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1. An Explicit Formula

Let s = σ + it. For σ > 1

ζ ′

ζ
(s) = −

∞∑
n=2

Λ(n)

ns
.

For c > 0

1

2πi

∫ c+i∞

c−i∞

yw

w
dw =


1 if y > 1,

1
2 if y = 1,

0 if y ≤ 1.

Thus, if x > 1, x 6= pk and σ + c > 1,

1

2πi

∫ c+i∞

c−i∞

ζ ′

ζ
(s + w)

xw

w
dw = −

∞∑
n=2

Λ(n)

ns

(
1

2πi

∫ c+i∞

c−i∞

(x/n)w

w
dw

)
= −

∑
n≤x

Λ(n)

ns
.

Pulling the contour left to Re s = −∞ gives

1

2πi

∫ c+i∞

c−i∞

ζ ′

ζ
(s+w)

xw

w
dw =

∑
ρ

xρ−s

ρ− s
+
x1−s

s− 1
−

∞∑
n=1

x−2n−s

2n + s
+
ζ ′

ζ
(s).

Here s 6= 1, ρ (a nontrivial zero), or −2n.

Equate these.
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Explicit Formula.∑
n≤x

Λ(n)

ns
= −ζ

′

ζ
(s) +

x1−s

1− s
−
∑
ρ

xρ−s

ρ− s
+

∞∑
n=1

x−2n−s

2n + s

for s 6= 1, ρ,−2n and x > 1, x 6= pk.

Note that case s = 0:

ψ(x) =
∑
n≤x

Λ(n) = −ζ
′

ζ
(0) + x−

∑
ρ

xρ

ρ
+

∞∑
n=1

x−2n

2n
.

Rewrite the explicit formula as∑
ρ

xρ

ρ− s
= −xs

(
ζ ′

ζ
(s) +

∑
n≤x

Λ(n)

ns

)
+

x

1− s
+

∞∑
n=1

x−2n

2n + s

Assume RH. Then ρ = 1
2 + iγ. If we take s = 3

2 + it we obtain

−x
1
2
∑
γ

xiγ

1 + i(t− γ)
= x

3
2+it
∑
n>x

Λ(n)

n3/2+it
− x

1
2 + it

+

∞∑
n=1

x−2n

2n + 3
2 + it

Taking s = −1
2 + it gives

x
1
2
∑
γ

xiγ

1− i(t− γ)
=− x−

1
2+it
∑
n≤x

Λ(n)

n−1/2+it
− x−

1
2+itζ

′

ζ
(−1

2 + it)

+
x

3
2 − it

+

∞∑
n=1

x−2n

2n− 1
2 + it

We replace the ζ ′/ζ(−1
2 + it) term here by − log(|t|+ 2) +O(1).
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This follows from

ζ ′/ζ(s) = χ′/χ(s)− ζ ′/ζ(1− s),

so that

ζ ′/ζ(−1
2 + it) = χ′/χ(−1

2 + it)−ζ ′/ζ(3
2− it) = − log(|t|+2)+O(1).

The last formula becomes

x
1
2
∑
γ

xiγ

1− i(t− γ)
=− x−

1
2+it
∑
n≤x

Λ(n)

n−1/2+it
+

x
3
2 − it

+ x−
1
2+it(log(|t| + 2) +O(1)) +

∞∑
n=1

x−2n

2n− 1
2 + it

.

Subtract this from the first, which was

−x
1
2
∑
γ

xiγ

1 + i(t− γ)
= x

3
2+it
∑
n>x

Λ(n)

n3/2+it
− x

1
2 + it

+

∞∑
n=1

x−2n

2n + 3
2 + it

.

The difference on the left-hand side is

−2x
1
2
∑
γ

xiγ

1 + (t− γ)2
.

The difference on the right-hand side is

xit
∑
n≤x

Λ(n)

nit

(n
x

)1
2

+ xit
∑
n>x

Λ(n)

nit

(x
n

)3
2

+
2x

(1
2 + it)(−3

2 + it)

+ x−
1
2+it(− log(|t| + 2) +O(1))− 2

∞∑
n=1

x−2n

(2n + 3
2 + it)(2n− 1

2 + it)
.
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Both the LHS and RHS are continuous in x, so we need no longer

exclude x = 1 or x = pk.

