The First 150 Years of the Riemann Zeta-Function

S. M. Gonek

Department of Mathematics
University of Rochester

June 1, 2009/Graduate Workshop on Zeta functions, L-functions and their Applications
I. Synopsis of Riemann’s paper

Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse

(On the number of primes less than a given magnitude)
Figure: Riemann
Figure: First page of Riemann's paper
What Riemann proves

Riemann begins with Euler's observation that

\[\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1} \quad (s > 1)\]

But he lets \(s = \sigma + it\) be complex. He denotes the common value by \(\zeta(s)\) and proves:

- \(\zeta(s)\) has an analytic continuation to \(\mathbb{C}\), except for a simple pole at \(s = 1\).
- The only zeros in \(\sigma < 0\) are simple zeros at \(s = -2, -4, -6, ...\).

\(\zeta(s)\) has a functional equation

\[\pi^{-s/2} \Gamma(s/2) \zeta(s) = \pi^{-(1-s)/2} \Gamma((1-s)/2) \zeta(1-s)\]

(University of Rochester)
Riemann begins with Euler’s observation that

$$\sum_{n=1}^{\infty} n^{-s} = \prod_{p} (1 - p^{-s})^{-1} \quad (s > 1).$$
Riemann begins with Euler’s observation that
\[\sum_{n=1}^{\infty} n^{-s} = \prod_{p} (1 - p^{-s})^{-1} \] (s > 1).

But he lets \(s = \sigma + it \) be complex.
Riemann begins with Euler’s observation that
\[\sum_{n=1}^{\infty} n^{-s} = \prod_{p} (1 - p^{-s})^{-1} \quad (s > 1). \]

But he lets \(s = \sigma + it \) be complex.

He denotes the common value by \(\zeta(s) \) and proves:
What Riemann proves

Riemann begins with Euler’s observation that

\[\sum_{n=1}^{\infty} n^{-s} = \prod_{p}(1 - p^{-s})^{-1} \quad (s > 1). \]

But he lets \(s = \sigma + it \) be complex.

He denotes the common value by \(\zeta(s) \) and proves:

- \(\zeta(s) \) has an **analytic continuation** to \(\mathbb{C} \), except for a simple pole at \(s = 1 \). The only zeros in \(\sigma < 0 \) are simple zeros at \(s = -2, -4, -6, \ldots \).
Riemann begins with Euler’s observation that
\[\sum_{n=1}^{\infty} n^{-s} = \prod_{p}(1 - p^{-s})^{-1} \quad (s > 1). \]

But he lets \(s = \sigma + it \) be complex.

He denotes the common value by \(\zeta(s) \) and proves:

- \(\zeta(s) \) has an **analytic continuation** to \(\mathbb{C} \), except for a simple pole at \(s = 1 \). The only zeros in \(\sigma < 0 \) are simple zeros at \(s = -2, -4, -6, ... \)

- \(\zeta(s) \) has a **functional equation**

\[
\pi^{-s/2}\Gamma(s/2)\zeta(s) = \pi^{-(1-s)/2}\Gamma((1-s)/2)\zeta(1-s)
\]
What Riemann claims

\[\zeta(s) \] has infinitely many nontrivial zeros \(\rho = \beta + i \gamma \) in the "critical strip" \(0 \leq \sigma \leq 1 \).

If \(N(T) \) denotes the number of nontrivial zeros \(\rho = \beta + i \gamma \) with ordinates \(0 < \gamma \leq T \), then as \(T \to \infty \),
\[
N(T) = T \frac{2}{\pi} \log T - T \frac{2}{\pi} + O(\log T).
\]

The function \(\xi(s) = \frac{1}{2} s(s-1) \pi^{-s/2} \Gamma(s/2) \zeta(s) \) is entire and has the product formula
\[
\xi(s) = \xi(0) \prod \rho \left(1 - \frac{s}{\rho} \right).
\]

Here \(\rho \) runs over the nontrivial zeros of \(\zeta(s) \).
What Riemann claims

- $\zeta(s)$ has infinitely many **nontrivial** zeros $\rho = \beta + i\gamma$ in the “critical strip” $0 \leq \sigma \leq 1$.

The function $\xi(s) = \frac{1}{2} s (s - 1) \pi^{-s/2} \Gamma(s/2) \zeta(s)$ is entire and has the product formula

$$
\xi(s) = \xi(0) \prod_{\rho} \left(1 - s/\rho\right).
$$

Here ρ runs over the nontrivial zeros of $\zeta(s)$.
What Riemann claims

- $\zeta(s)$ has infinitely many **nontrivial** zeros $\rho = \beta + i\gamma$ in the “critical strip” $0 \leq \sigma \leq 1$.

- If $N(T)$ denotes the number of nontrivial zeros $\rho = \beta + i\gamma$ with ordinates $0 < \gamma \leq T$, then as $T \to \infty$,
 \[
 N(T) = \frac{T}{2\pi} \log T - \frac{T}{2\pi} + O(\log T).
 \]
What Riemann claims

- $\zeta(s)$ has infinitely many **nontrivial** zeros $\rho = \beta + i\gamma$ in the “critical strip” $0 \leq \sigma \leq 1$.

- If $N(T)$ denotes the number of nontrivial zeros $\rho = \beta + i\gamma$ with ordinates $0 < \gamma \leq T$, then as $T \to \infty$,

$$N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + O(\log T).$$
What Riemann claims

- \(\zeta(s) \) has infinitely many nontrivial zeros \(\rho = \beta + i\gamma \) in the “critical strip” \(0 \leq \sigma \leq 1 \).

- If \(N(T) \) denotes the number of nontrivial zeros \(\rho = \beta + i\gamma \) with ordinates \(0 < \gamma \leq T \), then as \(T \to \infty \),

 \[
 N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + O(\log T).
 \]

- The function \(\xi(s) = \frac{1}{2} s(s - 1) \pi^{-s/2} \Gamma(s/2) \zeta(s) \) is entire.
What Riemann claims

- \(\zeta(s) \) has infinitely many nontrivial zeros \(\rho = \beta + i\gamma \) in the “critical strip” \(0 \leq \sigma \leq 1 \).

- If \(N(T) \) denotes the number of nontrivial zeros \(\rho = \beta + i\gamma \) with ordinates \(0 < \gamma \leq T \), then as \(T \to \infty \),

\[
N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + O(\log T).
\]

- The function \(\xi(s) = \frac{1}{2} s(s - 1)\pi^{-s/2}\Gamma(s/2)\zeta(s) \) is entire and has the product formula

\[
\xi(s) = \xi(0) \prod_{\rho} \left(1 - \frac{s}{\rho}\right).
\]
What Riemann claims

- \(\zeta(s) \) has infinitely many nontrivial zeros \(\rho = \beta + i\gamma \) in the “critical strip” \(0 \leq \sigma \leq 1 \).

- If \(N(T) \) denotes the number of nontrivial zeros \(\rho = \beta + i\gamma \) with ordinates \(0 < \gamma \leq T \), then as \(T \to \infty \),

\[
N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + O(\log T).
\]

- The function \(\xi(s) = \frac{1}{2} s(s - 1)\pi^{-s/2}\Gamma(s/2)\zeta(s) \) is entire and has the product formula

\[
\xi(s) = \xi(0) \prod_{\rho} \left(1 - \frac{s}{\rho}\right).
\]

Here \(\rho \) runs over the nontrivial zeros of \(\zeta(s) \).
What Riemann claims

Let \(\Lambda(n) = \log p \) if \(n = p^k \) and 0 otherwise. Then
\[
\psi(x) = \sum_{n \leq x} \Lambda(n) = x - \sum_{\rho} x/\rho + \infty \sum_{n=1}^\infty x/n^2 - \zeta'(0)/\zeta(0).
\]
(Riemann states this for \(\pi(x) = \sum p \leq x \) instead.)

Note that from this one can see why the Prime Number Theorem, \(\psi(x) \sim x \), might be true.
What Riemann claims

explicit formula
Let \(\Lambda(n) = \log p \) if \(n = p^k \) and 0 otherwise. Then

\[
\psi(x) = \sum_{n \leq x} \Lambda(n) = x - \sum_{\rho} \frac{x^\rho}{\rho} + \sum_{n=1}^{\infty} \frac{x^{-2n}}{2n} - \frac{\zeta'(0)}{\zeta(0)}
\]

(Riemann states this for \(\pi(x) = \sum p \leq x \).)
explicit formula

Let $\Lambda(n) = \log p$ if $n = p^k$ and 0 otherwise. Then

$$
\psi(x) = \sum_{n \leq x} \Lambda(n) = x - \sum_{\rho} \frac{x^{\rho}}{\rho} + \sum_{n=1}^{\infty} \frac{x^{-2n}}{2n} - \frac{\zeta'(0)}{\zeta(0)}
$$

(Riemann states this for $\pi(x) = \sum_{p \leq x} 1$ instead.)
What Riemann claims

- **explicit formula**
 Let \(\Lambda(n) = \log p \) if \(n = p^k \) and 0 otherwise. Then

\[
\psi(x) = \sum_{n \leq x} \Lambda(n) = x - \sum_{\rho} \frac{x^\rho}{\rho} + \sum_{n=1}^{\infty} \frac{x^{-2n}}{2n} - \frac{\zeta'(0)}{\zeta(0)}
\]

(Riemann states this for \(\pi(x) = \sum_{p \leq x} 1 \) instead.)

Note that from this one can see why the Prime Number Theorem,

\[
\psi(x) \sim x
\]

might be true.
The Riemann Hypothesis

Conjecture (The Riemann Hypothesis)

All the zeros $\rho = \beta + i\gamma$ in the critical strip lie on the line $\sigma = 1/2$.

(University of Rochester)
Riemann also makes his famous conjecture.
Riemann also makes his famous conjecture.

Conjecture (The Riemann Hypothesis)

All the zeros $\rho = \beta + i\gamma$ in the critical strip lie on the line $\sigma = 1/2$.
II. Early developments after the paper
Hadamard 1893

Hadamard developed the theory of entire functions (Hadamard product formula) and proved the product formula for \(\xi(s) = \frac{1}{2} \frac{s}{s-1} \pi^{-s/2} \Gamma(s/2) \zeta(s) \).

\[\xi(s) = \xi(0) \prod_{\rho} \left(1 - \frac{s}{s-\rho} \right) = \xi(0) \prod_{\text{Im} \rho > 0} \left(1 - \frac{s}{s-\rho} \right) \]

To do this, he proved the estimate \(N(T) \ll T \log T \), which is weaker than Riemann's assertion about \(N(T) \).
Hadamard 1893

Hadamard developed the theory of entire functions (Hadamard product formula) and proved the product formula for

$$\xi(s) = \frac{1}{2} s(s - 1) \pi^{-s/2} \Gamma(s/2) \zeta(s).$$
Hadamard developed the theory of entire functions (Hadamard product formula) and proved the product formula for

$$\xi(s) = \frac{1}{2} s(s - 1) \pi^{-s/2} \Gamma(s/2) \zeta(s).$$

$$\xi(s) = \xi(0) \prod_{\rho} \left(1 - \frac{s}{\rho}\right) = \xi(0) \prod_{\text{Im}\rho > 0} \left(1 - \frac{s + s^2}{\rho(1 - \rho)}\right)$$
Hadamard 1893

Hadamard developed the theory of entire functions (Hadamard product formula) and proved the product formula for

$$
\xi(s) = \frac{1}{2} s(s - 1) \pi^{-s/2} \Gamma(s/2) \zeta(s).
$$

$$
\xi(s) = \xi(0) \prod_{\rho} \left(1 - \frac{s}{\rho}\right) = \xi(0) \prod_{\text{Im} \rho > 0} \left(1 - \frac{s + s^2}{\rho(1 - \rho)}\right)
$$

