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Introduction

•E and F denote finite Galois extensions of Q of degrees ! and !′,
respectively.
• Let (π,Vπ) (resp. (σ,Vσ)) be an automorphic cuspidal
representation of GLm(AE ) (resp. GLn(AF )) with unitary central
character.
• For any place lying over p denote by fp, ep (resp. f ′p, e ′p) the
modular degree and ramification index of E/Q (resp. F/Q) (these
only depend on p since E/Q and F/Q are Galois).
• Denote by {απ(i , ν)}i=1,...,m (resp. {ασ(j , ω)}j=1,...,n) the local
parameters coming from the representation at the finite place ν of
E (resp. ω of F).
• Denote by {µπ(i , ν)}i=1,...,m (resp. {µσ(j , ω)}j=1,...,n)the local
parameters coming from the representation at the infinite place ν
of E (resp. ω of F)
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Classical Case

We will use the Rankin-Selberg L-functions L(s, π × σ) as
developed by Jacquet, Piatetski-Shapiro, and Shalika [2], Shahidi
[3], and Moeglin and Waldspurger [4]. The Rankin-Selberg
L-function is defined as the infinite product

L(s, π × σ) =
∏

p prime

∏

ν|p

m∏

i=1

n∏

j=1

(1− απ(i , ν)ασ(j , ν)p−s)−1

which converges absolutely for Re(s) > 1.(Jacquet and Shalika
[5]). Now let

L′

L
(s, π × σ) = −

∑

n≥1

Λ(n)aπ×σ(n)

ns
for Re(s) > 1

where aπ×σ(n) = fp
∑

ν|p
∑n

i=1

∑n
j=1 απ(i , ν)kασ(j , ν)k for

n = pk , fp|k, p prime.
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Classical Case

By a prime number theorem for L(s, π × σ̃) we mean the
asymptotic behavior of the sum

∑

n≤x

Λ(n)aπ×σ̃(n) (0.1)

Where σ̃ denotes the contragredient of σ. In this case, if one of π
or σ is self-contragredient (π ∼= π̃ or σ ∼= σ̃) we have the following
asymptotic formula for (0.1) (Ji, Gillespie [6]) due to Liu and Ye
for E = Q [7]

=






x1+iτ0

1 + iτ0
+ O{x exp(−c

√
log x)}

if σ ∼= π ⊗ | det |iτ0 for some τ0 ∈ R;
O{x exp(−c

√
log x)}

if σ '∼= π ⊗ | det |it for any t ∈ R.
for some constant c > 0.
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Non-classical case

Suppose that E and F are cyclic extensions of prime degree ! and
!′ respectively. Also suppose that πγ ∼= π and σγ′ ∼= σ where γ is a
generator of Gal(E/Q), and γ′ is a generator of Gal(F/Q). Here
the Galois action is defined by πγ(g) = π(gγ). By a result of
Arthur and Clozel [1], π (resp. σ) is the base change lift of exactly
! (resp !′) non-equivalent cuspidal representations {πQ ⊗ ηb

E/Q}
&−1
b=0

(resp. {πQ ⊗ ξb
F/Q}

&′−1
q=0 ) of GLm(AQ) (resp. GLn(AQ)) thus

L(s, π) =
&−1∏

b=0

L(s, πQ ⊗ ηb
E/Q)

L(s, σ) =
&′−1∏

q=0

L(s, σQ ⊗ ξq
F/Q)

here ηE/Q and ξF/Q are idele class characters on Ax
Q associated to

E and F by class field theory.
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Non-classical case

Define the Rankin-Selberg L-function over different fields
L(s, π ×E ,F σ̃) by

L(s, π ×E ,F σ̃) :=
&−1∏

b=0

&′−1∏

q=0

L(s, πQ ⊗ ηb
E/Q × ˜σQ ⊗ ξq

F/Q)

then for n = pk a prime power

aπ×E ,F σ̃(n) =
&−1∑

b=0

&′−1∑

q=0

aπQ⊗ηb
E/Q

(n)a ˜σQ⊗ξq
F/Q

(n)
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Non-classical case

Suppose that one of πQ or σQ is self-contragredient, then

∑

n≥1

Λ(n)aπ×E ,F σ̃(n)

=






min{!, !′} x1+iτ0

1+iτ0
+ O(x exp(−c

√
log x))

if πQ ⊗ ηi
E/Q

∼= ξj
F/Q ⊗ | det |iτ0 for some i , j and τ0 ∈ R

O(x exp(−c
√

log x))

if πQ ⊗ ηi
E/Q " ξj

F/Q ⊗ | det |iτ for any i , j and τ ∈ R

for some constant c > 0.
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Why the self-contragredient assumption?

