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Abstract

These notes were TeXed in real-time by Steven J. Miller; all errors
should be attributed to the typist.

1 Conrey: Random Matrix Theory and analytic num-
ber theory

1.1 Introduction to Random Matrix Theory I
http://www.williams.edu/go/math/sjmiller/public html/

ntandrmt/talks/Random matrix theory Conrey.ppt

I’m giving four talks, the four R’s of random matrix theory and analytic num-
ber theory: random matrix theory, recipe, ratios, ranks. It has to do with how
random matrix theory has had an interface with the theory of L-functions in re-
cent times. It’s an indispensable tool that analytic number theorists need to know.
When I was a student, we didn’t need to know about modular forms, but at Uni-
versity of Michigan we just had one course on modular forms. That has changed,
and for the better. It’s great that it has spread out. Will give a perspective.

For the first talk there won’t be any number theory, all just random matrix
theory.

U = (ujk), U t = (ukj) and U∗ = (ukj). Will talk about U(N), SO(N)
and USp(2N), where forUSp(2N) we have all matrices P ∈ U(2N) such that

PZP t = Z with Z =

(
0 IN

−IN 0

)
.

The eigenvalues split into even and odds for the orthogonal. All the matrices
have their eigenvalues on the unit circle. For the unitary have angles between 0
and 2π; for others eigenangles symmetric so just look from 0 to π.

All of these compact groups have a Haar measure associated to them. For
the purpose of integrating functions which are class functions (the function only
depends on the eigenvalues of the matrix), we want to integrate over the groups.
In these cases the Haar measure reduce to these Weyl formulas in the four cases.

We won’t use the fact that these are Haar measures, and just think about these
things and what we can do with them. Why are we doing this? Look at the
eigenvalues of a randomly generated 96 × 96 unitary matrix versus 96 randomly
chosen points on the circle, constructed by exp(2πix) with x uniformly chosen
on [0, 1]. Can see qualitatively a big difference between the two. The uniformly
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chosen points have clumps and gaps (Poisson), whereas the unitary one is more
nicely spaced.

This comes about from the quadratic repulsion in the measures. For example,
for the unitary case we have in teh density the factor

∏
j<k |eiθk − eiθj |.

Now look at the zeros of the Riemann zeta function ζ(s) at height 1200, take
96 zeros and wrap around the unit circle. (This was done by taking the distance
from the first to the last and rescaling to make that equal 2π.) The distribution
looks like the distribution from the unitary matrices, not like the Poisson.

The subject began with Montgomery and Dyson, but this picture is a great
motivation for why we want to look at this. These really are, we believe, the
measures that come up when we study L-functions.

Back to the Haar measure. What this means is that if we want to integrate∫
SO(2N)

f(O)dON then we can write this as

2(N−1)2

πNN !

∫

[0,1]N
f(θ1, . . . , θN)

∏

j<k

(cos θk − cos θj)
2dθ1 · · · dθN . (1)

Everything we’re goign to do today is at the level of undergraduate linear alge-
bra, calculus of several variables, would be great for a really good undergraduate
course. We’re going to do really cool tricks with linear algebra, determinants, ...,
and doing for a reason!

Will express everything in terms of Vandermonde determinants: ∆(x1, . . . , xN) =
detN×N(xj−1

k ). For example,
∣∣∣∣∣∣

1 1 1
x1 x2 x3

x2
1 x2

2 x2
3

∣∣∣∣∣∣
. (2)

Note that ∆(x!, . . . , xN) =
∏

j<k(xk − xj). Calculate the total degree of both
sides, calculate order of vanishing, see it vanishes whenever any of the two are
equal. This nails it down up to a constant, then look at the coefficient of xN−1

N xN−2
N−1 · · · x2

is 1. (NOTE FROM TYPIST: to see the constant is non-zero, can we just look at
xN À xN−1 À xN−2 À · · · for i 6= N?) We see that the measures are related to
Vandermonde determinants.

Where do we want to go? If Haar measure, then it has mass one over the group.
We want to verify from first principles that the total mass of these measures is 1.
In other words, if we integrate the function which is identically 1 we get 1, ie, we
have probability measures. We use Andréief’s identity. For functions φj and ψj
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and any interval J we have

1

N !

∫

JN

det
N×N

(φj(θk)) det
N×N

(ψj(θk))dθ1 · · · dθN = det
N×N

∫

J

θj(θ)ψk(θ)dθ. (3)

Could use ψk = φj .
(Aside: In some ways the unitary case is the one you want to do the most / the

one most connected to the zeta function, but doesn’t fit in as well with the other
case. Often have to argue slightly differently for unitary versus non-unitary, but
all works out.)

For the unitary case U(N), we take φj = ei(j−1)θ and ψk = e−i(k−1)θ. We get
the integral vanishes unless j = k, in which case we find the total mass is 1.

We now turn to the orthogonal and symplectic cases. We will use some
preparatory work to deal with the cosines. It is convenient to introduce orthogonal
polynomials (Chebyshev polynomials). We let

Tn(cos θ) = cos(nθ)

Un(cos θ) =
sin((n + 1)θ)

sin θ

Vn(cos θ) =
sin((n + 1

2
)θ)

sin θ
2

. (4)

These are orthogonal on [0, π] with respect to various measures. T ∗
n(x) =

√
2Tn(x).

