THE IDEAL SIEVE

Sid Graham

June 2, 2009

Workshop on L-functions and Random Matrices Utah Valley University Joint work with Hugh Montgomery

World's Easiest Sieve Problem

A survey of 100 people finds that

- 50 people like vanilla ice cream and
- 2 40 people like chocolate ice cream.

How many people don't like either flavor?

 $0 \le x \le 40.$

x=0: At least 10 people don't like either chocolate or vanilla.

x = 40: At most 50 people don't like either chocolate or vanilla.

Let \mathcal{A} be a finite set of integers, and assume each $n \in \mathcal{A}$ is equipped with a non-negative weight w_n .

Let \mathcal{P} be a finite set of primes and

$$P = \prod_{p \in \mathcal{P}} p.$$

The sieve problem: Get upper and lower bounds for

$$S_1 = \sum_{\substack{n \in \mathcal{A} \\ (n,P)=1}} w_n,$$

from information about

$$W_d = \sum_{\substack{n \in \mathcal{A} \\ d|n}} w_n.$$

Estimates for W_d take the form

$$g(d)X - R_d^- \le W_d \le g(d)X + R_d^+$$

for d|P, where g is a non-negative multiplicative function.

 λ_d an upper bound sieve if for every $n \in \mathcal{A}$,

$$\sum_{d \mid (n,P)} \lambda_d \geq \begin{cases} 1 & \text{if } (n,P) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

For an upper bound sieve,

$$S_1 \leq \sum_{n \in \mathcal{A}} w_n \sum_{d \mid (n,P)} \lambda_d \leq X \sum_{d \mid P} g(d) + \sum_{d \mid P} |\lambda_d| R_d^{\operatorname{sgn} \lambda_d}.$$

 λ_d an lower bound sieve if for every n|P,

$$\sum_{d|n} \lambda_d \le \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{otherwise.} \end{cases}$$

For a lower bound sieve,

$$S_1 \le \sum_{n \in \mathcal{A}} w_n \sum_{d \mid (n,P)} \lambda_d \ge X \sum_{d \mid P} \lambda_d g(d) - \sum_{d \mid P} |\lambda_d| R_d^{-\operatorname{sgn} \lambda_d}.$$

The Ideal Sieve

In practice, the error terms are controlled by requiring $\lambda_d = 0$ for $d \geq z$, where z is some appropriate parameter.

We idealize this situation: Assume

$$R_d = \begin{cases} 0 & \text{if } d < z \\ \infty & \text{if } d \ge z \end{cases}$$

Therefore, the only useful sieves have $\lambda_d = 0$ for $d \geq z$. If d < z, then

$$W_d = \sum_{\substack{n \in \mathcal{A} \\ d \mid n}} w_n = g(d)X$$

The Ideal Sieve

In practice, the error terms are controlled by requiring $\lambda_d = 0$ for $d \geq z$, where z is some appropriate parameter.

$$R_d = \begin{cases} 0 & \text{if } d < z \\ \infty & \text{if } d \ge z \end{cases}$$

Therefore, the only useful sieves have $\lambda_d = 0$ for $d \geq z$. If d < z, then

$$W_d = \sum_{\substack{n \in \mathcal{A} \\ d \mid n}} w_n = g(d)X$$

By homogeniety, we may normalize to X = 1.

We idealize this situation: Assume

Looking for Extremal Examples

The key idea: Make a change of basis. Recall

$$W_d = \sum_{\substack{n \in \mathcal{A} \\ d \mid n}} w_n = g(d).$$

Define

$$S_d = \sum_{\substack{n \in \mathcal{A} \\ (n,P)=d}} w_n.$$

Then

$$W_d = \sum_{e|\frac{P}{d}} S_{de}, \quad S_d = \sum_{e|\frac{P}{d}} \mu(e) W_{de}.$$

Now describe sets in terms of S_d instead of W_d or w_n .

Admissible Sets

The set $\{S_d : d|P\}$ is admissible if

- $S_d \geq 0$ for all d|P, and
- ② if d|P and $d \leq z$, then $\sum_{\delta|\frac{P}{d}} S_{\delta d} = g(d)$.

If $\{\lambda_d\}$ is an upper bound sieve, then for any \mathcal{A} ,

$$S_1 \le \sum_{n \in \mathcal{A}} w_n \sum_{d|n} \lambda_d = \sum_{d|P} \lambda_d g(d).$$

If we can find an admissible set $\{S_d\}$ such that

$$S_1 = \sum_{d|P} \lambda_d g(d),$$

then $\{\lambda_d\}$ is optimal.