In order to obtain the error term in the asymptotic formulas above
we need classical results about zero free regions for L(s, π × σ̃).
More specifically: L(s, π × σ̃) is non-zero in Re(s) > 1 (Shahidi
[3]). Furthermore, if at least one of π or σ is self-contragredient, it
is zero-free in the region

Re(s) ≥ 1− c3

log(Qπ×eσ(|t| + 2))
, |t| ≥ 1

and there is at most most one exceptional zero in the region

Re(s) ≥ 1− c3

log(Qπ×eσc4)
, |t| ≤ 1

For some effectively computable constants c3 and c4 (Moreno [8],
Sarnak [9], and Gelbart, Lapid, and Sarnak [10]). Here Qπ×eσ
denotes the conductor.
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• (Methods of Liu and Ye [7]) For the classical case:
Step 1: Prove a weighted version in the diagonal case

∑

n≤x

(1− n

x
)Λ(n)aπ×eπ(n) =

x

2
+ O(x exp(−c

√
log x))

More specifically using the formula

1

2πi

∫

(b)

y s

s(s + 1)
ds =

{
1− 1/y if y ≥ 1

0 if 0 < y < 1

taking b = 1 + 1/ log x we get

∑

n≤x

(1− n

x
)Λ(n)aπ×eπ(n) =

1

2πi

∫

(b)
J(s)

x s

s(s + 1)
ds

where J(s) = −
∑

n≥1
Λ(n)aπ×eπ(n)

ns .
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Method of Proof

=
1

2πi

∫ b+iT

b−iT
J(s)

x s

s(s + 1)
ds + O(

x

T
)

Now choose −2 < a < −1 and a large T > 0 (avoiding poles of
gamma factors) and shift the contour to Re(s) = a picking up
residues along the way.

=
1

2πi
(

∫

C1

+

∫

C2

+

∫

C3

) + Res J(s)
x s

s(s + 1)

where

C1 : b ≥ Re(s) ≥ a, t = −T ; (0.2)

C2 : Re(s) = a, − T ≤ t ≤ T ; (0.3)

C3 : a ≤ Re(s) ≤ b, t = T
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Method of Proof

The three poles s = 0, 1,−1, some trivial zeroes and certain
nontrivial zeroes will be passed by shifting the contour. For the
residues corresponding to the trivial zeros it is enough to use the
functional equation of the complete L-function

Φ(s, π × π̃) = L(s, π)L∞(s, π) = ε(s, π × π̃)Φ(1− s, π̃ × π) (0.4)

and the trivial bound Re(µπ×eπ(i , j , ν)) > −1.
where

L∞(s, π × π̃) =
∏

ν|∞

m∏

i=1

m∏

j=1

Γν(s + µπ×eπ(i , j , ν))

and ε(s, π × π̃) = τ(π × π̃)Q−s
π×eπ with Qπ×eπ > 0 and

τ(π × π̃) = ±Q1/2
π×eπ. For the nontrivial zeroes we need the above

zero free region.
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For the integral over C1 we use the fact that for any large τ > 0 we
can choose T in τ < T < τ + 1 so that whenever −1 ≤ β ≤ 2 then

J(β ± iT )* log2(Qπ×eπ)

thus
∫

C1

*
∫ b

a
log2(Qπ×eπT )

xβ

T 2
dβ * x log2(Qπ×eπT )

T 2

and the same bound holds for the integral over C3. For C2 we need
the fact that we can choose a so that whenever |t| ≤ T , then
J(a + it)* 1 so that

∫

C2

*
∫ T

−T

xa

(|t| + 1)2
dt * 1

x

Taking T + exp(
√

log x) the three integrals are
* x exp(−c

√
log x).

