\sigma - \int_{\sigma_0}^{\sigma_1} \log f(\sigma + iT) d\sigma.$$

The result follows on equating imaginary parts.

Only the first term on the right in Littlewood's Lemma will be significant for us, so we will write

$$2\pi \sum_{\rho \in \mathcal{C}} \operatorname{dist}(\rho) = \int_0^T \log|f(\sigma_0 + it)| dt - \int_0^T \log|f(\sigma_1 + it)| dt + \int_{\sigma_0}^{\sigma_1} \arg f(\sigma + iT) d\sigma - \int_{\sigma_0}^{\sigma_1} \arg f(\sigma) d\sigma,$$

as

$$2\pi \sum_{\rho \in \mathcal{C}} \operatorname{dist}(\rho) = \int_0^T \log |f(\sigma_0 + it)| \, dt + \mathcal{E}$$

and ignore \mathcal{E} .

Usually we cannot estimate the integral directly, so we use the following trick:

$$\frac{1}{T} \int_0^T \log|f(\sigma_0 + it)| dt = \frac{1}{2T} \int_0^T \log(|f(\sigma_0 + it)|^2) dt
\leq \frac{1}{2} \log(\frac{1}{T} \int_0^T |f(\sigma_0 + it)|^2 dt),$$

("The average of the \log is \leq the \log of the average.")

Note: Our mean values appear!

III. A sample of important estimates.

Recall that

$$I_k(\sigma,T) = \int_0^T |\zeta(\sigma+it)|^{2k} dt.$$

The case k=1.

If $\sigma > 1/2$,

$$I_1(\sigma, T) = \int_0^T |\zeta(\sigma + it)|^2 dt \sim c_1(\sigma) T,$$

 $\text{ as } T \to \infty.$

Hardy and Littlewood (1918) proved that if $\sigma=1/2$, then

$$I_1(1/2,T) \sim T \log T.$$

In particular, $|\zeta(\sigma+it)|$ is smaller on average for $\sigma>1/2$ then for $\sigma=1/2.$

Since $\zeta(\frac{1}{2}+it)$ has many zeros, we should expect $\zeta(s)$ to be very erratic on $\sigma=\frac{1}{2}.$

The case k=2.

If $\sigma > 1/2$,

$$I_2(\sigma,T) = \int_0^T |\zeta(\sigma+it)|^4 dt \sim c_2(\sigma) T,$$

as $T \to \infty$.

Ingham (1926) proved that

$$I_2(1/2,T) \sim \frac{T}{2\pi^2} \log^4 T$$
.

The case k > 2.

No asymptotic has yet been proven.

Balasubramanian and Ramachandra have shown that

$$I_k(1/2,T) \gg T \log^{k^2} T,$$

and we expect that

$$I_k(1/2,T) \sim c_k T \log^{k^2} T.$$

Conrey and Ghosh conjectured that

$$c_k = \frac{a_k g_k}{\Gamma(k^2 + 1)} \,.$$

That is, that

$$I_k(1/2, T) \sim \frac{a_k g_k}{\Gamma(k^2 + 1)} T \log^{k^2} T$$
.

Here

$$a_k = \prod_p \left(\left(1 - \frac{1}{p} \right)^{(k-1)^2} \sum_{r=0}^{k-1} {k-1 \choose r}^2 p^{-r} \right)$$

and g_k is some (then unknown) constant.

J. Keating and N. Snaith used random matrix theory to conjecture the value of g_k for all k. When k is an integer their conjecture is

Conjeture. (Keating-Snaith)

$$g_k = (k^2!) \prod_{j=0}^{k-1} \frac{j!}{(j+k)!}.$$

Another important mean is

(1)
$$\int_0^T \left| \zeta^{(j)}(\sigma + it) M_N(\sigma + it) \right|^2 dt,$$

where

$$M_N(s) = \sum_{1 \le n \le N} \frac{\mu(n)}{n^s} (1 - \frac{\log n}{\log N}).$$

 $M_N(s)$ approximates $1/\zeta(s)$ when $\sigma>1$. This continues for $\sigma\leq 1$ in some sense. Hence,

$$\zeta(s)M_N(s)$$

should be tamer than $\zeta(s)$ on $\sigma = \frac{1}{2}$.

General estimates for means like (1) were proved by Conrey, Ghosh, and Gonek with

$$N=T^{\theta}$$
 and $\theta<1/2$.

Later, Conrey used Kloosterman sum techniques to show these formulas also hold for $\theta < 4/7$.