Linear Programming

The situation here is one of linear programming. By the fundamental duality theorem

$$\max_{w_n} S_1 = \min_{\lambda_d \in \mathcal{L}^+} \sum_{d|P} g(d) \lambda_d$$

where \mathcal{L}^+ denotes the set of all upper bound sifting functions. Similarly,

$$\min_{w_n} S_1 = \max_{\lambda_d \in \mathcal{L}^-} \sum_{d|P} g(d)\lambda_d$$

where \mathcal{L}^- denotes the set of all lower bound sifting functions.

Define $\theta_m = \sum_{d|m} \lambda_d$. The condition for an upper bound sieve may be rephrased as

$$\theta_1 \ge 1$$
, $\theta_m \ge 0$ for $m > 1$.

By Möbius inversion,

$$\lambda_d = \sum_{m|d} \mu\left(\frac{d}{m}\right) \theta_m$$

so knowing θ is equivalent to knowing λ .

Our Basic Problem

Assume that the sifting primes p lie in the range

$$z^{\alpha} .$$

Identify best possible upper and lower bound sieves, and identify extremal examples.

Sifting primes in $(z^{1/2}, z]$

The sieving primes are p_1, \ldots, p_K with

$$z^{1/2} < p_i \le z.$$

The product of any two of these primes exceeds z, so $\lambda_d = 0$ if d has two or more prime factors.

Lower Bound:

Let

$$\lambda_1 = 1, \quad \lambda_p = -1.$$

If n|P, then

$$\theta_n = \sum_{d|n} \lambda_d = 1 - \omega(n),$$

so we have a lower bound sieve.

Therefore

$$S_1 \ge 1 - \sum_{p|P} g(p)$$

Optimality of Lower Bound

Take

$$S_1 = 1 - \sum_{p|P} g(p), \quad S_p = g(p).$$

Upper Bound:

Let p_1 be a prime such that

$$g(p_1) \ge g(p_i)$$

for all i. Take

$$\lambda_1 = 1, \quad \lambda_{p_1} = -1,$$

and $\lambda_d = 0$ otherwise.

If n|P, then

$$\theta_n = \sum_{d|n} \lambda_d = \begin{cases} 0 & \text{if } p_1|n, \\ 1 & \text{if } p_1 \nmid n. \end{cases}$$

so we have an upper bound sieve.

Therefore

$$S_1 \leq 1 - g(p_1).$$

Optimality of Upper Bound

Arrange the primes so that $g(p_1) \ge g(p_2) \dots \ge g(p_K)$.

$$S_1 = 1 - g(p_1), S_{p_1} = g(p_1) - g(p_2),$$

 $S_{p_1p_2} = g(p_2) - g(p_3), \dots, S_{p_1p_2\dots p_K} = g(p_K).$

Sifing Primes in $[z^{1/3}, z^{1/2})$

Suppose that the sifting primes $\mathcal{P} \subseteq [z^{1/3}, z^{1/2})$. In other words, for all primes in \mathcal{P} ,

$$z^{1/3} \le p < z^{1/2}.$$

We must have $\lambda_d = 0$ if $\omega(d) \geq 3$. Suppose also that (dimension assumption)

$$\sum_{p\in\mathcal{P}}g(p)=\kappa+o(1), \text{ and } \sum_{p\in\mathcal{P}}g^2(p)=o(1)$$

as $z \to \infty$.

Here are three approaches to finding an upper bound for S_1 .

Combinatorial Sieve

A combinatorial sieve has $\lambda_d = \pm 1$ or 0.

Define $\lambda_p = -1$ if $z^{1/3} \le p < y$ and $\lambda_p = 0$ if p > y.

Define $\lambda_{pq} = \lambda_p \lambda_q$. Then

$$\theta_n = \sum_{d|n} \lambda_d = (1 - \ell) \left(1 - \frac{\ell}{2} \right) \ge 0,$$

where ℓ is the number of prime factors of n not exceeding y. Thus

$$S_1 \lesssim 1 - t + t^2/2$$

for some t, $0 \le t \le \kappa$.

Combinatorial Sieve

If
$$0 < \kappa \le 1$$
, take $t = \kappa$: $S_1 \lesssim 1 - \kappa + \frac{1}{2}\kappa^2$.

