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World’s Easiest Sieve Problem

A survey of 100 people finds that
1 50 people like vanilla ice cream and
2 40 people like chocolate ice cream.

How many people don’t like either flavor?
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50 - x 40 - xx

x + 10

Vanilla Chocolate

0 ≤ x ≤ 40.
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50 400

10

Lower Bound

x = 0: At least 10 people don’t like either chocolate or vanilla.
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10 040

50

Upper Bound

x = 40: At most 50 people don’t like either chocolate or vanilla.
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Let A be a finite set of integers, and assume each n ∈ A is
equipped with a non-negative weight wn.

Let P be a finite set of primes and

P =
∏
p∈P

p.

The sieve problem: Get upper and lower bounds for

S1 =
∑
n∈A

(n,P )=1

wn,

from information about

Wd =
∑
n∈A
d|n

wn.
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Estimates for Wd take the form

g(d)X −R−
d ≤ Wd ≤ g(d)X + R+

d

for d|P , where g is a non-negative multiplicative function.
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λd an upper bound sieve if for every n ∈ A,

∑
d|(n,P )

λd ≥

{
1 if (n, P ) = 1,

0 otherwise.

For an upper bound sieve,

S1 ≤
∑
n∈A

wn

∑
d|(n,P )

λd ≤ X
∑
d|P

g(d) +
∑
d|P

|λd|Rsgn λd
d .
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λd an lower bound sieve if for every n|P ,

∑
d|n

λd ≤

{
1 if n = 1,

0 otherwise.

For a lower bound sieve,

S1 ≤
∑
n∈A

wn

∑
d|(n,P )

λd ≥ X
∑
d|P

λdg(d)−
∑
d|P

|λd|R− sgn λd
d .
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The Ideal Sieve

In practice, the error terms are controlled by requiring λd = 0
for d ≥ z, where z is some appropriate parameter.
We idealize this situation: Assume

Rd =

{
0 if d < z

∞ if d ≥ z

Therefore, the only useful sieves have λd = 0 for d ≥ z.
If d < z, then

Wd =
∑
n∈A
d|n

wn = g(d)X

By homogeniety, we may normalize to X = 1.
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Looking for Extremal Examples

The key idea: Make a change of basis. Recall

Wd =
∑
n∈A
d|n

wn = g(d).

Define
Sd =

∑
n∈A

(n,P )=d

wn.

Then
Wd =

∑
e|P

d

Sde, Sd =
∑
e|P

d

µ(e)Wde.

Now describe sets in terms of Sd instead of Wd or wn.
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Admissible Sets

The set {Sd : d|P} is admissible if
1 Sd ≥ 0 for all d|P , and
2 if d|P and d ≤ z, then

∑
δ|P

d

Sδd = g(d).

If {λd} is an upper bound sieve, then for any A,

S1 ≤
∑
n∈A

wn

∑
d|n

λd =
∑
d|P

λdg(d).

If we can find an admissible set {Sd} such that

S1 =
∑
d|P

λdg(d),

then {λd} is optimal.
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Linear Programming

The situation here is one of linear programming.
By the fundamental duality theorem

max
wn

S1 = min
λd∈L+

∑
d|P

g(d)λd

where L+ denotes the set of all upper bound sifting functions.
Similarly,

min
wn

S1 = max
λd∈L−

∑
d|P

g(d)λd

where L− denotes the set of all lower bound sifting functions.
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Define θm =
∑

d|m λd. The condition for an upper bound sieve
may be rephrased as

θ1 ≥ 1, θm ≥ 0 for m > 1.

By Möbius inversion,

λd =
∑
m|d

µ

(
d

m

)
θm

so knowing θ is equivalent to knowing λ.
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Our Basic Problem

Assume that the sifting primes p lie in the range

zα < p ≤ zβ.

Identify best possible upper and lower bound sieves, and
identify extremal examples.
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Sifting primes in (z1/2, z]

The sieving primes are p1, . . . , pK with

z1/2 < pi ≤ z.

The product of any two of these primes exceeds z,
so λd = 0 if d has two or more prime factors.
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Lower Bound:

Let
λ1 = 1, λp = −1.

If n|P , then
θn =

∑
d|n

λd = 1− ω(n),

so we have a lower bound sieve.
Therefore

S1 ≥ 1−
∑
p|P

g(p)
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Optimality of Lower Bound

Take
S1 = 1−

∑
p|P

g(p), Sp = g(p).

gHp1L
gHp2L

gHp3L

S1= 1 - gHp1L - gHp2L - gHp3L
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Upper Bound:

Let p1 be a prime such that

g(p1) ≥ g(pi)

for all i. Take
λ1 = 1, λp1 = −1,

and λd = 0 otherwise.
If n|P , then

θn =
∑
d|n

λd =

{
0 if p1|n,

1 if p1 - n.

so we have an upper bound sieve.
Therefore

S1 ≤ 1− g(p1).
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Optimality of Upper Bound

Arrange the primes so that g(p1) ≥ g(p2) . . . ≥ g(pK).