Also, the final sum is � x−2/(|t| + 2).

Thus, equating the two expressions and using the notation

ax(n) = min
((n

x

)1
2
,
(x
n

)3
2
)

we have the following theorem.

Theorem. Assume RH. If x ≥ 1, then

−2x
1
2
∑
γ

xiγ

1 + (t− γ)2

=xit
∞∑
n=2

Λ(n)ax(n)

nit
+

2x

(1
2 + it)(−3

2 + it)

+ x−
1
2+it
(
− log(|t| + 2) +O(1)

)
+O

( x−2

|t| + 2

)
.
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2. Montgomery’s Theorem

We rewrite

−2x
1
2
∑
γ

xiγ

1 + (t− γ)2

=xit
∞∑
n=2

Λ(n)ax(n)

nit
+

2x

(1
2 + it)(−3

2 + it)

+ x−
1
2+it
(
− log(|t| + 2) +O(1)

)
+O

( x−2

|t| + 2

)
as

L(x, t) = R(x, t)

Montgomery’s pair correlation theorem is proved by calculating both

sides of
∫ T

0 |L(x, t)|2dt =
∫ T

0 |R(x, t)|2dt. We carry this out now

skipping only a few minor details.

Calculation of
∫ T

0 |L(x, t)|2dt.

We have ∫ T

0

|L(x, t)|2dt = 4x

∫ T

0

∣∣∣∣∑
γ

xiγ

1 + (t− γ)2

∣∣∣∣2dt
It is not difficult to show that one can truncate the sum over γ’s to∑

0<γ≤T and extend the integration to
∫∞
−∞ at a cost ofO(log3 T ).
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Assuming this, we have∫ T

0

|L(x, t)|2dt = 4x

∫ ∞

−∞

∣∣∣∣ ∑
0<γ≤T

xiγ

1 + (t− γ)2

∣∣∣∣2dt +O(x log3 T ).

Squaring out and integrating, we find that this equals

4x
∑

0<γ,γ′≤T

xi(γ−γ
′)
∫ ∞

−∞

dt

(1 + (t− γ)2)(1 + (t− γ′)2)
+O(x log3 T )

=2πx
∑

0<γ,γ′≤T

xi(γ−γ
′) 4

4 + (γ − γ′)2
+O(x log3 T )

=2πx
∑

0<γ,γ′≤T

xi(γ−γ
′)w(γ − γ′) +O(x log3 T )

=2πxF (x, T ) +O(x log3 T ),

say.

Exercise. Show that∫ ∞

−∞

dt

(1 + (t− γ)2)(1 + (t− γ′)2)
=

2π

4 + (γ − γ′)2
.

Hint: write 1 + (t− γ)2 = (t− (γ + i))(t− (γ− i)), etc. and use the

calculus of residues.

Note that

F (x, T ) =
∑

0<γ,γ′≤T

xi(γ−γ
′)w(γ−γ′) =

2

π

∫ ∞

−∞

∣∣∣∣ ∑
0<γ≤T

xiγ

1 + (t− γ)2

∣∣∣∣2dt.
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From

F (x, T ) =
∑

0<γ,γ′≤T

xi(γ−γ
′)w(γ−γ′) =

2

π

∫ ∞

−∞

∣∣∣∣ ∑
0<γ≤T

xiγ

1 + (t− γ)2

∣∣∣∣2dt.
We have

F (x, T ) ≥ 0 and F (1/x, T ) = F (x, T ) (x > 0).

We have now shown that∫ T

0

|L(x, t)|2dt = 2πxF (x, T ) +O(x log3 T ).

Calculation of
∫ T

0 |R(x, t)|2dt.

The right-hand side of the explicit formula is

R(x, t) =xit
∑
n≤x

Λ(n)ax(n)

nit
+

2x

(1
2 + it)(−3

2 + it)

+ x−
1
2+it
(
− log(|t| + 2) +O(1)

)
+O

( x−2

|t| + 2

)
.