If
$$1 < \kappa$$
, take $t = 1$: $S_1 \lesssim 1/2$.

Λ^2 sieve

$$S_1 \le \sum_{n \in \mathcal{A}} w_n \left(\sum_{d|n} \lambda_d\right)^2 = \sum_{d,e} \lambda_d \lambda_e g([d,e])$$

Say $\lambda_p = a$ if $p \in \mathcal{P}$.

Then

$$S_1 \lesssim (1 + \kappa a)^2 + \kappa a^2$$
.

Optimal choice is $a = -1/(\kappa + 1)$, and this gives

$$S_1 \lesssim \frac{1}{\kappa + 1}$$
.

This is better than the combinatorial sieve iff $\kappa > 1$.

Optimal Sieve

Consider those λ where λ_d depends only on $\omega(d)$.

Write $\lambda_d = \lambda(\ell)$ when $\omega(d) = \ell$.

Write $\theta_d = \sum_{e|d} \lambda_e = \theta(\ell)$ when $\omega(d) = \ell$.

Need $\theta(0) \ge 1, \theta(\ell) \ge 0$. Take

$$\theta(\ell) = \left(1 - \frac{\ell}{r}\right) \left(1 - \frac{\ell}{r+1}\right).$$

where r is a positive integer chosen later.

Then

$$S_1 \lesssim 1 - \frac{2\kappa}{r+1} + \frac{\kappa^2}{r(r+1)} = \frac{(r-\kappa)^2 + r}{r(r+1)}.$$

The optimal choice is $r = [1 + \kappa]$. When κ is an integer,

$$S_1 \lesssim \frac{1}{\kappa + 1}$$

which is the same as Λ^2 .

When $0 < \kappa \le 1$,

$$S_1 \lesssim 1 - \kappa + \frac{1}{2}\kappa^2$$
,

which is the same as the combinatorial sieve.

To show this upper bound is optimal, take

$$S_d = \begin{cases} \frac{(r-1)!}{\kappa^{r-1}} (r-\kappa) g(d) & \text{if } \omega(d) = r, \\ \frac{\frac{r!}{\kappa^r}}{\kappa^r} (\kappa - r + 1) g(d) & \text{if } \omega(d) = r + 1, \\ \frac{(r-\kappa)^2 + r}{r(r+1)} & \text{if } d = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Lower Bound for R=3

When the sifting primes p satisfy $z^{1/4} \le p < z^{1/3}$, the optimal lower bound θ is

$$\theta(\ell) = (1 - \ell) \left(1 - \frac{\ell}{r} \right) \left(1 - \frac{\ell}{r+1} \right),$$

and the corresponding lower bound is

$$S_1 \gtrsim 1 - \kappa + \frac{(2r-1)\kappa^2}{(r+1)r} - \frac{\kappa^3}{(r+1)r}$$

with $r = [\kappa + 2]$. The right-hand side is positive for $\kappa < 2$.

In "Lectures on Sieves" (Collected Works II), Selberg considers a more general problem where the primes in \mathcal{P} satisfy

$$z^{1/(R+1)} \le p < z^{1/R}$$

for arbitrary integer $R \geq 1$.

He proves that in an optimal sieve, λ_d depends only on $\omega(d)$, but the proof does not identify extremal examples.

Let

$$v_R = \sup\{\kappa : S_1 > 0\}.$$

Then $v_1 = 1$ and $v_3 = 2$.

Selberg (Lectures on Sieves) proved that

$$\left[\frac{R+1}{2}\right] \le v_R \le R.$$

"It would be of interest to compute v_R for a number of larger values (mine do not go beyond single digits) to see whether the ratio v_R/R approaches 1/2 or not."

Here are computations up to R=15:

R	$\{r_1, r_2, \dots, r_K\}$	v_R	$v_R/(R+1)$
1	{}	1	0.500
3	{3}	2	0.500
5	${\{3,7\}}$	3.117	0.520
7	$\{3,6,11\}$	4.143	0.518
9	$\{3,6,10,14\}$	5.238	0.524
11	$\{3,6,9,13,18\}$	6.291	0.524
13	{3, 6, 9, 13, 17, 22}	7.309	0.522
15	${3,6,9,12,16,20,25}$	8.337	0.521

We have extended these computations up to R=39, and we found that

$$v_{39} = 20.575 \dots,$$

$$\frac{v_{39}}{40} = 0.515\dots$$

The End ...

The End ...

Thank you! ...