The measures are dθ for T ∗, sin2 θdθ for U and sin2 θ
2
dθ for V . Each vector has

the same norm in these spaces.
We now rewrite the Vandermonde by using elementary row operations. For

example,

∆(cos θ1, . . . , cos θN) = 2−N(N−1)/2 det
N×N

(Vj−1(cos θk)) (5)

(and similar formulas with T ∗ and U ).
We rewrite all the measures as squares of determinants of things that are or-

thogonal.
For others use the Generalized Andréief, except now we have an extra function

f :

1

N !

∫

JN

N∏
i=1

f(θi) det
N×N

(φj(θk)) det
N×N

(ψj(θk))dθ1 · · · dθN = det
N×N

∫

J

f(θ)θj(θ)ψk(θ)dθ.

(6)
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The proof of Andréief’s identity proceeds by using the definition of the deter-
minant, expanding it with the sign function (ie, we sum over all permutations). We
now change variables, rearrange things, and eventually wind up with the answer.
We first send τ → στ then k → τ−1k. The key fact is that whatever σ is, when τ
runs through all permutations so too does στ . Several typos on the slides, but the
idea is to just expand the determinants, change variables, ....

Goal of the talk: the first picture was of all the spacings. How do you calculate
the neighbor spacing distribution in random matrix theory? How do we calculate
the spacings of the 96 eigenvalues when we average over all unitary matrices of
that size? This is where we’re heading.

The following lemma (needs a name, call it the Transposing Lemma – it is a
critical step): if you have a product of two determinants you can rewrite as a deter-
minant of something else. The identity follows from the fact that the determinant
of a matrix and its transpose are the same, and matrix multiplications:

det
N×N

(φj−1(xk)) det
N×N

(ψj−1(xk)) = det
N×N

(
N∑

n=1

φn−1(xj)ψn−1(xk)

)
. (7)

The φ’s and ψ’s are orthogonal polynomials – we multiply and sum, and this will
lead to a simpler formula. It is essential that it is in this format. This will be useful
in transforming the Haar measures, which are products of two determinants, into
something more useful.

We do that and we now transpose the square determinants in the measures.
We wind up with nice formulas for the various measures. For the unitary, we are
now summing a geometric series, and there is a nice formula for that. For the
Chebyshev polynomials, we get things like geometric series, involving things like
sums of cos(nθj) cos(nθk), in other words, things we know how to sum.

How do we add these up? There is a general theory in orthogonal polyno-
mials on how to do this: Christoffel-Darboux. We don’t need the general the-
ory as we’re adding trigonometric things. Everything is in terms of SN(θ) =
sin (Nθ/2) / sin (θ/2). We thus get formulas for all of these expansions in terms
of SN . We give this names:

SU,N(x, y) = SN(y − x) (8)

and so on. We then find alternate formulas, such as

dUN = det
N×N

(SU,N(θj, θk))
dθ1 · · · dθN

(2π)NN !
. (9)

6



We’re now ready for a big step, Gaudin’s lemma. This will allow us to com-
pute statistics for these groups. The set-up is as follows. We have a function f of
two variables and some interval J . Suppose

∫
J
f(x, θ)f(θ, y)dθ = Cf(x, y) for

all x, y and C = C(J, f) is a constant, and
∫

J
f(x, x)dx = D. Then

∫

J

det
M×M

(f(θj, θk))dθM = (D − (M − 1)C) det
(M−1)×(M−1)

(f(θj, θk)). (10)

We use this repeatedly to integrate out eigenvalues. If we want information about
one eigenvalue, we would apply N − 1 times. We keep applying, this is the
key step for everything. Some people call this the integrating out lemma, as we
integrate out just the last variable, θM .

We now use Gaudin’s lemma for O, O− or USp. Say we care about n-level
correlation. We apply this with M = N and then M = N − 1 all the way down
to M = n + 1. We find
∫ N−n

[0,π]

det
N×N

SG,N(θj, θk)dθn+1 · · · dθN = πN−n(N −n)! det
n×n

SG,N(θj, θk). (11)

We need to prove the reproducing property of SP,N .
We use Gaudin’s lemma to compute the n-level density. We have a big N ×N

matrix, and we have a n (say 3, 4 or 10). We have a function f of these few
variables. We want to sample f at every choice of n variables for each choice of
matrix. Say we want to do 3-level density. We pick out each subset of three eigen-
values of N and evaluate f at those three variables (f is a symmetric function, so
order does not matter). We add up over all subsets of 3 of N variables for one
matrix, and then do for every matrix (ie, average using Haar measure). We have
just proved that this equals integrating our function against a determinant, where
the determinant only depends on n variables and not N variables.

We then get the 1-level density function for each group.
Won’t return to random matrix theory in the rest of the lectures:

1.2 Introduction to Random Matrix Theory II: The Recipe
http://www.williams.edu/go/math/sjmiller/public html/

ntandrmt/talks/The recipe A.ppt

How do you make a conjecture for moments of L-functions? This has grown
out of Random Matrix Theory. What we’ll do has been numerically and theoreti-
cally tested and does very well. It’s a great tool to teach the recipe.

7



1.2.1 Introduction

Started with the zeta function. In 1918 Hardy and Littlewood showed the mean
square was log T , and in 1926 Ingham showed the fourth moment was a constant
time log4 T . The constant can be written in more enlightening ways, which fits
with the pattern that Conrey and Ghosh found in 1992 for the sixth moment. No
one had a conjecture for what these moments should look like; there was a sense
for the power of log T in the problem, but not for the constant in front of it, even
conjecturally. Everyone wanted to do (and still want to do!) the sixth moment.
There would be numerous applications to zero density arguments, gaps between
primes, but no one tried to figure out an asymptotic formula (or if they tried,
weren’t able to work it out).