To do this he proved the estimate

$$
N(T) \ll T \log T,
$$
Hadamard 1893

Hadamard developed the theory of entire functions (Hadamard product formula) and proved the product formula for

\[\xi(s) = \frac{1}{2} s(s - 1) \pi^{-s/2} \Gamma(s/2) \zeta(s). \]

\[\xi(s) = \xi(0) \prod_{\rho} \left(1 - \frac{s}{\rho}\right) = \xi(0) \prod_{\text{Im} \rho > 0} \left(1 - \frac{s + s^2}{\rho(1 - \rho)}\right) \]

To do this he proved the estimate

\[N(T) \ll T \log T, \]

which is weaker than Riemann’s assertion about \(N(T) \).
von Mangoldt proved Riemann's explicit formula for $\pi(x)$ and $\psi(x) = \sum_{n \leq x} \Lambda(n) = x - \sum_{\rho} \frac{x}{\rho} + \sum_{n=1}^{\infty} \frac{x}{n^2} - \frac{\zeta'(0)}{\zeta(0)}$.
von Mangoldt proved Riemann’s explicit formula for $\pi(x)$ and

\[
\psi(x) = \sum_{n \leq x} \Lambda(n) = x - \sum \rho x \rho + \infty \sum_{n=1} x - \frac{2}{n^2} \zeta'(0) + \zeta(0).
\]
von Mangoldt proved Riemann’s explicit formula for $\pi(x)$ and

$$\psi(x) = \sum_{n \leq x} \Lambda(n) = x - \sum_{\rho} \frac{x^\rho}{\rho} + \sum_{n=1}^{\infty} \frac{x^{-2n}}{2n} - \frac{\zeta'(0)}{\zeta(0)}.$$
Hadamard and de la Vallée Poussin independently proved the asymptotic form of the Prime Number Theorem, namely \(\psi(x) \sim x \). To do this, they both needed to prove that \(\zeta(1+it) \neq 0 \).
Hadamard and de la Vallée Poussin independently proved the asymptotic form of the Prime Number Theorem, namely

\[\psi(x) \sim x \]
Hadamard and de la Vallée Poussin independently proved the asymptotic form of the Prime Number Theorem, namely

$$\psi(x) \sim x$$
Hadamard and de la Vallée Poussin independently proved the asymptotic form of the Prime Number Theorem, namely

\[\psi(x) \sim x \]

To do this, they both needed to prove that

\[\zeta(1 + it) \neq 0 \]
de la Vallée Poussin 1899

De la Vallée Poussin proved the Prime Number Theorem with a remainder term:

\[\psi(x) = x + O(xe^{-\sqrt{c_0 \log x}}). \]

This required him to prove that there is a zero-free region \(\sigma < 1 - c_0 \log t \).
de la Vallée Poussin 1899

de la Vallée Poussin proved the Prime Number Theorem with a remainder term:

$$\psi(x) = x + O(xe^{-\sqrt{c_1 \log x}}).$$
de la Vallée Poussin proved the Prime Number Theorem with a remainder term:

$$\psi(x) = x + O(xe^{-\sqrt{c_1 \log x}}).$$

This required him to prove that there is a zero-free region

$$\sigma < 1 - \frac{c_0}{\log t}.$$
von Mangoldt proved Riemann's formula for the counting function of the zeros:

\[N(T) = \frac{T}{2\pi \log T} - \frac{T}{2\pi} + O(\log T) \]
von Mangoldt proved Riemann’s formula for the counting function of the zeros
von Mangoldt proved Riemann’s formula for the counting function of the zeros

\[N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + O(\log T) \]
von Koch 1905 showed that the Riemann Hypothesis implies the Prime Number Theorem with a "small" remainder term:

\[\psi(x) = x + O\left(\frac{x}{\log^2 x}\right) \]
von Koch showed that the Riemann Hypothesis implies the Prime Number Theorem with a “small” remainder term.
von Koch showed that the Riemann Hypothesis implies the Prime Number Theorem with a “small” remainder term

\[\text{RH} \implies \psi(x) = x + O(x^{1/2} \log^2 x) \]
III. The order of $\zeta(s)$ in the critical strip
ζ(s) in the critical strip

The critical strip is the most important (and mysterious) region for ζ(s).

By the functional equation, it suffices to focus on $\frac{1}{2} \leq \sigma \leq 1$.

A natural question is: how large can ζ(s) be as t grows?

This is important because the growth of an analytic function and the distribution of its zeros are intimately connected.

The distribution of primes depends on it. Answers to other arithmetical questions depend on it.
The critical strip is the most important (and mysterious) region for $\zeta(s)$. By the functional equation, it suffices to focus on $1/2 \leq \sigma \leq 1$. A natural question is: how large can $\zeta(s)$ be as t grows? This is important because the growth of an analytic function and the distribution of its zeros are intimately connected. The distribution of primes depends on it. Answers to other arithmetical questions depend on it.
\(\zeta(s) \) in the critical strip

The critical strip is the most important (and mysterious) region for \(\zeta(s) \).

By the functional equation, it suffices to focus on \(1/2 \leq \sigma \leq 1 \).
The critical strip is the most important (and mysterious) region for $\zeta(s)$.

By the functional equation, it suffices to focus on $1/2 \leq \sigma \leq 1$.

A natural question is:
The critical strip is the most important (and mysterious) region for $\zeta(s)$.

By the functional equation, it suffices to focus on $1/2 \leq \sigma \leq 1$.

A natural question is: how large can $\zeta(s)$ be as t grows?
The critical strip is the most important (and mysterious) region for \(\zeta(s) \).

By the functional equation, it suffices to focus on \(1/2 \leq \sigma \leq 1 \).

A natural question is: how large can \(\zeta(s) \) be as \(t \) grows?

This is important because

(University of Rochester)
The critical strip is the most important (and mysterious) region for $\zeta(s)$.

By the functional equation, it suffices to focus on $1/2 \leq \sigma \leq 1$.

A natural question is: how large can $\zeta(s)$ be as t grows?

This is important because

- the growth of an analytic function and the distribution of its zeros are intimately connected.
The critical strip is the most important (and mysterious) region for $\zeta(s)$.

By the functional equation, it suffices to focus on $1/2 \leq \sigma \leq 1$.

A natural question is: how large can $\zeta(s)$ be as t grows?

This is important because

- the growth of an analytic function and the distribution of its zeros are intimately connected.
- the distribution of primes depends on it.
The critical strip is the most important (and mysterious) region for $\zeta(s)$. By the functional equation, it suffices to focus on $1/2 \leq \sigma \leq 1$.

A natural question is: how large can $\zeta(s)$ be as t grows?

This is important because

- the growth of an analytic function and the distribution of its zeros are intimately connected.
- the distribution of primes depends on it.
- answers to other arithmetical questions depend on it.
Implications of the size of $\zeta(s)$

Relation between growth and zeros: Jensen's Formula.

Let $f(z)$ be analytic for $|z| \leq R$ and $f(0) \neq 0$. If z_1, z_2, \ldots, z_n are all the zeros of $f(z)$ inside $|z| \leq R$, then

$$\log(n|z_1 z_2 \cdots z_n|) = \frac{1}{2\pi} \int_{2\pi}^{0} \log|f(\text{Re}i\theta)| \, d\theta - \log|f(0)|.
$$

Example of an application to other problems: for $0 < c < 1$

$$\sum_{n \leq x} d_k(n) = xP_k - \frac{1}{2\pi} i \int_{c+i\infty}^{c-i\infty} \zeta_k(s)x^s \, ds.$$

(University of Rochester)
Implications of the size of $\zeta(s)$

Relation between growth and zeros:

$$\log\left(\frac{R^n|z_1 z_2 \cdots z_n|}{|f(0)|}\right) = \frac{1}{2\pi} \int_{0}^{2\pi} \log|f(\Re e^{i\theta})| \, d\theta.$$

Example of an application to other problems: for $0 < c < 1$

$$\sum_{n \leq x} d_k(n) = xP_k - \frac{1}{2\pi} i \int_{c-i\infty}^{c+i\infty} \zeta_k(s) x^s \, ds.$$
Implications of the size of $\zeta(s)$

Relation between growth and zeros:

Jensen’s Formula. Let $f(z)$ be analytic for $|z| \leq R$ and $f(0) \neq 0$. If z_1, z_2, \ldots, z_n are all the zeros of $f(z)$ inside $|z| \leq R$, then

$$
\log \left(\frac{R^n}{|z_1 z_2 \cdots z_n|} \right) = \frac{1}{2\pi} \int_0^{2\pi} \log |f(Re^{i\theta})| \, d\theta - \log |f(0)|.
$$
Implications of the size of $\zeta(s)$

Relation between growth and zeros:

Jensen’s Formula. Let $f(z)$ be analytic for $|z| \leq R$ and $f(0) \neq 0$. If z_1, z_2, \ldots, z_n are all the zeros of $f(z)$ inside $|z| \leq R$, then

$$\log \left(\frac{R^n}{|z_1 z_2 \cdots z_n|} \right) = \frac{1}{2\pi} \int_0^{2\pi} \log |f(Re^{i\theta})| d\theta - \log |f(0)|.$$

Example of an application to other problems: for $0 < c < 1$
Implications of the size of $\zeta(s)$

Relation between growth and zeros:

Jensen’s Formula. Let $f(z)$ be analytic for $|z| \leq R$ and $f(0) \neq 0$. If z_1, z_2, \ldots, z_n are all the zeros of $f(z)$ inside $|z| \leq R$, then

$$\log \left(\frac{R^n}{|z_1 z_2 \cdots z_n|} \right) = \frac{1}{2\pi} \int_0^{2\pi} \log |f(Re^{i\theta})| \, d\theta - \log |f(0)|.$$

Example of an application to other problems: for $0 < c < 1$

$$\sum_{n \leq x} d_k(n) = x P_{k-1}(\log x) + \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \zeta^k(s) \frac{x^s}{s} \, ds.$$
Estimates at the edge of the strip

Upper bounds for $\zeta(s)$ near $\sigma = 1$ allow one to widen the zero-free region. This leads to improvements in the remainder term for the PNT. For instance, we saw that de la Vallée Poussin showed that $\zeta(\sigma + it) \ll \log t$ in $\sigma \geq 1 - c_0 \log t$, and this implied that the O-term in the PNT is $\ll x e^{-\sqrt{c_1 \log x}}$.
Upper bounds for $\zeta(s)$ near $\sigma = 1$ allow one to widen the zero-free region.
Estimates at the edge of the strip

Upper bounds for $\zeta(s)$ near $\sigma = 1$ allow one to widen the zero-free region.

This leads to improvements in the remainder term for the PNT.
Upper bounds for $\zeta(s)$ near $\sigma = 1$ allow one to widen the zero-free region.

This leads to improvements in the remainder term for the PNT.

For instance, we saw that de la Vallée Poussin showed that

$$\zeta(\sigma + it) \ll \log t \quad \text{in} \quad \sigma \geq 1 - \frac{c_0}{\log t},$$
Estimates at the edge of the strip

Upper bounds for $\zeta(s)$ near $\sigma = 1$ allow one to widen the zero-free region.

This leads to improvements in the remainder term for the PNT.

