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The Riemann zeta-function is that function of the complex variable
s = σ + it, defined in the half-plane σ > 1 by the absolutely
convergent Dirichlet series

ζ(s) =
∞∑

n=1

1
ns ,

which can be continued analytically to a meromorphic function in C
with a simple pole at s = 1 with residue 1.

If we decompose the sum above into two parts and estimate the tail
of the Dirichlet series trivially, then for σ > 1 and X ≥ 1

ζ(s) =
X∑

n=1

1
ns + O

(
X 1−σ

σ − 1

)
.



A crude form of the approximate functional equation extends this
approximation into the critical strip, where 0 < σ < 1:

ζ(s) =
X∑

n=1

1
ns +

X 1−s

s − 1
+ O(X−σ) (1)

uniformly for σ ≥ σ0 > 0 if X > C |t|/2π, where C is any constant
greater than 1.

The second term on the right-hand side above reflects the simple
pole of ζ(s) at s = 1, which can be ignored if we are not near it.
For example, putting X = t and assuming that t ≥ 1,

ζ(s) =
t∑

n=1

1
ns + O(t−σ) (2)

uniformly for σ ≥ σ0 > 0.



The Lindelöf Hypothesis is that

ζ(1/2 + it) = O(|t|ε) for every ε > 0.

If this is true, then the length of the partial sums in (1) and (2) can
be significantly reduced.

Theorem 1. Let σ be bounded, |σ| ≥ 1/2, and |s − 1| > 1/10.
Also, let 1 ≤ X ≤ t2. Then a necessary and sufficient condition for
the truth of the Lindelöf Hypothesis is that

ζ(s) =
X∑

n=1

1
ns + O(X 1/2−σ|t|ε).

Thus, on the Lindelöf Hypothesis, if we stay away from the simple
pole of ζ(s) at s = 1, then ζ(s) is well-approximated by arbitrarily
short truncations of its Dirichlet series in the half-plane σ > 1/2.



However, short truncations of the associated Dirichlet series cannot
approximate ζ(s) well in the left-half of the critical strip, where
0 < σ ≤ 1/2. To see this, suppose that the short sum

∑X
n=1 1/n

s

and ζ(s) are within ε of each other, so that

∫ 2T

T

∣∣∣∣∣ζ(s)−
X∑

n=1

1
ns

∣∣∣∣∣
2

dt ≤ ε2T . (3)

If we fix 0 < σ ≤ 1/2 and take X < T 1−ε, then∫ 2T

T
|ζ(σ + it)|2 dt ∼

{
C (σ)T 2−2σ, if σ < 1/2,
T logT , if σ = 1/2,

and ∫ 2T

T

∣∣∣∣∣
X∑

n=1

1
ns

∣∣∣∣∣
2

dt ∼

 T
(

X 1−2σ − 1
1− 2σ

)
, if σ < 1/2,

T logX , if σ = 1/2.

The required contradiction to (3) is obtained by comparing the
asymptotics in each of the two cases.



This picture of the first 3, 000 suitably normalized zeros of the
211th partial sum of ζ(s) was generated by Borwein, Fee, Ferguson,
and van der Waall for their 2007 paper. It shows a remarkable
phenomenon in need of an explanation.



In the surface image, the zeros of the 211th partial sum of ζ(s),
some of which lie off the critical line σ = 1/2, appear as spikes or
peaks. High up the critical strip, the zeros scatter more wildly.



For the notation, let

FX (s) =
X∑

n=1

1
ns ,

where s = σ + it and X ≥ 2. Also, let ρX = βX + iγX be a typical
zero of FX (s) and define

NX (T ) = #{ρX = βX + iγX |FX (ρX ) = 0, 0 ≤ γX ≤ T},
NX (σ,T ) = #{ρX = βX + iγX |FX (ρX ) = 0, 0 ≤ γX ≤ T , βX > σ}.

If T = γX , define

NX (T ) = lim
ε→0+

NX (T + ε),

NX (σ,T ) = lim
ε→0+

NX (σ,T + ε).

There are two ways to pose questions about NX (T ) and NX (σ,T ).
1. Fix X , consider the zeros with 0 ≤ γX ≤ T , and let T →∞.
2. Ask for uniform results as X ,T →∞.



Theorem 2.
1. (Borwein, Fee, Ferguson, and van der Waall, 2007) The zeros

of FX (s) lie in the strip α < σ < β, where α and β are the
unique solutions of the algebraic equations

1 + 2−σ + · · ·+ (X − 1)−σ = X−σ,
2−σ + 3−σ + · · ·+ X−σ = 1,

respectively. In particular, α > −X and β < 1.72865.
2. (Turán, 1948) For X large enough, FX (s) is nonzero in the

half-plane

σ ≥ 1 + 2
log logX
logX

.