First we calculate the mean square of each term on the right.
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By the Montgomery-Vaughan mean value theorem for Dirichlet se-

ries∫ T

0

∣∣∣∣xit ∞∑
n=2

Λ(n)ax(n)

nit

∣∣∣∣2dt
=

∞∑
n=2

Λ2(n)a2
x(n)(T +O(n))

=
1

x

∑
n≤x

Λ2(n)n(T +O(n)) + x3
∑
n>x

Λ2(n)

n3
(T +O(n)).

By the prime number theorem this equals

1

x

(
T
x2

2
log x +O(x3 log x)

)
+ x3

(
T

1

2x2
log x +O

(1

x
log x

))
=xT (log x +O(1)) +O(x2 log x).

Secondly, ∫ T

0

∣∣∣∣ 2x

(1
2 + it)(−3

2 + it)

∣∣∣∣2dt� x2.

Thirdly,∫ T

0

∣∣x−1
2+it
(

log(t + 2) +O(1)
)∣∣2dt =

1

x
(T log2 T +O(log T )).

And finally, ∫ T

0

∣∣∣ x−2

t + 2

∣∣∣2dt� x−4.
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We use these as follows.

R(x, t), the right-hand side of our explicit formula, is a sum of 4

terms:

R(x, t) =xit
∑
n≤x

Λ(n)ax(n)

nit
+

2x

(1
2 + it)(−3

2 + it)

+ x−
1
2+it
(
− log(|t| + 2) +O(1)

)
+O

( x−2

|t| + 2

)
.

Write this as

R(x, t) = A1(x, t) + A2(x, t) + A3(x, t) + A4(x, t)

For a given x we let

Mi =

∫ T

0

|Ai(x, t)|2dt,

but ordered so that

M1 ≥M2 ≥M3 ≥M4.

It is easy to show by the Cauchy-Schwarz inequality that∫ T

0

|R(x, t)|2dt =

∫ T

0

|A1(t) + A2(t) + A3(t) + A4(t)|2dt

=M1 +O((M1M2)
1
2).

Exercise. Show this.
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For 1 ≤ x ≤ log
3
4 T, M1 is given by∫ T

0

∣∣x−1
2+it
(

log(t + 2) +O(1)
)∣∣2dt =

1

x
(T log2 T +O(log T ))

and M2 by∫ T

0

∣∣∣∣xit ∞∑
n=2

Λ(n)ax(n)

nit

∣∣∣∣2dt = xT (log x +O(1)) +O(x2 log x).

For log
3
4 T ≤ x ≤ log

3
2 T , all terms are o(xT log T ).

For log
3
2 T ≤ x ≤ o(T ), M1 is given by∫ T

0

∣∣∣∣xit ∞∑
n=2

Λ(n)ax(n)

nit

∣∣∣∣2dt = xT (log x +O(1)) +O(x2 log x)

and M2 is given by∫ T

0

∣∣x−1
2+it
(

log(t + 2) +O(1)
)∣∣2dt =

1

x
(T log2 T +O(log T )).

It follows that∫ T

0

|R(x, t)|2dt = xT (log x+o(log T ))+O(x2 log x)+
T

x
log2 T (1+o(1)).

Recall that∫ T

0

|L(x, t)|2dt = 2πxF (x, T ) +O(x log3 T ).
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Thus

F (x, T ) =
T

2π
(log x+o(log T ))+O(x log x)+

T

2πx2
log2 T (1+o(1)).

Set x = T α and

F (α) = F (α, T ) =
( T

2π
log T

)−1

F (T α, T ).

Then we have proved the

Theorem. (Montgomery’s Theorem) Assume RH. Let

F (α) = F (α, T ) =
( T

2π
log T

)−1 ∑
0<γ,γ′≤T

w(γ − γ′) T iα(γ−γ′)

where γ and γ′ run over ordinates of zeros of the Riemann zeta-

function and w(u) = 4/(4 + u2). Then for α ∈ R, F (α) is real,

even, and nonnegative. Moreover, for any ε > 0

F (α) = (1 + o(1))T−2α log T + α + o(1)

uniformly for |α| ≤ 1− ε as T →∞.