For instance, we saw that de la Vallée Poussin showed that

$$\zeta(\sigma + it) \ll \log t \quad \text{in} \quad \sigma \geq 1 - \frac{c_0}{\log t},$$

and this implied that the O-term in the PNT is $\ll xe^{-\sqrt{c_1 \log x}}$.
Estimates at the edge of the strip

\[\zeta(\sigma + it) \ll \log t \log \log t \]

and no zeros in \(\sigma \geq 1 - c \log \log t \log t \)

\[\Rightarrow O\text{-term in PNT} \ll x e^{-c \sqrt{\log x \log \log x}} \]

The idea is to approximate

\[\zeta(\sigma + it) \approx N \sum_{n} \frac{1}{n^{\sigma + it}} \]

then use Weyl's method to estimate the exponential sums

\[\sum_{a} e^{if(n)} \]
Estimates at the edge of the strip

Littlewood 1922

\[\zeta(\sigma + it) \ll \frac{\log t}{\log \log t} \] and no zeros in \(\sigma \geq 1 - \frac{c \log \log t}{\log t} \)
Estimates at the edge of the strip

Littlewood 1922

\[\zeta(\sigma + it) \ll \frac{\log t}{\log \log t} \quad \text{and no zeros in } \sigma \geq 1 - \frac{c \log \log t}{\log t} \]

\[\implies O\text{-term in PNT} \ll xe^{-c\sqrt{\log x \log \log x}} \]
Estimates at the edge of the strip

Littlewood 1922

\[\zeta(\sigma + it) \ll \frac{\log t}{\log \log t} \quad \text{and no zeros in } \sigma \geq 1 - \frac{c \log \log t}{\log t} \]

\[\implies \quad O\text{-term in PNT} \quad \ll xe^{-c\sqrt{\log x \log \log x}} \]

The idea is to approximate

\[\zeta(\sigma + it) \approx \sum_{1}^{N} \frac{1}{n^{\sigma+it}} \]
Estimates at the edge of the strip

Littlewood 1922

\[\zeta(\sigma + it) \ll \frac{\log t}{\log \log t} \quad \text{and no zeros in } \sigma \geq 1 - \frac{c \log \log t}{\log t} \]

\[\implies O\text{-term in PNT} \ll xe^{-c\sqrt{\log x \log \log x}} \]

The idea is to approximate

\[\zeta(\sigma + it) \approx \sum_{n=1}^{N} \frac{1}{n^{\sigma+it}} \]

then use Weyl’s method to estimate the exponential sums
Estimates at the edge of the strip

Littlewood 1922

\[\zeta(\sigma + it) \ll \frac{\log t}{\log \log t} \]
and no zeros in \(\sigma \geq 1 - \frac{c \log \log t}{\log t} \)

\[\implies O\text{-term in PNT} \ll xe^{-c\sqrt{\log x \log \log x}} \]

The idea is to approximate

\[\zeta(\sigma + it) \approx \sum_{n=1}^{N} \frac{1}{n^{\sigma+it}} \]

then use Weyl’s method to estimate the exponential sums

\[\sum_{a}^{b} n^{-it} = \sum_{a}^{b} e^{if(n)}. \]
Estimates at the edge of the strip

Vinogradov and Korobov 1958 (independently)

\[\zeta(\sigma + it) \ll \log \frac{2}{3} t \]

and no zeros in \(\sigma \geq 1 - c \log \frac{2}{3} t \)

\[\Rightarrow O \text{-term in PNT} \ll xe^{-c \log \frac{3}{5} - \epsilon x} \]

Where Littlewood used Weyl's method to estimate the exponential sums

Vinogradov and Korobov used Vinogradov's method.
Estimates at the edge of the strip

Vinogradov and Korobov 1958 (independently)

\[\zeta(\sigma + it) \ll \log^{2/3} t \text{ and no zeros in } \sigma \geq 1 - \frac{c}{\log^{2/3} t} \]
Estimates at the edge of the strip

Vinogradov and Korobov 1958 (independently)

\[\zeta(\sigma + it) \ll \log^{2/3} t \text{ and no zeros in } \sigma \geq 1 - \frac{c}{\log^{2/3} t} \]

\[\implies O\text{-term in PNT} \ll xe^{-c \log^{3/5 - \epsilon} x} \]
Estimates at the edge of the strip

Vinogradov and Korobov 1958 (independently)

\[\zeta(\sigma + it) \ll \log^{2/3} t \text{ and no zeros in } \sigma \geq 1 - \frac{c}{\log^{2/3} t} \]

\[\Longrightarrow O\text{-term in PNT} \ll xe^{-c \log^{3/5-\epsilon} x} \]

Where Littlewood used Weyl’s method to estimate the exponential sums

\[\sum_{a}^{b} n^{-it} , \]
Estimates at the edge of the strip

Vinogradov and Korobov 1958 (independently)

\[\zeta(\sigma + it) \ll \log^{2/3} t \text{ and no zeros in } \sigma \geq 1 - \frac{c}{\log^{2/3} t} \]

\[\implies O\text{-term in PNT} \ll xe^{-c \log^{3/5-\epsilon} x} \]

Where Littlewood used Weyl’s method to estimate the exponential sums

\[\sum_{a}^{b} n^{-it}, \]

Vinogradov and Korobov used Vinogradov’s method.
Estimates at the edge of the strip

Here is a summary:

\[\zeta(1 + it) \ll \log t \quad (\text{de la Vallée Poussin}) \]

\[\zeta(1 + it) \ll \log \log t \quad (\text{Littlewood-Weyl}) \]

\[\zeta(1 + it) \ll \log \frac{2}{3} t \quad (\text{Vinogradov-Korobov}) \]

What should the truth be?

One can show that

\[(1 + o(1)) e^{\gamma \log \log t} \leq i. \]

\[|\zeta(1 + it)| \leq \text{RH} (1 + o(1)) e^{\gamma \log \log t}. \]
Estimates at the edge of the strip

Here is a summary:
Estimates at the edge of the strip

Here is a summary:

\[\zeta(1 + it) \ll \log t \quad \text{(de la Vallée Poussin)} \]
Estimates at the edge of the strip

Here is a summary:

\[\zeta(1 + it) \ll \log t \] \hspace{1cm} \text{(de la Vallée Poussin)}

\[\zeta(1 + it) \ll \frac{\log t}{\log \log t} \] \hspace{1cm} \text{(Littlewood-Weyl)}
Estimates at the edge of the strip

Here is a summary:

\[\zeta(1 + it) \ll \log t \]
(de la Vallée Poussin)

\[\zeta(1 + it) \ll \frac{\log t}{\log \log t} \]
(Littlewood-Weyl)

\[\zeta(1 + it) \ll \log^{2/3} t \]
(Vinogradov-Korobov)
Estimates at the edge of the strip

Here is a summary:

\[\zeta(1 + it) \ll \log t \]
(de la Vallée Poussin)

\[\zeta(1 + it) \ll \frac{\log t}{\log \log t} \]
(Littlewood-Weyl)

\[\zeta(1 + it) \ll \log^{2/3} t \]
(Vinogradov-Korobov)

What should the truth be?
Estimates at the edge of the strip

Here is a summary:

\[\zeta(1 + it) \ll \log t \quad \text{(de la Vallée Pousson)} \]
\[\zeta(1 + it) \ll \frac{\log t}{\log \log t} \quad \text{(Littlewood-Weyl)} \]
\[\zeta(1 + it) \ll \log^{2/3} t \quad \text{(Vinogradov-Korobov)} \]

What should the truth be? One can show that
Estimates at the edge of the strip

Here is a summary:

\[\zeta(1 + it) \ll \log t \]
(de la Vallée Poussin)

\[\zeta(1 + it) \ll \frac{\log t}{\log \log t} \]
(Littlewood-Weyl)

\[\zeta(1 + it) \ll \log^{2/3} t \]
(Vinogradov-Korobov)

What should the truth be? One can show that

\[
(1 + o(1)) e^{\gamma} \log \log t \leq_{i.o.} \left| \zeta(1 + it) \right| \leq_{RH} 2(1 + o(1)) e^{\gamma} \log \log t.
\]
Estimates inside the strip

Definition (Lindelöf 1908)

For a fixed σ, let $\mu(\sigma)$ denote the lower bound of the numbers μ such that $\zeta(\sigma + it) \ll (1 + |t|)\mu$. $\zeta(s)$ bounded for $\sigma > 1 \Rightarrow \mu(\sigma) = 0$ for $\sigma > 1$.

$|\zeta(s)| \sim (|t|/2\pi)^{1/2 - \sigma} |\zeta(1 - s)| \Rightarrow \mu(\sigma) = 1/2 - \sigma + \mu(1 - \sigma)$.

In particular, $\mu(\sigma) = 1/2 - \sigma$ for $\sigma < 0$.

(University of Rochester)
Estimates inside the strip

Definition (Lindelöf 1908)

For a fixed σ, let $\mu(\sigma)$ denote the lower bound of the numbers μ such that

$$\zeta(\sigma + it) \ll (1 + |t|) \mu.$$

If $\zeta(s)$ is bounded for $\sigma > 1 \Rightarrow \mu(\sigma) = 0$ for $\sigma > 1$.

In particular, $\mu(\sigma) = 1/2 - \sigma + \mu(1 - \sigma)$.

(University of Rochester)
For a fixed σ let $\mu(\sigma)$ denote the lower bound of the numbers μ such that

$$\zeta(\sigma + it) \ll (1 + |t|)^\mu.$$
Estimates inside the strip

Definition (Lindelöf 1908)

For a fixed σ let $\mu(\sigma)$ denote the lower bound of the numbers μ such that

$$\zeta(\sigma + it) \ll (1 + |t|)^\mu.$$

- $\zeta(s)$ bounded for $\sigma > 1 \iff \mu(\sigma) = 0$ for $\sigma > 1$.

(University of Rochester)
Estimates inside the strip

Definition (Lindelöf 1908)

For a fixed \(\sigma \) let \(\mu(\sigma) \) denote the lower bound of the numbers \(\mu \) such that

\[
\zeta(\sigma + it) \ll (1 + |t|)^\mu.
\]

- \(\zeta(s) \) bounded for \(\sigma > 1 \) \(\implies \mu(\sigma) = 0 \) for \(\sigma > 1 \).
- \(|\zeta(s)| \sim (|t|/2\pi)^{1/2-\sigma}|\zeta(1-s)| \implies \mu(\sigma) = 1/2 - \sigma + \mu(1-\sigma) \).
Estimates inside the strip

Definition (Lindelöf 1908)

For a fixed σ let $\mu(\sigma)$ denote the lower bound of the numbers μ such that

$$\zeta(\sigma + it) \ll (1 + |t|)^\mu.$$

- $\zeta(s)$ bounded for $\sigma > 1 \implies \mu(\sigma) = 0$ for $\sigma > 1$.
- $|\zeta(s)| \sim (|t|/2\pi)^{1/2-\sigma}|\zeta(1-s)| \implies \mu(\sigma) = 1/2 - \sigma + \mu(1-\sigma)$.
- In particular, $\mu(\sigma) = 1/2 - \sigma$ for $\sigma < 0$.

(University of Rochester)
Lindelöf’s μ-function

Lindelöf proved that $\mu(\sigma)$ is continuous, nonincreasing, and convex. These are in the same circle of ideas as the Phragmen-Lindelöf theorems. It follows that $\mu(1/2) \leq 1/4$, that is, $\zeta(1/2+\epsilon) \ll |t|^{1/4}+\epsilon$. This is a so-called convexity bound.
Lindelöf’s μ-function

Lindelöf proved that $\mu(\sigma)$ is continuous, nonincreasing, and convex. These are in the same circle of ideas as the Phragmen-Lindelöf theorems. It follows that $\mu(1/2) \leq 1/4$, that is, $\zeta(1/2 + \epsilon) \ll |t|^{1/4} + \epsilon$. This is a so-called convexity bound.
Lindelöf’s μ-function

Lindelöf proved that $\mu(\sigma)$ is

- continuous
Lindelöf’s μ-function

Lindelöf proved that $\mu(\sigma)$ is

- continuous
- nonincreasing
Lindelöf’s μ-function

Lindelöf proved that $\mu(\sigma)$ is
- continuous
- nonincreasing
- convex
Lindelöf’s μ-function

Lindelöf proved that $\mu(\sigma)$ is

- continuous
- nonincreasing
- convex

These are in the same circle of ideas as the Phragmen-Lindelöf theorems.
Lindelöf’s μ-function

Lindelöf proved that $\mu(\sigma)$ is
- continuous
- nonincreasing
- convex

These are in the same circle of ideas as the Phragmen-Lindelöf theorems.