Assuming the Riemann Hypothesis and the Generalized Lindelöf Hypothesis are true, Conrey, Ghosh, and Gonek also proved discrete versions of this, including estimates for sums like

$$\sum_{0<\gamma< T} \left| \zeta'(\rho) M_N(\rho) \right|^2.$$

Here γ runs over the ordinates of the zeros $\rho=\frac{1}{2}+i\gamma$ of $\zeta(s).$ Again

$$N=T^{\theta} \qquad {\rm and} \qquad \theta < 1/2 \, .$$

IV. Application: A simple zero-density estimate.

Let

$$N(\sigma, T) = \sum_{\substack{\rho = \beta + i\gamma \\ 0 < \gamma \le T \\ \sigma < \beta \le 1}} 1.$$

We want an upper bound for $N(\sigma,T)$ when $\frac{1}{2}<\sigma\leq 1$ is fixed.

We apply Littlewood's Lemma on the rectangle $\mathcal C$ with vertices σ_0 , 2, 2+iT, σ_0+iT , where $\frac{1}{2}<\sigma_0\leq 1$ is fixed.

$$\sum_{\rho \in \mathcal{C}} \mathsf{dist}(\rho) = \frac{1}{2\pi} \int_0^T \log(|\zeta(\sigma_0 + it)|) dt + \mathcal{E}.$$

Let σ be a real number with $\sigma_0 < \sigma < 1$.

On the one hand,

$$\sum_{\rho \in \mathcal{C}} \mathsf{dist}(\rho) \geq \sum_{\substack{\rho \in \mathcal{C} \\ \sigma < \beta}} \mathsf{dist}(\rho) \geq (\sigma - \sigma_0) N(\sigma, T).$$

On the other hand,

$$\frac{1}{2\pi} \int_0^T \log(|\zeta(\sigma_0 + it)|) dt = \frac{1}{4\pi} \int_0^T \log(|\zeta(\sigma_0 + it)|^2) dt
\leq \frac{T}{4\pi} \log(\frac{1}{T} \int_0^T |\zeta(\sigma_0 + it)|^2) dt$$

by our "trick".

Hence

$$(\sigma - \sigma_0)N(\sigma, T) \leq \frac{T}{4\pi}\log(\frac{1}{T}\int_0^T |\zeta(\sigma_0 + it)|^2) dt + \mathcal{E}.$$

The integral is

$$I_1(\sigma_0,T) \sim c_1(\sigma_0) T$$
.

Therefore,

$$(\sigma - \sigma_0)N(\sigma, T) \le \frac{T}{4\pi} \log c_1(\sigma_0),$$

and

$$N(\sigma,T) \ll T$$
.

Since $N(T) \sim \frac{T}{2\pi} \log T$, we see that

$$N(\sigma, T)/N(T) = O(\frac{1}{\log T})$$

for any fixed $\sigma > 1/2$.

We may interpret this as saying that only an infinitesimal proportion of the zeros are to the right of any line $Res=\sigma>1/2$.

This was the first zero-density estimate. It was proved by H. Bohr and E. Landau (1914).

Since then, much stronger results have been proven, typically of the form

$$N(\sigma,T) << T^{\lambda(\sigma)}\,,$$

where $\lambda(\sigma) < 1$ and $\lambda(\sigma)$ is decreasing for $\sigma > 1/2$.

V. Application: Levinson's method.

Recall that

$$N(T) = \#\{\rho = \beta + i\gamma \mid \zeta(\rho) = 0, \quad 0 < \gamma < T\}$$
$$\sim \frac{T}{2\pi} \log T$$

and let

$$N_0(T) = \# \left\{ \rho = \frac{1}{2} + i\gamma \mid \zeta(\rho) = 0, \quad 0 < \gamma < T \right\}$$

denote the number of zeros on the critical line up to height T.

G. H. Hardy (1914) :
$$N_0(T) \to \infty$$
 (as $T \to \infty$)

G. H. Hardy-J. E. Littlewood (1921) :
$$N_0(T)>cT$$

A. Selberg (1942) :
$$N_0(T) > c'N(T)$$

N. Levinson (1974) :
$$N_0(T)>rac{1}{3}N(T)$$

J. B. Conrey (1989) :
$$N_0(T) > \frac{2}{5}N(T)$$

Levinson's method begins with the following fact first proved by Speiser.

Theorem. (Speiser) $RH \iff \zeta'(s) \neq 0 \text{ in } 0 < \sigma < \frac{1}{2}$.

In the early seventies, N. Levinson and H. L. Montgomery proved a quantitative version of this:

Theorem. (Levinson-Montgomery) $\zeta(s)$ and $\zeta'(s)$ have the same number of zeros inside C up to $O(\log T)$.