What is the problem? We think of ζ(s) as having an approximate functional
equation

ζ(s) =
∑

n≤
√

t/2π

1

ns
+ χ(s)

∑

n≤
√

t/2π

1

n1−s
+ · · · . (12)

We can do similar expansions for ζ(s)2 and ζ(s)k:

ζ(s)2 =
∑

n≤
√

t/2π

d(n)

ns
+ χ(s)

∑

n≤
√

t/2π

d(n)

n1−s
+ · · ·

ζ(s)k =
∑

n≤
√

t/2π

dk(n)

ns
+ χ(s)

∑

n≤
√

t/2π

dk(n)

n1−s
+ · · · , (13)

where ζ(s)k =
∑

n dk(n)/ns. What tools do we have? We have

∫ T

0

∣∣∣∣∣
N∑

n=1

annit

∣∣∣∣∣

2

dt = (T + O(N))
N∑

n=1

|an|2, (14)

using ∫ T

0

(m/n)itdt =

{
T if m = n
(m/n)iT−1
i ln(m/n)

otherwise.
(15)

The problem is we need to evaluate

N∑
n=1

d3(n)d3(n + 1) (16)
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for the moments. Using conjectures like these, one gets sixth and eight moments,
but doesn’t work for the tenth moment (ended up with a negative answer, which
can’t be right). The point is that we can interpret these as using the method of
long polynomials with shifts up to T 2, but past there something new needs to be
added.

Conrey and Ghosh (1985) said there should be an integer gk such that the
2kth moment should look like (gkak/k

2!) logk2

T . What is the next term in the
sequence of gk’s: 1, 2, 42, 24024, . . . ?

Berry and Keating were at the conference in Seattle. For some reason the num-
ber theorists weren’t excited about his work on lower order fluctuations. Sarnak
told Keating that to make a splash he should use random matrix theory to figure
out the 42. So Keating went back to Bristol, assigned the problem to his current
graduate student Nina Snaith. They worked it out. Assume zeros are behaving
like eigenvalues of matrices, so perhaps the values of the zeta function behave
like the values of characteristic polynomials. They then calculated the moments
for characteristic polynomials. Amazingly enough, this calculation can be done
exactly. They recover the sequence: 1, 2, 42, 24024, 701149020, . . . .

If you have an N × N matrix such that the average spacing is 2π/N , should
match up the average spacing between eigenangles and zeros to be the same. So
N = log T to get the zeros and eigenangles to have the same scale. We want a k2!
in the denominator, and get an explicit form for the gk’s. It was conjectured that
gk should be an integer. Think of gk as the number of Dirichlet polynomials of a
given length that are needed for approximating, and thus it is reasonable to expect
to get an integer. It turns out that gk is an integer (Conrey-Farmer), but not easy
to see this. For example, look at the expansion for g100: several primes come in at
the zeroth power after others had been larger, and thus almost was non-integer.

Selberg’s integral formula is used for these computations:

∫ 1

0

· · ·
∫ 1

0

|∆(x)|2γ

n∏
j=1

xα−1
j (1− xj)

β−1dx1 · · · dxn

equals a product of Gamma functions. There are various forms of Selberg’s inte-
gral. To evaluate their integrals, start with |eiα − eiβ| = 2| sin(α/2 − β/2)|, use
trig identities involving sin(α−β) = (ctanα− ctanβ) sin α sin β, and eventually
get to a place where you can use Selberg’s integral.

Can do this for other families of L-functions. How do you know what sym-
metry type to attach to a family of L-functions? The original theory grew up
from Katz and Sarnak, who looked at function field examples. There one had
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monodromy groups, there was thus an obvious symmetry group (which was one
of the classical compact groups). These families had analogues in the number
field setting in many cases, and allowed one to figure out what group should be
attached.

If you take any L-function in the Selberg class (functional equation, Euler
product) and shift up the imaginary parameter and regard the family as parametrized
by that parameter, one gets a unitary family: L(s + iα) with α ∈ R varying.
Another unitary family is the collection of Dirichlet characters: L(s, χ) with χ a
Dirichlet character. For orthogonal examples, one has cuspidal newforms / elliptic
curves, while for symplectic one can look at quadratic characters and symmetric
squares of cuspidal newforms.

Similarly, one can look at moments of quadratic L-functions. Jutila com-
puted the first and second moments of L(1/2, χd), Soundararajan did the third
and fourth moments (the fourth was conjectural). The corresponding powers of
the logarithms are 1, 3, 6 and 10; one can get these numbers and values by averag-
ing characteristic polynomials of symplectic matrices. Various people did similar
computations for moments of weight 2 and prime level q cusp forms; now the
powers are 0, 1, 3 and 6. One can again do a similar computation in random
matrix theory, and again we are able to reproduce these numbers.

These conjectures are not numerically testable, unfortunately. If you tried the
42 on the sixth moment, in any reasonable range we can integrate we’ll be off
by large factors. The problem is that we’re missing other ‘main’ terms; in other
words, we should have a polynomial of degree k2 in log T for the 2kth moment of
the zeta function. We knew this for the second (Ingham) and the fourth (Heath-
Brown) moments of zeta. These polynomials can be determined, but what are
their analogues?