It follows that $\mu(1/2) \leq 1/4$, that is,

$$\zeta(1/2 + it) \ll |t|^{1/4+\epsilon}.$$
Lindelöf proved that $\mu(\sigma)$ is
- continuous
- nonincreasing
- convex

These are in the same circle of ideas as the Phragmen-Lindelöf theorems.

It follows that $\mu(1/2) \leq 1/4$, that is,

$$\zeta(1/2 + it) \ll |t|^{1/4+\epsilon}.$$

This is a so called convexity bound.
Breaking convexity

Using Weyl's method of estimating exponential sums, Hardy and Littlewood showed that
\[\zeta(1/2 + it) \ll |t|^{1/6 + \epsilon}. \]

The best results for \(\mu(\sigma) \) since have come from exponential sum methods: van der Corput, Vinogradov, Kolesnik, Bombieri-Iwaniec, Huxley-Watt.

Huxley and Watt show that \(\mu(\sigma) < 9/56. \)

Conjecture (Lindelöf)
\[\mu(\sigma) = 0 \text{ for } \sigma \geq 1/2. \]
That is, \(\zeta(1/2 + it) \ll |t|^{\epsilon} \) for \(t \) large.
Using Weyl’s method of estimating exponential sums, Hardy and Littlewood showed that

\[\zeta \left(\frac{1}{2} + it \right) \ll |t|^{1/6} + \epsilon. \]

The best results for \(\mu(\sigma) \) since have come from exponential sum methods: van der Corput, Vinogradov, Kolesnik, Bombieri-Iwaniec, Huxley-Watt.

Huxley and Watt show that \(\mu(\sigma) < 9/56. \)

Conjecture (Lindelöf)

\[\mu(\sigma) = 0 \]

for \(\sigma \geq 1/2. \) That is, \(\zeta \left(\frac{1}{2} + it \right) \ll |t|^{\epsilon} \) for \(t \) large.
Using Weyl’s method of estimating exponential sums, Hardy and Littlewood showed that

\[\zeta(1/2 + it) \ll |t|^{1/6 + \epsilon}. \]
Using Weyl’s method of estimating exponential sums, Hardy and Littlewood showed that

$$\zeta(1/2 + it) \ll |t|^{1/6+\epsilon}.$$

The best results for $\mu(\sigma)$ since have come from exponential sum methods:

Conjecture (Lindelöf) $\mu(\sigma) = 0$ for $\sigma \geq 1/2$. That is, $\zeta(1/2 + it) \ll |t|^{1/6+\epsilon}$ for t large.
Using Weyl’s method of estimating exponential sums, Hardy and Littlewood showed that

\[\zeta(1/2 + it) \ll |t|^{1/6 + \epsilon}. \]

The best results for \(\mu(\sigma) \) since have come from exponential sum methods: van der Corput, Vinogradov, Kolesnik, Bombieri-Iwaniec, Huxley-Watt.
Breaking convexity

Using Weyl’s method of estimating exponential sums, Hardy and Littlewood showed that

\[\zeta(1/2 + it) \ll |t|^{1/6+\epsilon}. \]

The best results for \(\mu(\sigma) \) since have come from exponential sum methods: van der Corput, Vinogradov, Kolesnik, Bombieri-Iwaniec, Huxley-Watt.

Huxley and Watt show that \(\mu(\sigma) < 9/56 \).
Using Weyl’s method of estimating exponential sums, Hardy and Littlewood showed that

$$\zeta(1/2 + it) \ll |t|^{1/6+\epsilon}.$$

The best results for $\mu(\sigma)$ since have come from exponential sum methods: van der Corput, Vinogradov, Kolesnik, Bombieri-Iwaniec, Huxley-Watt.

Huxley and Watt show that $\mu(\sigma) < 9/56$.

Conjecture (Lindelöf)

$$\mu(\sigma) = 0 \text{ for } \sigma \geq 1/2. \text{ That is, } \zeta(1/2 + it) \ll |t|^{\epsilon} \text{ for } t \text{ large}.$$
What we expect the order to be

The LH says that for large $|t| \log |ζ(1/2+it)| \leq ϵ \log |t|$.

It is also known that $√c \log t \log \log t \leq i \circ \log |ζ(1/2+it)| \ll RH \log t \log \log t$.

Which bound, the upper or the lower, is closest to the truth is one of the important open questions.
What we expect the order to be

The LH says that for large $|t|$

$$\log |\zeta(1/2 + it)| \leq \epsilon \log |t|.$$
What we expect the order to be

The LH says that for large $|t|$

$$\log |\zeta(1/2 + it)| \leq \epsilon \log |t|.$$

It is also known that

$$\sqrt{c \log t \log \log t} \leq \delta.$$
What we expect the order to be

The LH says that for large $|t|$

$$\log |\zeta(1/2 + it)| \leq \epsilon \log |t|.$$

It is also known that

$$\sqrt{c \frac{\log t}{\log \log t}} \leq i.o. \log |\zeta(1/2 + it)| \ll_{RH} \frac{\log t}{\log \log t}.$$
What we expect the order to be

The LH says that for large $|t|$

$$\log |ζ(1/2 + it)| \leq \epsilon \log |t|. $$

It is also known that

$$\sqrt{c \frac{\log t}{\log \log t}} \leq i.o. \log |ζ(1/2 + it)| \ll_{RH} \frac{\log t}{\log \log t}. $$

Which bound, the upper or the lower, is closest to the truth is one of the important open questions.
IV. Mean value theorems
Mean value theorems

Averages such as \[\int_0^T |\zeta(\sigma + it)|^2 \, dt \] have been another main focus of research because averages as well as pointwise upper bounds tell us about zeros and have other applications. Mean values are easier to prove than pointwise bounds. The techniques developed to treat them have proved important in other contexts.
Averages such as $\int_0^T |\zeta(\sigma + it)|^{2k} dt$ have been another main focus of research.

Mean value theorems

(Average of complex function with respect to a parameter t)

Mean value theorems

(Average of complex function with respect to a parameter t)

Mean value theorems

(Average of complex function with respect to a parameter t)

Mean value theorems

(Average of complex function with respect to a parameter t)

Mean value theorems

(Average of complex function with respect to a parameter t)

Mean value theorems

(Average of complex function with respect to a parameter t)
Averages such as $\int_0^T |\zeta(\sigma + it)|^{2k} \, dt$ have been another main focus of research because mean values are easier to prove than pointwise bounds. The techniques developed to treat them have proved important in other contexts.
Averages such as $\int_0^T |\zeta(\sigma + it)|^{2k} \, dt$ have been another main focus of research because averages as well as pointwise upper bounds tell us about zeros and have other applications.
Mean value theorems

Averages such as $\int_0^T |\zeta(\sigma + it)|^{2k} dt$ have been another main focus of research because

- averages as well as pointwise upper bounds tell us about zeros and have other applications.
- mean values are easier to prove than pointwise bounds.
Averages such as $\int_0^T |\zeta(\sigma + it)|^{2k} dt$ have been another main focus of research because

- averages as well as pointwise upper bounds tell us about zeros and have other applications.
- mean values are easier to prove than pointwise bounds.
- the techniques developed to treat them have proved important in other contexts.
Mean value theorems
Mean value theorems

Landau 1908

\[\int_{0}^{T} |\zeta(\sigma + it)|^2 dt \sim \zeta(2\sigma) T \quad (\sigma > 1/2 \text{ fixed}). \]
Mean value theorems

Landau 1908

\[
\int_0^T |\zeta(\sigma + it)|^2 \, dt \sim \zeta(2\sigma) T \quad (\sigma > 1/2 \text{ fixed}).
\]

Hardy-Littlewood 1918

\[
\int_0^T |\zeta(1/2 + it)|^2 \, dt \sim T \log T.
\]
Mean value theorems

Landau 1908

\[
\int_0^T |\zeta(\sigma+it)|^2 dt \sim \zeta(2\sigma) T \quad (\sigma > 1/2 \text{ fixed}).
\]

Hardy-Littlewood 1918

\[
\int_0^T |\zeta(1/2+it)|^2 dt \sim T \log T.
\]

For this H-L developed the approximate functional equation

\[
\zeta(s) = \sum_{n \leq \sqrt{t/2\pi}} n^{-s} + \chi(s) \sum_{n \leq \sqrt{t/2\pi}} n^{s-1} + O(\ldots),
\]
Mean value theorems

Landau 1908

$$\int_0^T |\zeta(\sigma + it)|^2 dt \sim \zeta(2\sigma) T \quad (\sigma > 1/2 \text{ fixed}).$$

Hardy-Littlewood 1918

$$\int_0^T |\zeta(1/2 + it)|^2 dt \sim T \log T.$$

For this H-L developed the approximate functional equation

$$\zeta(s) = \sum_{n \leq \sqrt{t/2\pi}} n^{-s} + \chi(s) \sum_{n \leq \sqrt{t/2\pi}} n^{s-1} + O(...),$$

which has proved an extremely important tool ever since.
Mean value theorems

Hardy-Littlewood 1918

\[\int_{0}^{T} |\zeta(\sigma + it)|^4 \, dt \sim \zeta(4\sigma) T (\sigma > 1/2 \text{ fixed}). \]

Ingham 1926

\[\int_{0}^{T} |\zeta(1/2 + it)|^4 \, dt \sim \frac{T^2}{2\pi} \log^4 T. \]

This was done by using an approximate functional equation for \(\zeta^2(s) \).

When \(k \) is a positive integer, Ramachandra showed that

\[\int_{0}^{T} |\zeta(1/2 + it)|^{2k} \, dt \gg T \log^2 k T. \]

This is believed to be the correct upper bound as well.
Mean value theorems

Hardy-Littlewood 1918

\[\int_0^T |\zeta(\sigma + it)|^4 dt \sim \frac{\zeta^4(2\sigma)}{\zeta(4\sigma)} T \quad (\sigma > 1/2 \text{ fixed}). \]
Mean value theorems

Hardy-Littlewood 1918

\[
\int_0^T |\zeta(\sigma + it)|^4 \, dt \sim \frac{\zeta^4(2\sigma)}{\zeta(4\sigma)} \, T \quad (\sigma > 1/2 \text{ fixed}).
\]

Ingham 1926

\[
\int_0^T |\zeta(1/2 + it)|^4 \, dt \sim \frac{T}{2\pi^2} \log^4 T.
\]
Mean value theorems

Hardy-Littlewood 1918

\[\int_0^T |\zeta(\sigma + it)|^4 \, dt \sim \frac{\zeta^4(2\sigma)}{\zeta(4\sigma)} T \quad (\sigma > 1/2 \text{ fixed}). \]

Ingham 1926

\[\int_0^T |\zeta(1/2 + it)|^4 \, dt \sim \frac{T}{2\pi^2 \log^4 T}. \]

This was done by using an approximate functional equation for \(\zeta^2(s) \).
Mean value theorems

Hardy-Littlewood 1918

\[\int_0^T |\zeta(\sigma + it)|^4 \, dt \sim \frac{\zeta(2\sigma)}{\zeta(4\sigma)} T \quad (\sigma > 1/2 \text{ fixed}). \]

Ingham 1926

\[\int_0^T |\zeta(1/2 + it)|^4 \, dt \sim \frac{T}{2\pi^2} \log^4 T. \]

This was done by using an approximate functional equation for \(\zeta^2(s) \).