3. (Montgomery, 1983) For any constant c > 4/π − 1 there
exists a number X0 = X0(c) such that FX (s) has at most a
finite number of zeros in the half-plane

σ > 1 + c
log logX
logX

whenever X ≥ X0.



Theorem 3. Let X = X (T ) such that X →∞ as T →∞. Then
for T large enough, we have

NX (T ) =
T
2π

logX + O(X ).

Proof. First, show that FX (s) 6= 0 in the half-plane <s ≥ 2. Write

FX (σ + it) =
X∑

n=1

nσe−it log n =
X∑

n=1

cos(t log n)− i sin(t log n)

nσ

= <FX (σ + it) + i=FX (σ + it).

If σ ≥ 2, then

<FX (σ + it) ≥ 1−
X∑

n=2

1
n2 > 2−

∞∑
n=1

1
n2 = 2− π2

6
>

1
3
.



So let C be the rectangle with vertices −U, 2, 2+ iT , and −U + iT ,
where U ≥ X , described in the positive sense. Without any loss of
generality, assume that FX (s) 6= 0 along the top edge of C.

By the principle of the argument,

NX (T ) =
1
2π
4C arg FX (s),

where 4C denotes the change in arg FX (s) as s traverses C in the
positive sense.
1. If t 6= γX , define arg FX (σ + it) as the value obtained by

continuous variation along the line from 2 to 2 + it and then
to σ + it, starting with the value 0.

2. If t = γX , simply define

arg FX (σ + it) = lim
ε→0+

arg FX (σ + i(t + ε)).



Along the bottom edge of C, t = 0 and −U ≤ σ ≤ 2. We have

FX (σ) =
X∑

n=1

1
nσ

> 0,

so that
4 arg FX (σ)

∣∣2
−U = 0.

Along the right edge of C, σ = 2 and 0 ≤ t ≤ T . Since

<FX (2 + it) > 0,

we have
4 arg FX (2 + it)

∣∣∣T0 = O(1).

Along the top edge of C, t = T and −U ≤ σ ≤ 2. We apply
Descartes’ Rule of Signs to =FX (σ + iT ).



Theorem 4. (Descartes’ Rule of Signs) Let a1, a2, . . . , an and
λ1, λ2, . . . , λn be real constants such that λ1 < λ2 < · · · < λn.
Denote by Z the number of real zeros of the entire function

G (x) = a1eλ1x + a2eλ2x + · · ·+ aneλnx

and by C the number of changes of signs in the sequence
a1, a2, . . . , an. Then C − Z ≥ 0 and even.

As a result, the number of zeros of

=FX (σ + iT ) = −
X∑

n=1

sin(T log n)

nσ

throughout −U ≤ σ ≤ 2 is

≤ The number of changes in signs in the sequence
sin(T log 2), sin(T log 3), . . . , sin(T logX )

= O(X ).



Moreover,
|4 arg FX (σ + iT )| < π

between consecutive zeros of =FX (s). Thus

4 arg FX (σ + iT )
∣∣∣−U
2 = O(X ).

Along the left edge of C, σ = −U and 0 ≤ t ≤ T . Note that

FX (−U + it) =
X−1∑
n=1

nU−it + XU−it ,

where∣∣∣∣∣
X−1∑
n=1

nU−it

∣∣∣∣∣ ≤
X−1∑
n=1

nU ≤
∫ X

1
wU dw <

XU+1

U
≤ XU+1

X
= XU ,

if U ≥ X .



Thus, if U ≥ X

4 arg FX (−U + it)
∣∣0
T = 4 arg (1 + 2U−it + · · ·+ (X − 1)U−it)

∣∣0
T

+4 argXU−it ∣∣0
T .

= 4 arg (−t logX )
∣∣0
T + O(1)

= T logX + O(1).

Combining all estimates we obtain the required result.

Next, we estimated NX (σ,T ) for σ ≥ 1/2.

Theorem 5. If X = X (T ) such that X →∞ as T →∞ and if
X = O(T ), then

NX (σ,T ) = O(TX−2(σ−1/2) log5 T + log2 T )

uniformly for 1 ≤ σ ≤ 2. Also, if X = o(T ), then

NX (σ,T ) = O(T (min(X ,T/X ))−2(σ−1/2) log5 T )

uniformly for 1/2 ≤ σ ≤ 1.



Outline of the proof. Define

f (s) = FX (s)MY (s)− 1 =
XY∑
n=1

a(n)

ns ,

where

MY (s) =
Y∑

n=1

µ(n)

ns ,

µ(n) is the Möbius function and Y = O(T ). We have a(1) = 0 and

a(n) =
∑
d |n

d≤Y
n/d≤X

µ(d) for 1 < n ≤ XY .