Proof.

$$\Delta \, \arg \, \frac{\zeta'}{\zeta}(s) \bigg|_{\mathcal{C}} = O(\log T),$$

and

$$\Delta \arg \frac{\zeta'}{\zeta}(s) \bigg|_{\mathcal{C}} = 2\pi (\# \text{ zeros of } \zeta'(s) \text{ in } \mathcal{C} - \# \text{ zeros of } \zeta(s) \text{ in } \mathcal{C}).$$

Sketch of Levinson's method

$$\zeta'(s)$$
 has $N'(T)$

zeros here

So does $\zeta(s)$

(up to $O(\log T)$)

and here

Therefore

$$N(T) = N_0(T) + 2N'(T) + O(\log T),$$

or

$$N_0(T) = N(T) - 2N'(T) + O(\log T).$$

We know ${\cal N}(T)$, so we need an upper bound for ${\cal N}'(T).$

 $N^{\prime}(T)=$ the no. of zeros of $\zeta^{\prime}(s)$ here

= the no. of zeros of $\zeta'(1-s)$ here

By the functional equation for $\zeta(s),\ \zeta'(s)$ has the same zeros in

$$1/2 < \sigma < 2, \ 0 < t < T$$
 as

$$G(s) = \zeta(s) + \frac{\zeta'(s)}{L(s)},$$

where $L(s) \sim \frac{1}{2\pi} \log s$.

So we need an upper bound for the number of zeros of G(s) in the rectangle on the right.

We apply Littlewood's Lemma to C_a with $a = \frac{1}{2} - \frac{c}{\log T}$ and c > 0.

$$\begin{split} \frac{1}{2\pi} \int_0^T \log |G(a+it) & |dt + \mathcal{E} \\ &= \sum_{\substack{zeros \ of \ G \\ \in \mathcal{C}_a}} \operatorname{dist}(\rho^*) \\ &\geq \sum_{\substack{zeros \ of \ G \\ \beta^* > 1/2}} \operatorname{dist}(\rho^*) \\ &\geq (1/2-a)N'(T) \,. \end{split}$$

Thus,

$$(1/2 - a)N'(T) \le \frac{1}{2\pi} \int_0^T \log|GM(a + it)|dt + \mathcal{E}$$

$$= \frac{1}{4\pi} \int_0^T \log|GM(a + it)|^2 dt + \mathcal{E}$$

$$\le \frac{T}{4\pi} \log\left(\frac{1}{T} \int_0^T |GM(a + it)|^2 dt\right) + \mathcal{E},$$

where

$$M(s) = \sum_{n \le T^{\theta}} \frac{a_n}{n^s}, \qquad a_n = \mu(n) n^{a-1/2} \left(1 - \frac{\log n}{\log T^{\theta}} \right),$$

approximates $1/\zeta(s)$.

Thus, we require an estimate for

$$\int_0^T |GM(a+it)|^2 dt.$$

This is similar to mean values mentioned before.

Levinson (1974) : One can take $\theta=1/2-\epsilon$. This gives

$$N_0(T) > rac{1}{3}N(T) \qquad (\mathsf{as} T o \infty) \,.$$

J. B. Conrey (1989) : One can take $\theta = 4/7 - \epsilon$. This gives

$$N_0(T) > rac{2}{5}N(T) \qquad (\mathsf{as} T o \infty) \,.$$

As a function of θ , the asymptotic estimate for

$$\int_0^T |GM(a+it)|^2 dt.$$

is the same in both cases.

D. Farmer has argued that this remains true for θ arbitrarily large.

Farmer's conjecture imples that

$$N_0(T) \sim N(T)$$
.

VI. Application: The number of simple zeros.

Let

$$N_s(T) = \#\{\rho = \beta + i\gamma \mid \zeta(\rho) = 0, \zeta'(\rho) \neq 0, \quad 0 < \gamma < T\}$$

We believe that for all T > 0,

$$N(T) = N_0(T) = N_s(T) .$$

H. Montgomery (1974):

$$RH \Longrightarrow N_s(T) > \frac{2}{3}N(T)$$

via the pair correlation method.

Conrey, Ghosh, Gonek (1999):

$$RH + GLH \Longrightarrow N_s(T) > \frac{19}{27}N(T) = (.703...)N(T).$$

Sketch of the method

This time we use discrete mean values. By the Cauchy–Schwarz inequality

$$\Big| \sum_{0 < \gamma < T} \zeta'(1/2 + i\gamma) \Big|^2 \le \Big(\sum_{\substack{0 < \gamma \le T \\ 1/2 + i\gamma \text{ is simple}}} 1 \Big) \Big(\sum_{0 < \gamma < T} |\zeta'(1/2 + i\gamma)|^2 \Big),$$

An asymptotic estimate for the means provides a lower bound for $N_s(T)$. But this only leads to $N_s(T)>cT$.

We lose in applying the Cauchy–Schwarz inequality. To minimize the loss we mollify $\zeta'(1/2+i\gamma)$ by a Dirichlet polynomial $M_N(s)$.

$$\left| \sum_{0 < \gamma < T} \zeta'(\rho) M_N(\rho) \right|^2$$

$$\leq \left(\sum_{\substack{0 < \gamma \leq T \\ \rho = 1/2 + i\gamma \\ is \ simple}} 1 \right) \left(\sum_{0 < \gamma < T} \left| \zeta'(\rho) M_N(\rho) \right|^2 \right),$$

An elaboration of the method shows that on the same hypotheses at least 95.5% of the zeros of $\zeta(s)$ are either simple or double.