This can be done. The trick is not to look directly at the mean square, but to
put in shifts, see symmetries, and can make sense of it:

∫ T

0

ζ(s + α)ζ(1− s + β)dt

=

∫ T

0

(
ζ(1 + α + β) + e−`(α+β)ζ(1− α− β)

)
dt + O(T 1/2+ε) (17)

where ` = log(t/2π). There is a random matrix analogue. Let X = U(N) have
eigenvalues eiθn with characteristic polynomial ΛX(s) =

∏N
n=1(1 − se−iθn), and

obtain a formula for integrating shifts over U(N). Looks very similar. Can do
something similar for the fourth moment. The poles cancel and get something
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regular. Get α, β on one side and γ, δ on the other, see how things are switched.
We get a random matrix analogue for this.

Conrey, Farmer, Keating, Rubinstein and Snaith prove a theorem for
∫

U(N)

∏
α∈A

∏

β∈B

ΛX(e−α)ΛX∗(e−β)dX. (18)

Make an analogous conjecture for the zeta function, will try and make clear with
the recipe in a minute. Leads to a conjecture for the 2kth moment of the zeta
function.

This leads to explicit formulas for the polynomial for the sixth moment. We
get a polynomial of degree 9; unfortunately the ‘main’ term has a coefficient sig-
nificantly smaller than the other computations. The conjecture is correct to about
5 digits, while if we just use the main term coming from 42 we’re off by a factor
of about 45.

1.2.2 The Recipe

There are three or four steps, each one is illegal, but it does produce the right
answer in the end. It’s a mystery as to why this gives the right answer in the end.

We have an integral of products of shifts of the zeta function. We use the
approximate functional equation involving two sums. Note χ(s) is rapidly oscil-
lating. Focus on only those terms with the same number of χ(s) and χ(1 − s)
terms. Leads to

(
2K
K

)
terms. Take the first term, which has no χ terms. We only

look at the diagonal term, when the product of the m’s equals the product of the
n’s. Use T−1

∫ T

0
(m/n)it tends to 1 if m = n and 0 otherwise. It turns out to be

multiplicative, and only need to figure out what happens at the primes. We get a
product of zeta functions.

Say we have
∑

m1m2=n1n2

1

m
1/2+α1

1 m
1/2+α2

2 n
1/2+β1

1 n
1/2+β2

2

=
∏

p

∑
m1+m2=n1+n2

1

p(1/2+α1)m1+(1/2+α2)m2+(1/2+β1)n1+(1/2+β2)n2
, (19)

where we sent mi → pmi and similarly for the n’s. We get

∏
p

(
1 +

1

p(1/2+α1)+(1/2+β1)
+

1

p(1/2+α1)+(1/2+β2)
+ · · ·

)
(20)
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and this leads to products of zeta functions evaluated at the αi’s and βj’s.
It isn’t clear that what we have is analytic as all the shifts tend to zero, but we

can re-write it in a nice integral form that makes this ‘clear’. Writing it like this,
using symmetric functions we can see that the poles cancel.

What would the recipe be for quadratic L-functions? It’s basically the same,
but with a different harmonic detector. We now have

1

D∗
∑

d≤D

χD(n) =

{∏
p|n

p
p+1

if n is a square
0 otherwise.

(21)

We argue as before:

∑

d≤D

∑
m1

χd(m1)

m
1/2+α1

1

· · ·
∑
mK

χd(mK)

m
1/2+αK

K

=
∑

m1,...,mK

1

m
1/2+α1

1 · · ·m1/2+αK

K

∑

d≤D

χd(m1 · · ·mK). (22)

How do we get a square? We need m1 · · ·mK = 2. We change variables and
set mj = pmj . This leads to the requirement that m1 + · · · + mK is even. We
argue similarly as before. We need a combinatorial lemma involving a symmetric
function of k variables that is regular near the origin and multiplied by a product of
a function with a simple pole at s = 0. This allows us to turn sums into integrals,
and is the key step for making sure the resulting terms are regular.

Numerics give phenomenal agreement between conjecture and reality.
Have conjectures for averaging over all primitive Dirichlet characters modulo

q. Conrey, Iwaniec and Soundararajan obtain an asymptotic formula with a power
savings. There were more than 200 main terms, most of which cancel out. If we
hadn’t known what we were looking for, never would have sorted it out.

http://www.williams.edu/go/math/sjmiller/public html/
ntandrmt/talks/The recipe A.ppt

1.3 Ranks
Today we’ll discuss an application to a very arithmetic situation. I really like this
as there doesn’t seem to be any other way to get a hold on this. The basic question
is: twist a given elliptic curve and ask how often you get rank 2 as d ≤ D. We can
get some very nice answers using random matrix theory.

12



1.3.1 Numerics: Mathematica Program

For the different symmetry types of L-functions (unitary, symplectic or orthog-
onal), there are similarities in the products of the zeta factors and the products
of the classical compact group – similar shape. We did integral values of k for
moments, but Keating and Snaith did any moment, not just integral but actually
complex as long as the real part of s is sufficiently large (so that the integral will
converge).

Take L-function, go up to height 1000000, randomly sample in each interval
of size 1 for awhile, sort, look at the bottom 10% say, see histogram plot. Want
to work out how often we get rank 2. The values in families of L-functions are
distributed the same as those of characteristic polynomials in random matrix fam-
ilies.

A Mathematica program is online at

http://www.williams.edu/go/math/sjmiller/public html/
ntandrmt/programs/ZetaValuesOnCriticalLine.nb

1.3.2 Number Theory Question

Which integers m are the sum of two rational cubes? Examples include 1729, 6,
346, .... If m is congruent to 4, 7, 8 or 9 then it is believed there is always a solution
to x3+y3 = m; if m is 1, 2 or 5 modulo 9 than the solutions are believed to be rare.
Random matrix theory conjectures that for these congruences, the number of m ≤
x with a solution and m square-free is about Cx5/6(log x)

√
3/2−5/8. Might initially

think equidistributed among the congruence classes, though Watkins found a lot
more (about twice as many) that are 2 modulo 7 than 3 modulo 7.