It was later shown that the formula in fact holds for |α| ≤ 1.
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3. Applications

The way one retrieves information from Montgomery’s Theorem is as

follows. Let

r̂(α) =

∫ ∞

−∞
r(u)e−2πiαu du

be the Fourier transform of r, and let

r(u) =

∫ ∞

−∞
r̂(α)e2πiαu dα

be the inverse transform. Then

( T
2π

log T
)∫ ∞

−∞
F (α)r̂(α) dα =

∫ ∞

−∞

∑
0<γ,γ′≤T

w(γ − γ′) T iα(γ−γ′)r̂(α) dα

=
∑

0<γ,γ′≤T

w(γ − γ′)

∫ ∞

−∞
T iα(γ−γ′)r̂(α) dα

=
∑

0<γ,γ′≤T

w(γ − γ′)r
(
(γ − γ′)

log T

2π

)
.

Thus, the integral of F (α) against a kernel r̂ produces a sum involv-

ing the inverse transform r evaluated at the differences of pairs of

ordinates.

Since Montgomery’s Theorem is only valid in the range −1 < α < 1,

we only use kernels r̂(α) supported on (−1, 1).
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Application to Counting Simple Zeros.

Consider the Fourier transform pair

r(u) =
(sin πλu

πλu

)2

, r̂(α) =
1

λ
max

(
1− |α|

λ
, 0
)

(λ > 0).

We use this pair in∑
0<γ,γ′≤T

r
(
(γ−γ′)log T

2π

)
w(γ−γ′) =

( T
2π

log T
)∫ ∞

−∞
F (α)r̂(α) dα

and evaluate the RHS using Montgomery’s Theorem.

We need the support of F (α) to be in (−1, 1), so we take λ < 1.

We find that∑
0<γ,γ′≤T

(
sin((λ/2)(γ − γ′) log T )

(λ/2)(γ − γ′) log T

)2

w(γ − γ′)

=
( T

2π
log T

)1

λ

∫ ∞

−∞
F (α) max

(
1− |α|

λ
, 0
)
dα

=
( T

2π
log T

)1

λ

∫ λ

−λ
F (α)

(
1− |α|

λ

)
dα

∼
( T

2π
log T

)2

λ

∫ λ

0

(
α + T−2α log T

)(
1− α

λ

)
dα

∼
(1

λ
+
λ

3

) T
2π

log T .

Montgomery used this to obtain a lower bound for the number of

simple zeros of the zeta-function as follows.
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Observe that if ρ = 1
2 + iγ is a zero of multiplicity m(ρ), then∑

0<γ, γ′≤T
γ=γ′

1 =
∑

0<γ≤T

m(ρ);

on each side, γ’s are counted according to their multiplicities.

Clearly∑
0<γ, γ′≤T
γ=γ′

1 ≤
∑

0<γ,γ′≤T

(
sin((λ/2)(γ − γ′) log T )

(λ/2)(γ − γ′) log T

)2

w(γ − γ′) .

We saw that the RHS is ∼
(

1
λ + λ

3

)
T
2π log T . Take λ = 1− ε in this

to obtain ∑
0<γ, γ′≤T
γ=γ′

1 ≤
(4

3
+ o(1)

) T
2π

log T .

Replacing the LHS by
∑

0<γ≤T m(ρ), we find that∑
0<γ≤T

m(ρ) ≤
(4

3
+ o(1)

) T
2π

log T .
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Finally, we see that∑
0<γ≤T

1
2+iγ is simple

1 ≥
∑

0<γ≤T

(2−mρ)

≥
(
2− 4

3
+ o(1)

) T
2π

log T

≥
(2

3
+ o(1)

) T
2π

log T.

Thus we have the

Theorem. (Montgomery) Assume RH. Let Ns(T ) denote the

number of simple zeros of ζ(s) with ordinates in (0, T ]. Then

Ns(T ) ≥
(2

3
+ o(1)

)
N(T ).

Recall that in Lecture II we outlined a proof that

Ns(T ) ≥ (19/27 + o(1))N(T ).