When \(k \) is a positive integer Ramachandra showed that

\[\int_0^T |\zeta(1/2 + it)|^{2k} \, dt \gg T \log^{k^2} T. \]
Mean value theorems

Hardy-Littlewood 1918

\[
\int_0^T |\zeta(\sigma + it)|^4 \, dt \sim \frac{\zeta^4(2\sigma)}{\zeta(4\sigma)} T \quad (\sigma > 1/2 \text{ fixed}).
\]

Ingham 1926

\[
\int_0^T |\zeta(1/2 + it)|^4 \, dt \sim \frac{T}{2\pi^2} \log^4 T.
\]

This was done by using an approximate functional equation for \(\zeta^2(s)\).

When \(k\) is a positive integer Ramachandra showed that

\[
\int_0^T |\zeta(1/2 + it)|^{2k} \, dt \gg T \log^{k^2} T.
\]

This is believed to be the correct upper bound as well.
Mean value theorems

This suggests the problem of determining constants C_k such that
\[\int_0^T |\zeta(1/2 + it)|^2 k \, dt \sim C_k T \log^2 k. \]

Conrey-Ghosh suggested that $C_k = a_k g_k \Gamma(k/2 + 1)$, where $a_k = \prod_p \left(1 - \frac{1}{p} \right)^{k/2} \sum_{r=0}^{\infty} d_2(k)(p^r) p^{r/2}$ and g_k is an integer.
This suggests the problem of determining constants C_k such that
This suggests the problem of determining constants C_k such that

$$
\int_0^T |\zeta(1/2 + it)|^{2k} dt \sim C_k T \log^{k^2} T.
$$
Mean value theorems

This suggests the problem of determining constants C_k such that

$$
\int_0^T |\zeta(1/2 + it)|^{2k} dt \sim C_k T \log^{k^2} T.
$$

Conrey-Ghosh suggested that

$$
C_k = \frac{a_k g_k}{\Gamma(k^2 + 1)},
$$
Mean value theorems

This suggests the problem of determining constants C_k such that

$$
\int_0^T |\zeta(1/2 + it)|^{2k} dt \sim C_k T \log^{k^2} T.
$$

Conrey-Ghosh suggested that

$$
C_k = \frac{a_k g_k}{\Gamma(k^2 + 1)},
$$

where

$$
a_k = \prod_p \left(\left(1 - \frac{1}{p} \right)^{k^2} \sum_{r=0}^{\infty} \frac{d_k^2(p^r)}{p^r} \right)
$$
Mean value theorems

This suggests the problem of determining constants C_k such that

\[\int_0^T |\zeta(1/2 + it)|^{2k} dt \sim C_k T \log^{k^2} T. \]

Conrey-Ghosh suggested that

\[C_k = \frac{a_k g_k}{\Gamma(k^2 + 1)}, \]

where

\[a_k = \prod_p \left(\left(1 - \frac{1}{p} \right)^{k^2} \sum_{r=0}^{\infty} \frac{d_k^2(p^r)}{p^r} \right) \]

and g_k is an integer.
Mean value theorems

\[\int_0^T |\zeta(1/2 + it)|^2 k \, dt \sim a_k g_k \Gamma(k^2 + 1) T \log k^2 T, \]

\[g_1 = 1 \text{ and } g_2 = 2 \] are known.

Conrey and Ghosh conjectured that \(g_3 = 42 \).

Conrey and G conjecured that \(g_4 = 24024 \).

Keating and Snaith used random matrix theory to conjecture the value of \(g_k \) for every value of \(k > -1/2 \).

Soundararajan has recently shown that on RH

\[\int_0^T |\zeta(1/2 + it)|^2 k \, dt \ll T \log k^2 + \epsilon T. \]
Mean value theorems

\[\int_0^T |\zeta(1/2 + it)|^{2k} dt \sim \frac{a_k g_k}{\Gamma(k^2 + 1)} T \log^{k^2} T, \]
In

\[\int_0^T |\zeta(1/2 + it)|^{2k} dt \sim \frac{a_k g_k}{\Gamma(k^2 + 1)} T \log^{k^2} T, \]

- \(g_1 = 1 \) and \(g_2 = 2 \) are known.
Mean value theorems

In

\[\int_{0}^{T} |\zeta(1/2 + it)|^{2k} dt \sim \frac{a_k g_k}{\Gamma(k^2 + 1)} T \log^{k^2} T, \]

- \(g_1 = 1 \) and \(g_2 = 2 \) are known.
- Conrey and Ghosh conjectured that \(g_3 = 42 \).
Mean value theorems

In

\[
\int_0^T |\zeta(1/2 + it)|^{2k} dt \sim \frac{a_k g_k}{\Gamma(k^2 + 1)} T \log^{k^2} T,
\]

- \(g_1 = 1\) and \(g_2 = 2\) are known.
- Conrey and Ghosh conjectured that \(g_3 = 42\).
- Conrey and G conjectured that \(g_4 = 24024\).
In
\[
\int_0^T |\zeta(1/2 + it)|^{2k} dt \sim \frac{a_k g_k}{\Gamma(k^2 + 1)} T \log^{k^2} T,
\]

- $g_1 = 1$ and $g_2 = 2$ are known.
- Conrey and Ghosh conjectured that $g_3 = 42$.
- Conrey and G conjectured that $g_4 = 24024$.
- Keating and Snaith used random matrix theory to conjecture the value of g_k for every value of $k > -1/2$.
Mean value theorems

\[\int_0^T |\zeta(1/2 + it)|^{2k} \, dt \sim \frac{a_k g_k}{\Gamma(k^2 + 1)} T \log^{k^2} T, \]

- \(g_1 = 1 \) and \(g_2 = 2 \) are known.
- Conrey and Ghosh conjectured that \(g_3 = 42 \).
- Conrey and G conjectured that \(g_4 = 24024 \).
- Keating and Snaith used random matrix theory to conjecture the value of \(g_k \) for every value of \(k > -1/2 \).
- Soundararajan has recently shown that on RH

\[\int_0^T |\zeta(1/2 + it)|^{2k} \, dt \ll T \log^{k^2 + \epsilon} T. \]
V. Zero-density estimates
Zero-density estimates

Let $N(\sigma, T)$ denote the number of zeros of $\zeta(s)$ with abscissae to the right of σ and ordinates between 0 and T.

Zero-density estimates are bounds for $N(\sigma, T)$ when $\sigma > 1/2$.

Bohr and Landau 1912 showed that for each fixed $\sigma > 1/2$, $N(\sigma, T) \ll T$.

Since $N(T) \sim (T/2\pi) \log T$, this says the proportion of zeros to the right of $\sigma > 1/2$ tends to 0 as $T \to \infty$.

(University of Rochester)
Let $N(\sigma, T)$ denote the number of zeros of $\zeta(s)$ with abscissae to the right of σ and ordinates between 0 and T.

Bohr and Landau 1912 showed that for each fixed $\sigma > 1/2$, $N(\sigma, T) \ll T$. Since $N(T) \sim (T/2\pi) \log T$, this says the proportion of zeros to the right of $\sigma > 1/2$ tends to 0 as $T \to \infty$.

(University of Rochester)
Let $N(\sigma, T)$ denote the number of zeros of $\zeta(s)$ with abscissae to the right of σ and ordinates between 0 and T.

Zero-density estimates are bounds for $N(\sigma, T)$ when $\sigma > 1/2$.

(University of Rochester)
Let $N(\sigma, T)$ denote the number of zeros of $\zeta(s)$ with abscissae to the right of σ and ordinates between 0 and T.

Zero-density estimates are bounds for $N(\sigma, T)$ when $\sigma > 1/2$.

Bohr and Landau 1912 showed that for each fixed $\sigma > 1/2$,

$$N(\sigma, T) \ll T.$$
Let $N(\sigma, T)$ denote the number of zeros of $\zeta(s)$ with abscissae to the right of σ and ordinates between 0 and T.

Zero-density estimates are bounds for $N(\sigma, T)$ when $\sigma > 1/2$.

Bohr and Landau 1912 showed that for each fixed $\sigma > 1/2$,

$$N(\sigma, T) \ll T.$$

Since

$$N(T) \sim \left(\frac{T}{2\pi} \right) \log T,$$
Zero-density estimates

Let \(N(\sigma, T) \) denote the number of zeros of \(\zeta(s) \) with abscissae to the right of \(\sigma \) and ordinates between 0 and \(T \).

Zero-density estimates are bounds for \(N(\sigma, T) \) when \(\sigma > 1/2 \).

Bohr and Landau 1912 showed that for each fixed \(\sigma > 1/2 \),

\[
N(\sigma, T) \ll T.
\]

Since

\[
N(T) \sim (T/2\pi) \log T,
\]

this says the proportion of zeros to the right of \(\sigma > 1/2 \) tends to 0 as \(T \to \infty \).
Zero-density estimates

Bohr and Landau used Jensen's formula and
\[\int_0^T |\zeta(\sigma + it)|^2 dt \ll T \quad (\sigma > 1/2 \text{ fixed})\]
to prove this.

Today we have much better zero-density estimates of the form
\[N(\sigma, T) \ll T^{\theta(\sigma)}\]
with \(\theta(\sigma)\) strictly less than 1.

The conjecture that
\[N(\sigma, T) \ll T^{2\left(1 - \sigma\right) + \epsilon}\]
is called the Density Hypothesis.

Obviously RH implies the Density Hypothesis.

LH implies
\[N(\sigma, T) \ll T^{2\left(1 - \sigma\right) + \epsilon}\].
Bohr and Landau used Jensen’s formula and

$$\int_0^T |\zeta(\sigma + it)|^2 dt \ll T \quad (\sigma > 1/2 \text{ fixed})$$

to prove this.
Zero-density estimates

Bohr and Landau used Jensen’s formula and

\[\int_0^T |\zeta(\sigma + it)|^2 dt \ll T \ (\sigma > 1/2 \text{ fixed}) \]

to prove this.

Today we have much better zero-density estimates of the form

\[N(\sigma, T) \ll T^{\theta(\sigma)} \]

with \(\theta(\sigma) \) strictly less than 1.
Bohr and Landau used Jensen’s formula and
\[
\int_0^T |\zeta(\sigma + it)|^2 \, dt \ll T \quad (\sigma > 1/2 \text{ fixed})
\]
to prove this.

Today we have much better zero-density estimates of the form
\[
N(\sigma, T) \ll T^{\theta(\sigma)} \text{ with } \theta(\sigma) \text{ strictly less than } 1.
\]

The conjecture that \(N(\sigma, T) \ll T^{2(1-\sigma)} \log T \) is called the \textit{Density Hypothesis}.
Bohr and Landau used Jensen’s formula and

\[\int_{0}^{T} |\zeta(\sigma + it)|^2 dt \ll T \quad (\sigma > 1/2 \text{ fixed}) \]

to prove this.

Today we have much better zero-density estimates of the form

\[N(\sigma, T) \ll T^{\theta(\sigma)} \]

with \(\theta(\sigma) \) strictly less than 1.

The conjecture that \(N(\sigma, T) \ll T^{2(1-\sigma)} \log T \) is called the Density Hypothesis.

Obviously RH implies the Density Hypothesis.
Bohr and Landau used Jensen’s formula and

$$\int_0^T |\zeta(\sigma + it)|^2 dt \ll T \quad (\sigma > 1/2 \text{ fixed})$$

to prove this.