Some number theory (from Gauss): if p ≡ 1 mod 3 then there are three solu-
tions to 4p = a2 + 3b2 with a ≡ 2 mod 3. Gauss gave a formula for the number
of solutions: p + 1− ap,m, Watkins conjectures a formula involving ap,b.

How to get this conjecture? Depends on elliptic curves, Birch and Swinnerton-
Dyer conjecture, values of L-functions. An elliptic curve E : y2 = x3 + Ax + B
with A,B integers has an associated abelian group of rational solutions. The
Birch and Swinnerton-Dyer conjecture states the order of this group equals the
vanishing of the associated L-function at the central point.

How do you define the L-function? The way you define an L-function is by
one prime at a time, where ap = p + 1 − Np with Np the number of points on E
over the finite field of p elements. By Wiles et al, we know the L-function is entire

13



and satisfies a functional equation with a root number wE = ±1. Note there are
two normalizations, with the central point either at 1 or 1/2.

Let d be a fundamental discriminant and χd(n) the Kronecker symbol. We can
define the twisted L-function by

LE(s) =
∞∑

n=1

anχd(n)

ns
, (23)

which differs from the old L-function by the factor of χd(n); equivalently, the
twisted elliptic curve is now Ed : dy2 = x3 + Ax + B. The root number is now
χd(−Q)wE .

1.3.3 Vanishing

Goldfeld conjectured that half the time the rank is 0 and half the time the rank is
1 in these families of quadratic twists. By random matrix theory, we expect rank
2 curves to occur in these quadratic families for d < x about CEx3/4(log x)bE ,
where the exponent depends on the elliptic curve (how the elliptic curve factors).

Key point: how will we be able to pick out when it vanishes? There is a
formula for the value at the central point. From lots of people, we know that for
twists of E11 we have

LE(1/2, χd) = κ11c11(|d|)2
√

d, (24)

with κ about 2.9176. We are going to create a random matrix model that models
the values of these L-functions. We will ask what the probability of the value of
the characteristic polynomial is smaller than κ11/

√
d, as if it less than this it must

be zero (as the c11(|d|)2 is an integer).
Quadratic twists form an orthogonal family, using even functional equations so

want SO(2N). What is the probability that the value of a characteristic polynomial
is at most α? The probability density is known, so just have to do the integral. (Get
this from Perron’s formula.) Use information about poles, Barnes G-function, get
an N3/8 which is why we have a log x to the 3/8 (comes from random matrix
theory, not number theory).

So LE(1/2, χd) = κc2
d/
√

d and if it is less than κ/
√

d it is zero, so

Prob(LE(1/2, χd) < κ/
√

x) ∼ ca−1/2(log x)3/8x−1/4. (25)

It is important that we can take moments to an arbitrary complex power; this
allows us to recover the distribution of values. . We have a lot of data, theta
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functions worked out for over 2000 elliptic curves, taking hundreds of millions
of quadratic twists for each. Looked at prime twists up to 108. Very flat. The
problem is we don’t know what CE is. For half the residue classes get one answer,
for another get a different answer. Take ratio, lots of stuff cancels out except for
the arithmetic factor at the prime p where we are looking at the d’s modulo that p.
The advantage of these ratios is that all the unknown things cancel. Left with an
answer on how rank 2 twists are distributed in arithmetic progressions.

Went and also calculated a lower order term to see if it would help. It’s com-
plicated and depends on the recipe from yesterday. We can compute things for
integer k, get an analytic function of k, even though can’t do arbitrary moments
think can identify terms down, used this and see a very noticeable difference. Gets
much better.

What about rank 3 in families of quadratic twists? We have a formula from
the Birch and Swinnerton-Dyer conjecture, involving regulator, the order of the
Tate-Shafarevich group, the order of the torsion group, .... Snaith calculated the
derivative of the characteristic polynomial, but sadly when one plugs it in the
resulting conjecture does not agree with data; however, the ratios experiment still
works.

One Saturday Evening at the Newton Institute:

Conjecture 1.1 (Saturday Night Conjecture). There exists a θ ∈ (0, 1/2) such that
for any elliptic curve over Q and fundamental discriminant d with LE(1/2, χd) =
0 and L′E(1/2, χd) 6= 0 it is the case that L′E(1/2, χd) À dθ−1/2−ε. Maybe θ =
1/6??

Can do for weight 4 modular forms. Discretization changes. The central
value should be 1/d(k−1)/2. The difference is when k = 2 we had something
that summed to x3/4, whereas now we’ll get something that sums to x1/4. When
you put in k = 6 the series will converge, and thus only expect finitely many.

David, Fearnley and Kivilevsky obtain x1/2−ε for twists of a weight 2 form by
a cubic Dirichlet character; RMT predicts x1/2 with some log factors.