Tim Gillespie, Guanghua Ji A Prime Number Theorem for Rankin-Selberg L-functions



Step2: Since the coefficients of the sum are nonnegative we can
remove the weight (1− n

x ) using a classical method of de la Vallee
Poussin to get

∑

n≤x

Λ(n)aπ×eπ(n) = x + O(x exp(−c
√

log x))

by considering
∫ x

1

∑

n≤x

Λ(n)aπ×eπ(n) =
x2

2
+ O

{
x2 exp(−c

√
log x)

}

thus

1

h

∫ x+h

x

∑

n≤x

Λ(n)aπ×eπ(n) = x + O
{

x exp(−c

2

√
log x

}
(0.5)

where h = x exp(− c
2

√
log x)

1

h

∫ x

x−h

∑

n≤x

Λ(n)aπ×eπ(n) = x + O
{

x exp(−c

2

√
log x)

}
(0.6)
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and since
∑

n≤x Λ(n)aπ×eπ(n) is and increasing function of x we get
that it is bounded above by (0.5) and below by (0.6) so the result
follows.
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Step 3: Apply the following version of Perron’s formula due to Liu
Ye [7]
• Let f (s) =

∑
n≥1

an
ns with abscissa of absolute convergence σa.

Let B(Re(s)) =
∑

n≥1
|an|

nRe(s) . Then, for b > σa, x ≥ 2, T ≥ 2 we
have

∑

n≤x

an =
1

2πi

∫ b+iT

b−iT
f (s)

x s

s
ds (0.7)

+O





∑

x−x/
√

T<n≤x+x/
√

T

|an|




 + O

{
xbB(Re(s))√

T

}
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Method of Proof

So in our case

∑

n≤x

Λ(n)aπ×eσ(n) =
1

2πi

∫ b+iT

b−iT
{−L′

L
(s, π × σ̃)}x s

s
ds

+O





∑

x−x/
√

T<n≤x+x/
√

T

|Λ(n)aπ×eσ(n)|




+O

{
xb ∑

n≥1
Λ(n)|aπ×eσ(n)|

nb√
T

}

(0.8)
where b = 1 + 1/ log x and T + exp(

√
log x).
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• Step 4.
Now assuming π is self-contragredient but not necessarily σ, we
need the following Tauberian theorem due to Ikehara [11]
• If f(s) is given for Re(s) > 1 by

f (s) =
∑

n≥1

an

ns

with an ≥ 0, and if

g(s) = f (s)− 1

s − 1

has analytic continuation to Re(s) ≥ 1, then

∑

n≤x

an ! x

Using this we control both the error terms in Perron’s formula, and
proceed as in step 1 with the integral. "
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By Cauchy’s inequality

∑

x−x/
√

T<n≤x+x/
√

T

|Λ(n)aπ×eσ(n)| (0.9)

*





∑

x−x/
√

T<n≤x+x/
√

T

Λ(n)aπ×eπ(n)






1/2

(0.10)

×





∑

x−x/
√

T<n≤x+x/
√

T

Λ(n)aσ×eσ(n)






1/2

*
√

(
x√
T

)(x)
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Method of Proof

• For the non-classical case we prove a lemma calculating the
maximum number of twisted equivalent pairs using the fact that
the representations are inequivalent and apply the previous result
when E = F = Q.
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Original Hope: The Case E '= F in the large

Now let E and F be arbitrary finite Galois extensions, write

L(s, π) =
∏

p prime

∏

ν|p

m∏

i=1

fp−1∏

a=0

(1− απ(i , ν)1/fpωa
fpp

−s)−1

where ωfp is a primitive fp-th root of unity. Similarly

L(s, σ) =
∏

p prime

∏

ω|p

n∏

j=1

f ′p−1∏

b=0

(1− ασ(j , ω)1/f ′p ωb
f ′p

p−s)−1

Define L(s, π ×E ,F σ) by the formula

=
∏

p

∏

ν|p

∏

ω|p

m∏

i=1

n∏

j=1

fp−1∏

a=0

f ′p−1∏

b=0

(1−απ(i , ν)1/fpασ(j , ω)1/f ′p ωa
fpω

b
f ′p

p−s)−1
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