Today we have much better zero-density estimates of the form

$$N(\sigma, T) \ll T^{\theta(\sigma)} \quad \text{with } \theta(\sigma) \text{ strictly less than 1.}$$

The conjecture that $$N(\sigma, T) \ll T^{2(1-\sigma)} \log T$$ is called the Density Hypothesis.

Obviously RH implies the Density Hypothesis.

LH implies $$N(\sigma, T) \ll T^{2(1-\sigma)+\epsilon}.$$
VI. The distribution of a-values of $\zeta(s)$
The distribution of \(a \)-values of \(\zeta(s) \)

What can we say about the distribution of non-zero values, \(a \), of the zeta-function?

A lovely theory due mostly to H. Bohr developed around this question. Here are two results.

First, the curve

\[
f(t) = \zeta(\sigma + it) \quad \left(\frac{1}{2} < \sigma \leq 1 \text{ fixed}, \; t \in \mathbb{R} \right)
\]

is dense in \(\mathbb{C} \).

The idea is to show that

\[
\zeta(\sigma + it) \approx \prod_{p \leq N} \left(1 - p^{-\sigma} - it \right)^{-1}
\]

for most \(t \).

Use Kronecker's theorem to find a \(t \) so that the numbers \(p - it \) point in such a way that

\[
\prod_{p \leq N} \left(1 - p^{-\sigma} - it \right)^{-1} \approx a.
\]
The distribution of a-values of $\zeta(s)$

What can we say about the distribution of non-zero values, a, of the zeta-function?
The distribution of a-values of $\zeta(s)$

What can we say about the distribution of non-zero values, a, of the zeta-function?

A lovely theory due mostly to H. Bohr developed around this question.
The distribution of a-values of $\zeta(s)$

What can we say about the distribution of non-zero values, a, of the zeta-function?

A lovely theory due mostly to H. Bohr developed around this question.

Here are two results.
The distribution of a-values of $\zeta(s)$

What can we say about the distribution of non-zero values, a, of the zeta-function?

A lovely theory due mostly to H. Bohr developed around this question.

Here are two results.

First, the curve $f(t) = \zeta(\sigma + it)$ \hspace{2cm} (1/2 < \sigma \leq 1 \text{ fixed}, \ t \in \mathbb{R})
is dense in \mathbb{C}.

\hspace{1cm} use Kronecker's theorem to find a t so that the numbers $p - it$ point in such a way that\
\hspace{2cm} $\prod_{p \leq N} (1 - \frac{p - \sigma - it}{p - \sigma - it}) \approx a$.

(University of Rochester)
What can we say about the distribution of non-zero values, \(a \), of the zeta-function?

A lovely theory due mostly to H. Bohr developed around this question.

Here are two results.

First, the curve \(f(t) = \zeta(\sigma + it) \) \((1/2 < \sigma \leq 1 \text{ fixed}, \ t \in \mathbb{R})\) is dense in \(\mathbb{C} \). The idea is to
The distribution of a-values of $\zeta(s)$

What can we say about the distribution of non-zero values, a, of the zeta-function?

A lovely theory due mostly to H. Bohr developed around this question.

Here are two results.

First, the curve $f(t) = \zeta(\sigma + it)$ \quad $(1/2 < \sigma \leq 1$ fixed, $t \in \mathbb{R})$
is dense in \mathbb{C}. The idea is to

- show that $\zeta(\sigma + it) \approx \prod_{p \leq N}(1 - p^{-\sigma-it})^{-1}$ for most t.

(University of Rochester)
The distribution of a-values of $\zeta(s)$

What can we say about the distribution of non-zero values, a, of the zeta-function?

A lovely theory due mostly to H. Bohr developed around this question.

Here are two results.

First, the curve $f(t) = \zeta(\sigma + it)$ \hspace{1em} (1/2 < \sigma \leq 1 \text{ fixed}, \ t \in \mathbb{R})
is dense in \mathbb{C}. The idea is to

- show that $\zeta(\sigma + it) \approx \prod_{p \leq N} (1 - p^{-\sigma-it})^{-1}$ for most t.

- use Kronecker’s theorem to find a t so that the numbers p^{-it} point in such a way that $\prod_{p \leq N} (1 - p^{-\sigma-it})^{-1} \approx a$.
The distribution of a-values of $\zeta(s)$

As a second result, let $N_a(\sigma_1, \sigma_2, T)$ be the number of solutions of $\zeta(s) = a$ in the rectangular area $\sigma_1 \leq \sigma \leq \sigma_2, 0 \leq t \leq T$.

Suppose that $1/2 < \sigma_1 < \sigma_2 \leq 1$. Then there exists a positive constant $c(\sigma_1, \sigma_2)$ such that $N_a(\sigma_1, \sigma_2, T) \sim c(\sigma_1, \sigma_2)T$.

Notice that this is quite different from the case $a = 0$, because modern zero-density estimates imply $N_0(\sigma_1, \sigma_2, T) \ll T^{1-\theta}$ ($\theta < 1$).
As a second result, let $N_a(\sigma_1, \sigma_2, T)$ be the number of solutions of
$\zeta(s) = a$ in the rectangular area $\sigma_1 \leq \sigma \leq \sigma_2, \ 0 \leq t \leq T$.

Notice that this is quite different from the case $a = 0$, because modern
zero-density estimates imply $N_0(\sigma_1, \sigma_2, T) \ll T^{\theta}$ ($\theta < 1$).
The distribution of a-values of $\zeta(s)$

As a second result, let $N_a(\sigma_1, \sigma_2, T)$ be the number of solutions of $\zeta(s) = a$ in the rectangular area $\sigma_1 \leq \sigma \leq \sigma_2, \ 0 \leq t \leq T$.

Suppose that $1/2 < \sigma_1 < \sigma_2 \leq 1$.

Notice that this is quite different from the case $a = 0$, because modern zero-density estimates imply $N_0(\sigma_1, \sigma_2, T) \ll T^{\theta}$ ($\theta < 1$).
The distribution of a-values of $\zeta(s)$

As a second result, let $N_a(\sigma_1, \sigma_2, T)$ be the number of solutions of $\zeta(s) = a$ in the rectangular area $\sigma_1 \leq \sigma \leq \sigma_2$, $0 \leq t \leq T$.

Suppose that $1/2 < \sigma_1 < \sigma_2 \leq 1$.

Then there exists a positive constant $c(\sigma_1, \sigma_2)$ such that
As a second result, let $N_a(\sigma_1, \sigma_2, T)$ be the number of solutions of $\zeta(s) = a$ in the rectangular area $\sigma_1 \leq \sigma \leq \sigma_2$, $0 \leq t \leq T$.

Suppose that $1/2 < \sigma_1 < \sigma_2 \leq 1$.

Then there exists a positive constant $c(\sigma_1, \sigma_2)$ such that

$$N_a(\sigma_1, \sigma_2, T) \sim c(\sigma_1, \sigma_2) T.$$
The distribution of \(a \)-values of \(\zeta(s) \)

As a second result, let \(N_a(\sigma_1, \sigma_2, T) \) be the number of solutions of \(\zeta(s) = a \) in the rectangular area \(\sigma_1 \leq \sigma \leq \sigma_2, \ 0 \leq t \leq T \).

Suppose that \(1/2 < \sigma_1 < \sigma_2 \leq 1 \).

Then there exists a positive constant \(c(\sigma_1, \sigma_2) \) such that

\[
N_a(\sigma_1, \sigma_2, T) \sim c(\sigma_1, \sigma_2) T.
\]

Notice that this is quite different from the case \(a = 0 \), because modern zero-density estimates imply
The distribution of a-values of $\zeta(s)$

As a second result, let $N_a(\sigma_1, \sigma_2, T)$ be the number of solutions of $\zeta(s) = a$ in the rectangular area $\sigma_1 \leq \sigma \leq \sigma_2$, $0 \leq t \leq T$.

Suppose that $1/2 < \sigma_1 < \sigma_2 \leq 1$.

Then there exists a positive constant $c(\sigma_1, \sigma_2)$ such that

$$N_a(\sigma_1, \sigma_2, T) \sim c(\sigma_1, \sigma_2) T.$$

Notice that this is quite different from the case $a = 0$, because modern zero-density estimates imply

$$N_0(\sigma_1, \sigma_2, T) \ll T^\theta \quad (\theta < 1).$$
VII. Number of zeros on the line as $T \to \infty$
Number of zeros on the line as $T \to \infty$

Let $N_0(T) = \# \{1/2 + i\gamma : \xi(1/2 + i\gamma) = 0, 0 < \gamma < T\}$ denote the number of zeros on the critical line up to height T.

The important estimates were

- Hardy 1914: $N_0(T) \to \infty$ (as $T \to \infty$)
- Hardy-Littlewood 1921: $N_0(T) > c T$
- Selberg 1942: $N_0(T) > c N(T)$
- Levinson 1974: $N_0(T) > \frac{1}{3} N(T)$
- Conrey 1989: $N_0(T) > \frac{2}{5} N(T)$

These all rely heavily on mean value estimates.
Number of zeros on the line as $T \to \infty$

Let $N_0(T) = \# \left\{ 1/2 + i\gamma \mid \zeta(1/2 + i\gamma) = 0, \ 0 < \gamma < T \right\}$ denote the number of zeros on the critical line up to height T.

These all rely heavily on mean value estimates.
Number of zeros on the line as $T \to \infty$

Let $N_0(T) = \# \left\{ \frac{1}{2} + i\gamma \bigg| \zeta\left(\frac{1}{2} + i\gamma\right) = 0, \ 0 < \gamma < T \right\}$ denote the number of zeros on the critical line up to height T.

The important estimates were

Hardy 1914 $N_0(T) \to \infty$ (as $T \to \infty$)

Hardy-Littlewood 1921 $N_0(T) > cT$

Selberg 1942 $N_0(T) > cN(T)$

Levinson 1974 $N_0(T) > \frac{1}{3}N(T)$

Conrey 1989 $N_0(T) > \frac{2}{5}N(T)$

These all rely heavily on mean value estimates.
Number of zeros on the line as $T \to \infty$

Let $N_0(T) = \# \left\{ 1/2 + i\gamma \mid \zeta(1/2 + i\gamma) = 0, \ 0 < \gamma < T \right\}$ denote the number of zeros on the critical line up to height T.

The important estimates were

Hardy 1914 \hspace{1cm} $N_0(T) \to \infty$ \hspace{1cm} (as $T \to \infty$)
Number of zeros on the line as $T \to \infty$

Let $N_0(T) = \# \left\{ 1/2 + i\gamma \mid \zeta(1/2 + i\gamma) = 0, \ 0 < \gamma < T \right\}$ denote the number of zeros on the critical line up to height T.

The important estimates were

Hardy 1914 \[N_0(T) \to \infty \quad (\text{as } T \to \infty) \]

Hardy-Littlewood 1921 \[N_0(T) > c \, T \]

These all rely heavily on mean value estimates.
Number of zeros on the line as $T \to \infty$

Let $N_0(T) = \# \left\{ \frac{1}{2} + i\gamma \bigg| \zeta\left(\frac{1}{2} + i\gamma\right) = 0, \ 0 < \gamma < T \right\}$ denote the number of zeros on the critical line up to height T.

The important estimates were

Hardy 1914 \hspace{1cm} $N_0(T) \to \infty \hspace{1cm}$ (as $T \to \infty$)

Hardy-Littlewood 1921 \hspace{1cm} $N_0(T) > c T$

Selberg 1942 \hspace{1cm} $N_0(T) > c N(T)$
Number of zeros on the line as $T \to \infty$

Let $N_0(T) = \# \left\{ 1/2 + i \gamma \mid \zeta(1/2 + i \gamma) = 0, \ 0 < \gamma < T \right\}$ denote the number of zeros on the critical line up to height T.