1.4 Ratios
Note: I said on the first day that there is no good book on random matrix theory;
I forgot Steve Miller’s book. Chapter 15 of that book (an introduction to classical
random matrix theory and applications to L-functions):

http://press.princeton.edu/chapters/s15 8220.pdf
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Mean averages of products of quotients of characteristics polynomials or L-
functions. Integral moments: did products of shifts of L-functions, now will have
L-functions in the denominator. We have a conjecture that uses a recipe like the
one from integral moments that allows us to conjecture; on the random matrix
theory side can prove the answer. Great parallel. The integral moment is contained
in the ratios (just take nothing in the denominator). Can do any statistic you want
with the ratios. Think of statistics of zeros / spacings as local statistics, but when
you do moments that is more subtle (global statistics), the random matrix theory
we saw on the first day harder with shifts, didn’t show how to do. Ratios branches
between the two: can recover zero statistics. There are some fluctuations between
data and the main term predictions; the ratios conjecture allows us to predict the
lower order term. Another application is the mollifier example. Gonek talked
about the first 2 pages of Levinson’s 70 page paper (the rest is evaluating the
integral). He didn’t know ahead of time that the integral would work out and give
such a good constant – he could have gotten at least -1/3 of the zeros! With ratios
it gives a quick well to tell the answer to questions like this before doing 68 pages
of computations!

Have

Rζ(α, β, γ, δ) =

∫ T

0

ζ(s + α)ζ(1− s + β)

ζ(s + γ)ζ(1− s + δ)
dt. (26)

Farmer conjectured for small α, . . . , δ the answer.

1.4.1 Ratios Conjecture

At an MSRI conference in 1998 mentioned this and asked if anyone had seen
something similar. Zirnbauer was in the audience, and knew how to do it for
characteristic polynomials:

∫

U(N)

ΛA(eα)ΛA∗(e
−β)

Λ
(
Ae−γ)ΛA∗(e−δ)

dA. (27)

Conjecture 1.2 (Ratios Conjecture: Conrey, Farmer and Zirnbauer). For<(γ),<(δ) >
0 and imaginary parts of all ¿ T 1−ε and s = 1/2 + it, predict Rζ(α, β, γ, δ).

Sketch of steps:

• We use the approximate functional equation to expand the L-functions in
the numerator. We don’t worry about how far the sum should be as will
extend later, and we will drop the error term in the approximate functional
equation.
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• Expand the denominator using the Mobius function

• We have four pieces: first piece is like

∑

m,n,h,k

µ(h)µ(k)

m1/2+αn1/2+βh1/2+γk1/2+δ

∫ T

0

(
mh

nk

)it

dt; (28)

take mh = nk and the integral gives T . NO off diagonal terms, only keep
the easy terms. We have a sum now that is multiplicative, and get

T
∏

p

∑

m+h=n+k

µ(ph)µ(pk)

p(1/2+α)m+(1/2+β)n+(1/2+γ)h+(1/2+δ)k

= T
∏

p

(
1 +

1

p1+α+β
− 1

p1+α+δ
− 1

p1+β+γ
+

1

p1+γ+δ
+ O

(
1

p2

))

= T
∏

p

(
1 +

1

p1+α+β

)(
1− 1

p1+α+γ

) (
1− 1

p1+β+γ

)(
1 +

1

p1+γ+δ

)(
1 + O

(
1

p2

))

= T
ζ(1 + α + β)ζ(1 + γ + δ)

ζ(1 + α + δ)ζ(1 + β + γ)
A1(α, β, γ, δ) (29)

(recycling variables: m → pm and so on). We then do the next three terms.
The second is small as it has just one χ(s), as is the third term. The fourth
term is large as it has a χ(s+α)χ(1−s+β) from the approximate functional
equations.

1.4.2 Application: Levinson’s integral

Let

M(s) =
∑
n≤y

µ(n) log(y/n)
log y

ns
(30)

and consider the second moment of ζ mollified by M . We get something like
∫ T

0

ζ(s)ζ(1− s)M(s)M(1− s)dt (31)

and use the Ratios conjecture to get a prediction for this integral.
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1.4.3 Classical Compact Group Theorems and ζ(s)

Consider R(A,B; C, D), shifts of characteristic polynomials of unitary matrices
and the corresponding integral of the ratio. Let Z(A, B) =

∏
α∈A,β∈B z(α + β)

with z(x) = (1−e−x)−1. Set Z(A,B; C,D) = Z(A,B)Z(C, D) / Z(A,D)Z(B, C).
Then the ratios theorem relates R(A,B; C, D) to Z for unitary, orthogonal, sym-
plectic.

We have similar formulas for ζ . Now set Zζ(A,B) =
∏

α∈A,β∈B ζ(1 + α + β)
and Zζ(A,B; C, D) = Zζ(A, B)Zζ(C, D) / Zζ(A,D)Zζ(B,C). Conjecturally
formula is very similar, with Z → Zζ and add an arithmetic factor.

1.4.4 Application to Pair Correlation

Can deduce all the lower order terms in pair correlation from this. We start
with Montgomery’s pair correlation formula, proved under RH if the support of
w(x) = 4/(4 + x2). Odlyzko’s data shows phenomenal agreement between the
pair correlation of zeta zeros and the prediction high up; however, if you look at
small zeros it is off by a bit. One thing to look at is the difference between the
empirical and the expect, you see fluctuations. These lower order terms can be
explained with the ratios conjecture. In the Bogomolny-Keating plot, you see a
dip at the first zero of ζ(s) (both numerically and theoretically) (refined pair corre-
lation conjecture of Bogomolny-Keating, Conrey-Snaith). In the lower order term
see an integral against ζ ′/ζ on the line <(s) = 1, but still see the dip from the zeta
zeros.