Moreover, a(n) = 0 for 1 ≤ n ≤ min(X ,Y ). Therefore

f (s) =
∑

Z<n≤XY

a(n)

ns ,

where Z = min(X ,Y ). (If σ ≥ 2, we will get |f (s)|2 < 1/2.)



Now set

h(s) = 1− f 2(s) = FX (s)MY (s)(2− FX (s)MY (s)),

so that
1. h(s) is holomorphic and vanishes at the zeros of FX (s).
2. h(s) 6= 0 for σ ≥ 2 and Z large enough, since |f (s)|2 < 1/2.

We now apply a lemma of Littlewood to h(s), which is:

Theorem 6. (Littlewood’s lemma) Let g(s) be analytic and
nonzero on the rectangle R with vertices σ0, σ1, σ1 + iT , and
σ0 + iT , where σ0 < σ1. Then

2π
∑
ρ∈R

Dist(ρ) =

∫ T

0
log|g(σ0 + it)| dt −

∫ T

0
log|g(σ1 + it)| dt∫ σ1

σ0

arg g(σ + iT ) dσ −
∫ σ1

σ0

arg g(σ) dσ,

where the sum is taken over the zeros ρ of R and Dist(ρ) is the
distance from ρ to the left edge of R.



As a result,

2π
∑

0≤γX≤T
βX>σ0

(βX − σ0) =

∫ T

0
log|h(σ0 + it)| dt −

∫ T

0
log|h(σ1 + it)| dt

+

∫ σ1

σ0

arg h(σ + iT ) dσ −
∫ σ1

σ0

arg h(σ) dσ,

where
1
2
− 1

logT
≤ σ0 ≤ 2.

To treat these integrals we employ two well-known theorems.

Theorem 7. (Montgomery-Vaughan, 1974)

∫ T

0

∣∣∣∣∣
N∑

n=1

a(n)

ns

∣∣∣∣∣
2

dt =
N∑

n=1

|a(n)|2

n2σ (T + O(n)).



Lemma 1. (See Titchmarsh, Section 9.4.) Let 0 ≤ α < β < 2.
Let f (s) be an analytic function, real for real s, regular for σ ≥ α
except at s = 1. Also, let

|<f (2 + it)| ≥ m > 0,
|f (σ′ + it ′)| ≤ M(σ, t) (σ′ > σ, 1 ≤ t ′ ≤ t).

Then if T is not the ordinate of a zero of f (s)

|arg f (σ + iT )|

≤ π

log{(2− α)/(2− β)}

(
logM(σ,T + 2) + log

1
m

)
+

3π
2

for σ ≥ β.

We work to find that∑
0≤γX≤T
βX>σ0

(βX − σ0) = O((TZ 1−2σ0 + (XY )2−2σ0) log4 T + logT ).

We use this with various choices for Z to derive our theorem.



Corollary 1. If X = X (T ) such that X →∞ as T →∞ and if
X = o(T ), then for any constant c1 ≥ 5/2 and T large enough

βX ≤
1
2

+
c1 log logT

log(min(X ,T/X ))

for almost all zeros of FX (s) with 0 ≤ γX ≤ T .

We also proved a conditional result along the same line.

Theorem 8. Assume the Riemann Hypothesis. If X = X (T ) such
that X →∞ as T →∞ and if X < T 2, then there is an absolute
constant c2 such that, for T large enough,

βX ≤
1
2

+
c2 logT

logX · log logT

for all zeros of FX (s) with
√

T < γX ≤ T .



Next, we showed that the zeros to the right of the critical line
σ = 1/2 are, on average, close to it.

Theorem 9. If X = X (T ) such that X →∞ as T →∞ and if
X = O(T ), then∑

0≤γX≤T
βX>1/2

(βX − 1/2) ≤ T
4π

log logX + O(T ).

Finally, we obtained information about the zeros for arbitrary values
of σ < 1/2.

Theorem 10. If X = X (T ) such that X →∞ as T →∞ and if
X = o(T ), then∑

0≤γX≤T
βX>σ

(βX − σ) ≤ (1/2− σ)
T
2π

logX − T
4π

log(1/2− σ)

+ O((1 + |σ|)X ) + O(T ).



Open Question. An important question we left unanswered is
whether or not ∑

0≤γX≤T
βX>σ

(βX − σ) ∼ (1/2− σ)
T
2π

logX

when σ is bounded and less than 1/2. An answer to this would
require an asymptotic estimate for∫ T

0
log|FX (σ0 + it)| dt

rather than an upper bound.



Thank you.