The important estimates were

Hardy 1914 \[N_0(T) \to \infty \quad \text{(as } T \to \infty) \]

Hardy-Littlewood 1921 \[N_0(T) > c T \]

Selberg 1942 \[N_0(T) > c N(T) \]

Levinson 1974 \[N_0(T) > \frac{1}{3} N(T) \]
Number of zeros on the line as $T \to \infty$

Let $N_0(T) = \# \left\{ \frac{1}{2} + i\gamma \mid \zeta\left(\frac{1}{2} + i\gamma\right) = 0, \ 0 < \gamma < T \right\}$ denote the number of zeros on the critical line up to height T.

The important estimates were

Hardy 1914 \[N_0(T) \to \infty \quad \text{(as } T \to \infty)\]

Hardy-Littlewood 1921 \[N_0(T) > cT\]

Selberg 1942 \[N_0(T) > cN(T)\]

Levinson 1974 \[N_0(T) > \frac{1}{3}N(T)\]

Conrey 1989 \[N_0(T) > \frac{2}{5}N(T)\]
Let $N_0(T) = \# \left\{ \frac{1}{2} + i\gamma \bigg| \zeta(\frac{1}{2} + i\gamma) = 0, \ 0 < \gamma < T \right\}$ denote the number of zeros on the critical line up to height T.

The important estimates were

Hardy 1914 \(N_0(T) \rightarrow \infty \) (as \(T \rightarrow \infty \))

Hardy-Littlewood 1921 \(N_0(T) > c T \)

Selberg 1942 \(N_0(T) > c N(T) \)

Levinson 1974 \(N_0(T) > \frac{1}{3} N(T) \)

Conrey 1989 \(N_0(T) > \frac{2}{5} N(T) \)

These all rely heavily on mean value estimates.
One can write the functional equation as
\[\zeta(s) = \chi(s) \zeta(1-s), \]
or as
\[\chi - 1/2(s) \zeta(s) = \chi 1/2(s) \zeta(1-s). \]
Then
\[Z(t) = \chi - 1/2(1/2 + it) \zeta(1/2 + it) \]
has the same zeros as \(\zeta(s) \) on \(\sigma = 1/2 \) and is real.
If \(Z(t) \) had no zeros for \(t \geq T_0 \), the integrals
\[\left| \int_{T}^{T_0} Z(t) \, dt \right| \quad \text{and} \quad \int_{T}^{T_0} |Z(t)| \, dt \]
would be the same size as \(T \to \infty \). But they are not.
Hardy’s idea

One can write the functional equation as $\zeta(s) = \chi(s)\zeta(1 - s)$,
One can write the functional equation as \(\zeta(s) = \chi(s)\zeta(1 - s) \), or as

\[
\chi^{-1/2}(s)\zeta(s) = \chi^{1/2}(s)\zeta(1 - s).
\]
One can write the functional equation as $\zeta(s) = \chi(s)\zeta(1 - s)$, or as

$$\chi^{-1/2}(s)\zeta(s) = \chi^{1/2}(s)\zeta(1 - s).$$

Then

$$Z(t) = \chi^{-1/2}(1/2 + it)\zeta(1/2 + it)$$
One can write the functional equation as \(\zeta(s) = \chi(s)\zeta(1 - s) \), or as

\[
\chi^{-1/2}(s)\zeta(s) = \chi^{1/2}(s)\zeta(1 - s).
\]

Then

\[
Z(t) = \chi^{-1/2}(1/2 + it)\zeta(1/2 + it)
\]

has the same zeros as \(\zeta(s) \) on \(\sigma = 1/2 \).
One can write the functional equation as \(\zeta(s) = \chi(s)\zeta(1 - s) \), or as
\[
\chi^{-1/2}(s)\zeta(s) = \chi^{1/2}(s)\zeta(1 - s).
\]
Then
\[
Z(t) = \chi^{-1/2}(1/2 + it)\zeta(1/2 + it)
\]
has the same zeros as \(\zeta(s) \) on \(\sigma = 1/2 \) and is real.
Hardy’s idea

One can write the functional equation as $\zeta(s) = \chi(s)\zeta(1 - s)$, or as

$$\chi^{-1/2}(s)\zeta(s) = \chi^{1/2}(s)\zeta(1 - s).$$

Then

$$Z(t) = \chi^{-1/2}(1/2 + it)\zeta(1/2 + it)$$

has the same zeros as $\zeta(s)$ on $\sigma = 1/2$ and is real.

If $Z(t)$ had no zeros for $t \geq T_0$,
Hardy’s idea

One can write the functional equation as \(\zeta(s) = \chi(s)\zeta(1 - s) \), or as

\[
\chi^{-1/2}(s)\zeta(s) = \chi^{1/2}(s)\zeta(1 - s) .
\]

Then

\[
Z(t) = \chi^{-1/2}(1/2 + it)\zeta(1/2 + it)
\]

has the same zeros as \(\zeta(s) \) on \(\sigma = 1/2 \) and is real.

If \(Z(t) \) had no zeros for \(t \geq T_0 \), the integrals

\[
\left| \int_{T_0}^{T} Z(t) dt \right| \quad \text{and} \quad \int_{T_0}^{T} |Z(t)| dt
\]

would be the same size as \(T \rightarrow \infty \).
Hardy’s idea

One can write the functional equation as $\zeta(s) = \chi(s)\zeta(1 - s)$, or as

$$\chi^{-1/2}(s)\zeta(s) = \chi^{1/2}(s)\zeta(1 - s).$$

Then

$$Z(t) = \chi^{-1/2}(1/2 + it)\zeta(1/2 + it)$$

has the same zeros as $\zeta(s)$ on $\sigma = 1/2$ and is real.

If $Z(t)$ had no zeros for $t \geq T_0$, the integrals

$$\left| \int_{T_0}^{T} Z(t) dt \right| \quad \text{and} \quad \int_{T_0}^{T} |Z(t)| dt$$

would be the same size as $T \rightarrow \infty$. But they are not.
VIII. Calculations of zeros on the line
Numerical calculations of zeros

Gram 1903
The zeros up to 50 (the first 15) are on the line and simple.

Backlund 1912
The zeros up to 200 are on the line.

Hutchison 1925
The zeros up to 300 are on the line.

Titchmarsh, Turing, Lehman, Brent, van de Lune, te Riele, Odlyzko, Wedeniwski, ...

Gourdon-Demichel 2004
The first 10^{13} (ten trillion) zeros are on the line.

Moreover, billions of zeros near the 10^{24} zero are on the line.
Gram 1903 The zeros up to 50 (the first 15) are on the line and simple.
Numerical calculations of zeros

Gram 1903 The zeros up to 50 (the first 15) are on the line and simple.

Backlund 1912 The zeros up to 200 are on the line
Gram 1903 The zeros up to 50 (the first 15) are on the line and simple.

Backlund 1912 The zeros up to 200 are on the line

Hutchison 1925 The zeros up to 300 are on the line
Numerical calculations of zeros

Gram 1903 The zeros up to 50 (the first 15) are on the line and simple.

Backlund 1912 The zeros up to 200 are on the line

Hutchison 1925 The zeros up to 300 are on the line

Titchmarsh, Turing, Lehman, Brent, van de Lune, te Riele, Odlyzko, Wedeniwski, ...
Numerical calculations of zeros

Gram 1903 The zeros up to 50 (the first 15) are on the line and simple.

Backlund 1912 The zeros up to 200 are on the line

Hutchison 1925 The zeros up to 300 are on the line

Titchmarsh, Turing, Lehman, Brent, van de Lune, te Riele, Odlyzko, Wedeniwski, ...

Gourdon-Demichel 2004 The first 10^{13} (ten trillion) zeros are on the line.
Numerical calculations of zeros

Gram 1903 The zeros up to 50 (the first 15) are on the line and simple.

Backlund 1912 The zeros up to 200 are on the line

Hutchison 1925 The zeros up to 300 are on the line

Titchmarsh, Turing, Lehman, Brent, van de Lune, te Riele, Odlyzko, Wedeniwski, ...

Gourdon-Demichel 2004 The first 10^{13} (ten trillion) zeros are on the line. Moreover, billions of zeros near the 10^{24} zero are on the line.
IX. More recent developments
A major theme of research over the last 35 years has been to understand the distribution of the zeros on the critical line assuming that the Riemann Hypothesis is true. In 1974 Montgomery conjectured that the zeros are distributed like the eigenvalues of random Hermitian matrices. From 1980 on Odlyzko did a vast amount of numerical calculation that strongly supported Montgomery's conjecture.
A major theme of research over the last 35 years has been to understand the distribution of the zeros on the critical line *assuming* that the Riemann Hypothesis is true.
A major theme of research over the last 35 years has been to understand the distribution of the zeros on the critical line assuming that the Riemann Hypothesis is true.

- In 1974 Montgomery conjectured that the zeros are distributed like the eigenvalues of random Hermitian matrices.
A major theme of research over the last 35 years has been to understand the distribution of the zeros on the critical line *assuming* that the Riemann Hypothesis is true.

- In 1974 Montgomery conjectured that the zeros are distributed like the eigenvalues of random Hermitian matrices.
- From 1980 on Odlyzko did a vast amount of numerical calculation that strongly supported Montgomery’s conjecture.
New mean value theorems

G and Conrey, Ghosh, and G proved a number of discrete mean value theorems of the type

\[\sum_{0 < \gamma \leq T} |\zeta(\rho + i\alpha)|^2 \]

and

\[\sum_{0 < \gamma \leq T} |\zeta'(\rho)| M_N(\rho)|^2, \]

where \(\rho = 1/2 + i\gamma \) runs over the zeros.

Assuming RH and sometimes GLH and GRH, Conrey, Ghosh, and G used these to prove that

there are large and small gaps between consecutive zeros.

over 70% of the zeros are simple.
G and Conrey, Ghosh, and G proved a number of discrete mean value theorems of the type

$$\sum_{0 < \gamma \leq T} |\zeta(\rho + i\alpha)|^2$$ and $$\sum_{0 < \gamma \leq T} |\zeta'(\rho)M_N(\rho)|^2,$$

where $\rho = 1/2 + i\gamma$ runs over the zeros. Assuming RH and sometimes GLH and GRH, Conrey, Ghosh, and G used these to prove that over 70% of the zeros are simple.
G and Conrey, Ghosh, and G proved a number of discrete mean value theorems of the type

\[\sum_{0 < \gamma \leq T} |\zeta(\rho + i\alpha)|^2 \quad \text{and} \quad \sum_{0 < \gamma \leq T} |\zeta'(\rho)M_N(\rho)|^2, \]

where \(\rho = 1/2 + i\gamma \) runs over the zeros.
G and Conrey, Ghosh, and G proved a number of discrete mean value theorems of the type

\[\sum_{0 < \gamma \leq T} |\zeta(\rho + i\alpha)|^2 \quad \text{and} \quad \sum_{0 < \gamma \leq T} |\zeta'(\rho)M_N(\rho)|^2, \]

where \(\rho = 1/2 + i\gamma \) runs over the zeros.

Assuming RH and sometimes GLH and GRH, Conrey, Ghosh, and G used these to prove that
New mean value theorems

G and Conrey, Ghosh, and G proved a number of discrete mean value theorems of the type

\[\sum_{0<\gamma \leq T} |\zeta(\rho + i\alpha)|^2 \quad \text{and} \quad \sum_{0<\gamma \leq T} |\zeta'(\rho)M_N(\rho)|^2, \]

where \(\rho = 1/2 + i\gamma \) runs over the zeros.