How do you use the Ratios conjecture to produce this formula? Assume the
ratios conjecture, get

∫ T

0

ζ ′

ζ
(1/2 + it + α)

ζ ′

ζ
(1/2− it + β)dt. (32)

Want to evaluate ∑

γ,γ′<T

f(γ − γ′). (33)

We can write this as an integral over contours C1 and C2 of the product of (ζ ′/ζ)(z)
(ζ ′/ζ)(w) f(−i(z−w)). Note we are differentiating the ratios conjecture – we can
differentiate as it is supposed to be uniform in all the variables so differentiation
is as legal as can be in a conjecture like this. To make this somewhat rigorous,
assume test function has holomorphy properties and ratios conjecture holds for
certain ranges of shifts, but expect final formula to hold in greater generality. Plot
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of what remains now looks random. The main term agrees with Montgomery’s
conjecture. Try to look at lower order terms in the pair correlation arguments of
Montgomery starting on the other side.

Can do the same approach for pair correlation for RMT using the ratios the-
orem. This could be at the bottom of the combinatorics problems from Rudnick-
Sarnak and Gao. How do we do this here? We sum a test function:∫

U(N)

∑

1≤j,k≤N

f(θj, θk)dUN . (34)

Use the ratios theorem to work things out, get a determinant
(

N SN(u− v)
SN(v − u) N

)
, SN(θ) =

sin(Nθ/2)

sin(θ/2)
. (35)

If we scale by sending θi → θiN/2π and take the limit as N →∞ we recover the
pair correlation function.

1.4.5 Other Applications

Can do triple correlations, 1-level density. Steve Miller and others have produced
lower order terms (and agrees in some families up to square-root cancelation).
Interesting plots by Mike Rubinstein (dot wherever there is a zero of an L(s, χd),
see fascinating bands, ratios conjecture explains these patterns).

2 Murty:

2.1 Introduction to Artin L-functions
http://www.williams.edu/go/math/sjmiller/public html/

ntandrmt/talks/UtahWorkshopNotes.pdf

Let me begin some words about the Dedekind zeta function. Let k be an
algebraic number field. Inside this number field we’ll look at the ring of integers
Ok. It is a ring, and it is a Dedekind domain (a Dedekind domain is an integral
domain where every ideal can be factored uniquely into a product of prime ideals).
Every ideal a = p1

a1 · · · pt
at , where the norm is given by Na = [Ok : a]. We define

the Dedekind zeta function by

ζk(s) =
∑

a

1

(Na)s
, (36)
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which converges for <(s) > 1. As there is unique factorization, we have an Euler
product

ζk(s) =
∏

p

(
1− 1

(Np)s

)−1

. (37)

This is a generalization of the zeta function ζ(s) =
∑

1/ns, ζQ(s).
In Riemann’s paper he used the theory of theta functions to find the functional

equation and analytic continuation, showing it has a simple pole of order 1 at 1:

π−
s
2 Γ

(s

2

)
ζ(s) = π(1−s)/sΓ

(
1− s

2

)
ζ(1− s). (38)

As we’ll talk about the Hurwitz zeta function later, it is worth mentioning it
now:

ζ(s, x) =
∞∑

n=0

1

(n + x)s
(39)

for 0 < x ≤ 1; note ζ(s, 1) = ζ(s). Hurwitz introduced this to study Dirichlet
L-functions. These arise from a character χ : (Z/qZ)∗ → C∗ by

L(s, χ) =
∞∑

n=1

χ(n)

ns

=

q∑
a=1

χ(a)
∑

n≡a mod q

1

ns

=

q∑
a=1

q−s

∞∑
t=0

1

(t + a
q
)s

. (40)

We now discuss a theorem of Hecke. A good reference is my problems book
in algebraic number theory. We first set some notation. Let dk be the discriminant
of k, with r1 the number of real embeddings and r2 the number of non-real (ie,
complex) embeddings. We write

ξk(s) = s(1− s)

( √
|dk|

2r2πn/2

)
Γ

(s

2

)r1

Γ(s)r2ζk(s) = ξk(1− s). (41)

It thus admits a functional equation and analytic continuation, and

lim
s→1

ζk(s) =
2r1(2π)r2hR

w
√
|dk|

. (42)

20



What are h and R? We denote the class number of kj by h. On the collection
of ideals, we say two are equivalent, written a ∼ b, if and only if there exists
α, β ∈ Ok such that (α)a = (β)b; the ideal classes can be given a group structure,
and we call this the ideal class group. It is a classical theorem (Dirichlet’s unit
theorem) that O∗

k is a finitely generated abelian group. It has a finite part and a
free part, W ⊕ Zr with r = r1 + r2 − 1. The finite part has rank w = |W |, the
number of roots of unity contained in k. H

We write the fundamental system of units by ε1, . . . , εr. We have our embed-
dings k → k(i) with 1 ≤ i ≤ r1 + 2r2. We order the embeddings by writing the
real embeddings first adn then write the complex embeddings and then write the
conjugates of the complex embeddings. We look at the determinant of a matrix
involving the units and call that the regulator:

R = det
(
log |ε(j)

i |
)

1≤i,j≤r
. (43)

Until Hecke things were not well understood here. We wrote down Dirichlet
L-functions in terms of the Hurwitz zeta functions. What is the analogue of the
Dirichlet L-function in the number field context? The answer is not an easy one.
What is the analogue of residue classes modulo q? The analogue turns out to
involve the ideal class group.

Two answers were provided to generalizing L(s, χ), one by Hecke and one by
Artin.

Hecke said take an ideal f of Ok, and define the f-ideal class group as follows:
We say a ∼f b if there exists α, β ∈ ok such that (α)a = (β)b and α ≡ β mod f

and α/β is totally positive (all conjugates positive). This gives rise to a finite
group, the f-ideal ray class group. We letHf denote this group, and take a character
χ : Hf → C∗ and set

L(s, χ) =
∑

a

χ(a)

(Na)s
(Hecke). (44)

These series have analytic continuation, functional equations, and are entire if χ
is not trivial. We still have the notion of primitive character....