Note that 19/27 = .7037... > .666... = 2/3, so that result was

stronger. However, so were the hypotheses, for there we needed to

assume the Generalized Lindeloff Hypothesis as well as RH.
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Montgomery’s Conjecture.

We determined F (α) by calculating the mean square of both sides

of

−2x
1
2
∑
γ

xiγ

1 + (t− γ)2

=xit
∞∑
n=2

Λ(n)ax(n)

nit
+

2x

(1
2 + it)(−3

2 + it)

+ x−
1
2+it
(
− log(|t| + 2) +O(1)

)
+O

( x−2

|t| + 2

)
.

(1)

and setting x = T α.

The restriction 0 ≤ α < 1 (corresponding to 1 ≤ x = o(T )) arose

because we used the Montgomery-Vaughan mean value theorem to

calculate the mean square of the Dirichlet series.

This only required estimates for “diagonal” terms involving
∑

n≤y Λ2(n),

and is satisfactory when x = o(T ).

If α ≥ 1, then x ≥ T , and “off-diagonal” terms contribute to the

mean square. These require estimates for the sums
∑

n≤y Λ(n)Λ(n+

h) uniform in h.
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Montgomery used a strong form of the Hardy–Littlewood twin prime

conjecture to estimate these and arrived at the

Conjecture. (Montgomery’s Conjecture) For any fixed A

we have

F (α, T ) = 1 + o(1)

uniformly for 1 ≤ α ≤ A as T →∞.

This and Montgomery’s Theorem determine F (α) for all α.

One can use the conjecture to integrate F (α) against a much wider

class of kernels than just those supported in (−1, 1).

Using an appropriate kernel (a characteristic function) Montgomery

obtained

Conjecture. (Pair Correlation Conjecture) For any fixed

β > 0, we have∑
0<γ, γ′≤T

0<γ′−γ≤2πβ/ log T

1 ∼

(∫ β

0

1−
(

sin πx

πx

)2

dx

)
T

2π
log T

as T tends to infinity.
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An enormous amount of data concerning the zeros has been collected

and analyzed by A. M. Odlyzko [O], and the fit with the conjecture is

remarkable.

As an example of the type of information we can deduce from

∑
0<γ, γ′≤T

0<γ′−γ≤2πβ/ log T

1 ∼

(∫ β

0

1−
(

sin πx

πx

)2

dx

)
T

2π
log T ,

note that this implies that infinitely many zeros must have another

zero no farther away than 2πβ/ log γ, no matter how small β is.

Hence

lim inf
n→∞

(γn+1 − γn)
log γn

2π
= 0.
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One can also deduce that for a symmetric interval

∑
0<γ, γ′≤T

−2πβ/ log T≤γ′−γ≤2πβ/ log T

1 ∼

(∫ β

−β
1−

(
sin πx

πx

)2

dx + 1

)
T

2π
log T .

Letting β → 0, we obtain

∑
0<γ, γ′≤T
γ′=γ

1 ∼ T

2π
log T .

But earlier we saw that ∑
0<γ, γ′≤T
γ′=γ

1 =
∑

0<γ≤T

m(ρ) .

It follows that∑
0<γ≤T

1
2+iγ is simple

1 ≥
∑

0<γ≤T

(2−m(ρ))

= (2− 1 + o(1))
T

2π
log T = (1 + o(1))

T

2π
log T .

In other words, almost all the zeros are simple.
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D. Goldston and H. Montgomery [GM] have shown that the Pair Cor-

relation Conjecture is equivalent to a certain estimate of the variance

of the number of primes numbers in short intervals.

D. Goldston, S. G., and H. Montgomery have shown that it is also

equivalent to an estimate for the mean–value∫ T

0

∣∣∣∣ζ ′ζ (σ + it)

∣∣∣∣2 dt ,
for σ near 1/2.

Estimates of F (α, T ) when α ≥ 1 remain elusive. The only progress in

this direction so far is the lower bound F (α, T ) ≥ 3/2−α+o(1) on the

interval (1, 3/2) under the assumption of the Generalized Riemannn

Hypothesis. This is due to D. Goldston, S. G., A. Özlük, and C.

Snyder.