S1 =1− g(p1), Sp1 = g(p1)− g(p2),
Sp1p2 =g(p2)− g(p3), . . . , Sp1p2...pK = g(pK).

S1= 1 - gHp1L

gHp1L-gHp2L

gHp2L-gHp3L

gHp3L
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Sifing Primes in [z1/3, z1/2)

Suppose that the sifting primes P ⊆ [z1/3, z1/2).
In other words, for all primes in P,

z1/3 ≤ p < z1/2.

We must have λd = 0 if ω(d) ≥ 3.
Suppose also that (dimension assumption)∑

p∈P
g(p) = κ + o(1), and

∑
p∈P

g2(p) = o(1)

as z →∞.
Here are three approaches to finding an upper bound for S1.
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Combinatorial Sieve

A combinatorial sieve has λd = ±1 or 0.
Define λp = −1 if z1/3 ≤ p < y and λp = 0 if p > y.
Define λpq = λpλq. Then

θn =
∑
d|n

λd = (1− `)
(

1− `

2

)
≥ 0,

where ` is the number of prime factors of n not exceeding y.
Thus

S1 .1− t + t2/2

for some t, 0 ≤ t ≤ κ.
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Combinatorial Sieve

If 0 < κ ≤ 1, take t = κ: S1 . 1− κ + 1
2κ2.

If 1 < κ, take t = 1: S1 . 1/2.
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Λ2 sieve

S1 ≤
∑
n∈A

wn

∑
d|n

λd

2

=
∑
d,e

λdλeg([d, e])

Say λp = a if p ∈ P.

Then
S1 . (1 + κa)2 + κa2.

Optimal choice is a = −1/(κ + 1), and this gives

S1 .
1

κ + 1
.

This is better than the combinatorial sieve iff κ > 1.
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Optimal Sieve

Consider those λ where λd depends only on ω(d).

Write λd = λ(`) when ω(d) = `.

Write θd =
∑

e|d λe = θ(`) when ω(d) = `.

Need θ(0) ≥ 1, θ(`) ≥ 0. Take

θ(`) =
(

1− `

r

) (
1− `

r + 1

)
.

where r is a positive integer chosen later.
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Then

S1 . 1− 2κ

r + 1
+

κ2

r(r + 1)
=

(r − κ)2 + r

r(r + 1)
.

The optimal choice is r = [1 + κ].
When κ is an integer,

S1 .
1

κ + 1
,

which is the same as Λ2.

When 0 < κ ≤ 1,

S1 . 1− κ +
1
2
κ2,

which is the same as the combinatorial sieve.

Sid Graham The Ideal Sieve



To show this upper bound is optimal, take

Sd =


(r−1)!
κr−1 (r − κ)g(d) if ω(d) = r,
r!
κr (κ− r + 1)g(d) if ω(d) = r + 1,
(r−κ)2+r

r(r+1) if d = 1,

0 otherwise.
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Lower Bound for R = 3

When the sifting primes p satisfy z1/4 ≤ p < z1/3, the optimal
lower bound θ is

θ(`) = (1− `)
(

1− `

r

) (
1− `

r + 1

)
,

and the corresponding lower bound is

S1 & 1− κ +
(2r − 1)κ2

(r + 1)r
− κ3

(r + 1)r

with r = [κ + 2]. The right-hand side is positive for κ < 2.

Sid Graham The Ideal Sieve



In “Lectures on Sieves” (Collected Works II), Selberg considers
a more general problem where the primes in P satisfy

z1/(R+1) ≤ p < z1/R

for arbitrary integer R ≥ 1.

He proves that in an optimal sieve, λd depends only on ω(d),
but the proof does not identify extremal examples.
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Let
vR = sup{κ : S1 > 0}.

Then v1 = 1 and v3 = 2.

Selberg (Lectures on Sieves) proved that[
R + 1

2

]
≤ vR ≤ R.

“It would be of interest to compute vR for a number of larger
values (mine do not go beyond single digits) to see whether the
ratio vR/R approaches 1/2 or not.”
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Here are computations up to R = 15 :

R {r1, r2, . . . , rK} vR vR/(R + 1)

1 { } 1 0.500

3 {3} 2 0.500

5 {3, 7} 3.117 0.520

7 {3, 6, 11} 4.143 0.518

9 {3, 6, 10, 14} 5.238 0.524

11 {3, 6, 9, 13, 18} 6.291 0.524

13 {3, 6, 9, 13, 17, 22} 7.309 0.522

15 {3, 6, 9, 12, 16, 20, 25} 8.337 0.521
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We have extended these computations up to R = 39, and we
found that

v39 = 20.575 . . . ,

v39

40
= 0.515 . . . .
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The End ...

Thank you! . . .
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