Assuming RH and sometimes GLH and GRH, Conrey, Ghosh, and G used these to prove that

- there are large and small gaps between consecutive zeros.
New mean value theorems

G and Conrey, Ghosh, and G proved a number of discrete mean value theorems of the type

\[\sum_{0<\gamma\leq T} |\zeta(\rho + i\alpha)|^2 \quad \text{and} \quad \sum_{0<\gamma\leq T} |\zeta'(\rho)M_N(\rho)|^2, \]

where \(\rho = 1/2 + i\gamma \) runs over the zeros.

Assuming RH and sometimes GLH and GRH, Conrey, Ghosh, and G used these to prove that

- there are large and small gaps between consecutive zeros.
- over 70% of the zeros are simple.
A major development was Keating and Snaith's modeling of \(\zeta(s) \) by the characteristic polynomials of random Hermitian matrices. It allowed them to determine the constants \(g_k \) in
\[
\int_0^T |\zeta(1/2 + it)|^2 k \, dt \sim a_k g_k \Gamma(k^2 + 1) T \log k^2 T.
\]
It has had applications to elliptic curves, for example. Hughes, Keating, O'Connell used it to conjecture the discrete means
\[
\sum_{0 < \gamma \leq T} |\zeta'(\rho)|^2 k
\]
Mezzadri used it to study the distribution of the zeros of \(\zeta'(s) \).
A major development was Keating and Snaith’s modeling of $\zeta(s)$ by the characteristic polynomials of random Hermitian matrices.
A major development was Keating and Snaith’s modeling of $\zeta(s)$ by the characteristic polynomials of random Hermitian matrices.

It allowed them to determine the constants g_k in

$$\int_0^T |\zeta(1/2 + it)|^{2k} dt \sim \frac{a_k g_k}{\Gamma(k^2+1)} T \log^{k^2} T.$$
Random matrix models

A major development was Keating and Snaith’s modeling of \(\zeta(s) \) by the characteristic polynomials of random Hermitian matrices.

- It allowed them to determine the constants \(g_k \) in
 \[
 \int_0^T |\zeta(1/2 + it)|^{2k} dt \sim \frac{a_k g_k}{\Gamma(k^2 + 1)} T \log^{k^2} T.
 \]
- It has had applications to elliptic curves, for example.
A major development was Keating and Snaith’s modeling of $\zeta(s)$ by the characteristic polynomials of random Hermitian matrices.

- It allowed them to determine the constants g_k in
 \[
 \int_0^T |\zeta(1/2 + it)|^{2k} \, dt \sim \frac{a_k g_k}{\Gamma(k^2 + 1)} T \log^{k^2} T.
 \]

- It has had applications to elliptic curves, for example.

- Hughes, Keating, O’Connell used it to conjecture the discrete means
 \[
 \sum_{0 < \gamma \leq T} |\zeta'(\rho)|^{2k}
 \]
A major development was Keating and Snaith’s modeling of $\zeta(s)$ by the characteristic polynomials of random Hermitian matrices.

- It allowed them to determine the constants g_k in
 $$
 \int_0^T |\zeta(1/2 + it)|^{2k} dt \sim \frac{a_k g_k}{\Gamma(k^2+1)} T \log^{k^2} T.
 $$

- It has had applications to elliptic curves, for example.

- Hughes, Keating, O’Connell used it to conjecture the discrete means
 $$
 \sum_{0<\gamma\leq T} |\zeta'(\rho)|^{2k}
 $$

- Mezzadri used it to study the distribution of the zeros of $\zeta'(s)$.
Lower order terms and ratios

The Keating-Snaith results led to the quest for the lower order terms in the asymptotic expansion of the moments. This resulted in the discovery of new heuristics for the moments not involving RMT. It also led to heuristics for very general moment questions (the so-called "ratios conjecture").

(Conrey, Farmer, Keating, Rubenstein, Snaith, Zirnbauer, ...)

(University of Rochester)
The Keating-Snaith results led to the quest for the lower order terms in the asymptotic expansion of the moments.
The Keating-Snaith results led to the quest for the lower order terms in the asymptotic expansion of the moments. This resulted in the discovery of new heuristics for the moments not involving RMT. It also led to heuristics for very general moment questions (the so-called "ratios conjecture"). (Conrey, Farmer, Keating, Rubenstein, Snaith, Zirnbauer, ...)

(University of Rochester)
Lower order terms and ratios

The Keating-Snaith results led to the quest for the lower order terms in the asymptotic expansion of the moments.

This resulted in the discovery of new heuristics for the moments not involving RMT.

It also led to heuristics for very general moment questions (the so called “ratios conjecture”).
The Keating-Snaith results led to the quest for the lower order terms in the asymptotic expansion of the moments.

This resulted in the discovery of new heuristics for the moments not involving RMT.

It also led to heuristics for very general moment questions (the so called “ratios conjecture”).

(Conrey, Farmer, Keating, Rubenstein, Snaith, Zirnbauer, ...)
A hybrid formula

The Keating-Snaith model finds the moment constants g_k, but the arithmetical factors a_k have to be inserted after the fact. This led to the problem of finding a model for ζ incorporating characteristic polynomials and arithmetical information.

G. Hughes, Keating found an unconditional hybrid formula for $\zeta(s)$. It says (roughly) that

$$\zeta(s) = \prod_{p \leq X} \left(1 - \frac{1}{p} - \frac{s}{p} \right)^{-1} \prod_{|s - \rho| \leq 1/\log X} \left(1 - X^{s - \rho} e^{\gamma} \right)$$

A heuristic calculation of moments using this leads to a_k and g_k appearing naturally. It also explains why the constant in the moment splits as $a_k g_k \Gamma(k^2 + 1)$.
The Keating-Snaith model finds the moment constants g_k, but the arithmetical factors a_k have to be inserted after the fact.
A hybrid formula

The Keating-Snaith model finds the moment constants g_k, but the arithmetical factors a_k have to be inserted after the fact.

This led to the problem of finding a model for zeta incorporating characteristic polynomials and arithmetical information.
A hybrid formula

The Keating-Snaith model finds the moment constants g_k, but the arithmetical factors a_k have to be inserted after the fact.

This led to the problem of finding a model for zeta incorporating characteristic polynomials and arithmetical information.

G, Hughes, Keating found an unconditional hybrid formula for $\zeta(s)$.
A hybrid formula

The Keating-Snaith model finds the moment constants g_k, but the arithmetical factors a_k have to be inserted after the fact.

This led to the problem of finding a model for zeta incorporating characteristic polynomials and arithmetical information.

G, Hughes, Keating found an unconditional hybrid formula for $\zeta(s)$.

It says (roughly) that
A hybrid formula

The Keating-Snaith model finds the moment constants g_k, but the arithmetical factors a_k have to be inserted after the fact.

This led to the problem of finding a model for zeta incorporating characteristic polynomials and arithmetical information.

G, Hughes, Keating found an unconditional hybrid formula for $\zeta(s)$.

It says (roughly) that

$$\zeta(s) = \prod_{p \leq X} (1 - p^{-s})^{-1} \prod_{|s-\rho| \leq 1/\log X} (1 - X^{(\rho-s)e^\gamma})$$
The Keating-Snaith model finds the moment constants g_k, but the arithmetical factors a_k have to be inserted after the fact.

This led to the problem of finding a model for zeta incorporating characteristic polynomials and arithmetical information.

G, Hughes, Keating found an unconditional hybrid formula for $\zeta(s)$.

It says (roughly) that

$$\zeta(s) = \prod_{p \leq X} (1 - p^{-s})^{-1} \prod_{|s - \rho| \leq 1/\log X} (1 - X^{(\rho - s)e\gamma})$$

A heuristic calculation of moments using this leads to a_k and g_k appearing naturally.
A hybrid formula

The Keating-Snaith model finds the moment constants g_k, but the arithmetical factors a_k have to be inserted after the fact.

This led to the problem of finding a model for zeta incorporating characteristic polynomials and arithmetical information.

G, Hughes, Keating found an unconditional hybrid formula for $\zeta(s)$.

It says (roughly) that

$$\zeta(s) = \prod_{\rho \leq X} (1 - \rho^{-s})^{-1} \prod_{|s - \rho| \leq 1 / \log X} (1 - X^{(\rho - s)e^{\gamma}})$$

A heuristic calculation of moments using this leads to a_k and g_k appearing naturally.

It also explains why the constant in the moment splits as $\frac{a_k g_k}{\Gamma(k^2 + 1)}$.
Finally, the hybrid formula has led to conjectural answers to the deep question of the exact order of $\zeta(s)$ in the critical strip. Recall that $\left(1 + o(1)\right) e^{\gamma \log \log t} \leq i \cdot |\zeta(1 + it)| \leq \text{RH} 2 \left(1 + o(1)\right) e^{\gamma \log \log t}$, so that a factor of 2 is in question. Arguments from the hybrid model suggest that the 2 should be dropped.
Finally, the hybrid formula has led to conjectural answers to the deep question of the exact order of $\zeta(s)$ in the critical strip.
Finally, the hybrid formula has led to conjectural answers to the deep question of the exact order of $\zeta(s)$ in the critical strip.

Recall that

$$(1 + o(1)) e^\gamma \log \log t \lesssim_{i.o.} |\zeta(1 + it)| \lesssim_{RH} 2(1 + o(1)) e^\gamma \log \log t,$$
The order of \(\zeta(s) \) again

Finally, the hybrid formula has led to conjectural answers to the deep question of the exact order of \(\zeta(s) \) in the critical strip.

Recall that

\[
(1 + o(1)) e^\gamma \log \log t \leq_{i.o.} |\zeta(1 + it)| \leq_{RH} 2(1 + o(1)) e^\gamma \log \log t,
\]

so that a factor of 2 is in question.
Finally, the hybrid formula has led to conjectural answers to the deep question of the exact order of $\zeta(s)$ in the critical strip.

Recall that

$$(1 + o(1))e^{\gamma} \log \log t \leq i.o. \left| \zeta(1 + it) \right| \leq_{RH} 2(1 + o(1))e^{\gamma} \log \log t,$$

so that a factor of 2 is in question.

Arguments from the hybrid model suggest that the 2 should be dropped.
The order of $\zeta(s)$ again

On the 1/2-line itself recall that $\sqrt{\log t \log \log t} \leq i\log \left| \zeta\left(\frac{1}{2} + it\right) \right|$.

Here Farmer, G, and Hughes have used the hybrid formula to suggest that $\sqrt{\frac{1}{2}(1+o(1))} \leq i\log \left| \zeta\left(\frac{1}{2} + it\right) \right|$.
On the 1/2-line itself recall that
The order of $\zeta(s)$ again

On the 1/2-line itself recall that

$$\sqrt{c \frac{\log t}{\log \log t}} \leq \log |\zeta(1/2 + it)| \ll_{RH} \frac{\log t}{\log \log t}.$$
The order of $\zeta(s)$ again

On the 1/2-line itself recall that

$$
\sqrt{c \frac{\log t}{\log \log t}} \leq \text{i.o. } \log |\zeta(1/2 + it)| \ll_{\text{RH}} \frac{\log t}{\log \log t}.
$$

Here Farmer, G, and Hughes have used the hybrid formula to suggest that
On the 1/2-line itself recall that
\[\sqrt{c \frac{\log t}{\log \log t}} \leq i.o. \log |\zeta(1/2 + it)| \ll_{RH} \frac{\log t}{\log \log t}. \]

Here Farmer, G, and Hughes have used the hybrid formula to suggest that
\[\sqrt{1/2(1 + o(1))} \leq i.o. \frac{\log |\zeta(1/2 + it)|}{\sqrt{\log t \log \log t}} \leq \sqrt{1/2(1 + o(1))}. \]