We first state one of the main theorems from Class Field Theory (which came
from the work of Hecke and others). Given any algebraic number field k and
an ideal f of Ok, there exists a field kg/k whose Galois group is isomorphic to
Hf; moreover, any finite abelian extension of k is contained in some kf for some
f. This is an extension of the Kronecker-Weber Theorem: every finite abelian
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extension of Q is contained in Q(ζq) (for some q?). Leads to answers of Hilbert’s
12th problem in some cases.

Here is Artin’s approach. Artin begins by looking at the Galois extension
Q(ζq) overQ, with Galois group (Z/qZ)∗. Artin’s motivation is start with an alge-
braic number field k, look at a finite extension K with Galois group G, take a rep-
resentation ρ : G → GL(V ), try to attach an L-function to the data: L(s, ρ, K/k).

Let’s review some basic algebraic number theory (from a Galois perspective).
At the beginning of the talk we talked about unique factorization into prime ideals.
We have K/k with Galois group G attached to the extension. We have the ring of
integers downstairs Ok and upstairs OK with Ok ⊂ OK . Given p ∈ Ok we can
write it upstairs: pOK = P

e1
1 · · ·Peg

g . Apply a σ ∈ G. The left hand side stays the
same, namely pOK , while the right hand side becomes σ(P1)

e1 · · · σ(Pg)
eg . Thus

G acts on {P1, . . . , Pg} transitively. We let DP denote the decomposition group
at P, namely {σ ∈ G : σ(P) = P}. We also have the inertia group

IP = {σ ∈ G : σ(x) ≡ x mod P for all x ∈ OK}. (45)

We have IP is a normal subgroup of DP: IP C DP. We can study (OK/P)/(Ok/p).
We get a canonical isomorphism:

DP/IP ≡ Gal ((OK/P)/(Ok/p)) . (46)

It is cyclic: x 7→ xNp, σ(x) ≡ xNp mod P. We have σP is well-defined up to
IP. The Frobenius automorphism at P. The σPi

’s are all conjugate. Call σp the
conjugacy class of σgPi

, the Artin symbol at p. This should be thought of as a
generalization of the Legendre symbol (or more precisely the Jacobi-Kronecker
symbol).

It turns out that IP = 1 for all but finitely many primes. We know exactly
when it is not trivial. If P is unramified in the extension then it is trivial. For all
unramified p we have IP = 1 for all P|p.

Take a representation

ρ : Gal(K/k) → glv. (47)

Define

L(s, ρ, K/k) =
∏
P

det
(
1− ρ(σP)NP

−s|V IP
)−1

(48)

(as same for conjugate elements, doesn’t matter which representation we pick and
so the above is well-defined). The Euler product converges for <(s) > 1. Artin
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conjectured that if ρ is irreducible and not equal to 1 then L(s, ρ, K/k) extends
to an entire function and satisfies a functional equation. Need an analogue of
the discriminant, an Artin conductor, Gamma factors determined by plus one and
minus one eigenspaces, and finally we’ll get the functional equation. This was all
proved; without going into the details we’ll just say there is a functional equation.
Artin showed some power has a meromorphic continuation. He took that power
and showed that that had the right functional equation, finessed with characters to
get the functional equation. First rigorous one came later.

Two functorial properties of Artin L-series. An Artin L-function didn’t talk
about reducible or irreducible representations. Since the definition only depends
on the trace, some people also write L(s, χ,K/k) for L(s, ρ, K/k) where χ =
Tr(ρ). We then have

L(s, χ1 + χ2, K/k) = L(s, χ1)L(s, χ2). (49)

Let us consider the chain k−−KH −−K, with character ψ from KH −−K
and Galois group H form KH to K. We have

L(s, ψ,K/KH) = L(s, IndG
Hψ, K/k), (50)

invariance under induction.
What do we know about the Artin conjecture? We have Artin’s reciprocity

law.

Theorem 2.1 (Artin’s Reciprocity Law). If ρ is 1-dimensional then there exists an
f ∈ Ok and a character χ of Hf such that

L(s, ρ, K/k) = L(s, χ), (51)

where L(s, χ) is the Hecke L-series. Hecke generalized Riemann’s results to
abelian case, saves the day here. This proves Artin’s conjecture in this case.

If you analyze what the above is saying in the special case of a quadratic
extension (k = Q and K quadratic), get the quadratic reciprocity law.

Theorem 2.2 (Brauer’s Induction Theorem). If you have any character χ of a
finite group G, there exist nilpotent subgroups Hi and ψi one-dimensional char-
acters of Hi such that

χ =
∑

i

aiIndG
Hi

ψi (52)

with ai ∈ Z. Artin had a multiple could be written this way.
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We find

L(s, χ, K/k) =
∏

L(s, IndG
Hi

ψi, K/k)ai

=
∏

i

L(s, ψi, K/KHi)ai

=
∏

i

L(s, φi)
ai (Hecke character), (53)

which gives a meromorphic continuation.
What do we know about higher dimensional characters?

Theorem 2.3 (Langlands-Tunnell Theorem). If ρ is 2-dimensional and odd with
solvable image (that is, the image of ρ is a solvable group), then

L(s, ρ, K/k) = L(s, π) (54)

where π is an automorphic representation of GL2(K).

The above was important in the proof of Fermat’s last theorem.

2.2 The Chebotarev density theorem
http://www.williams.edu/go/math/sjmiller/public html/

ntandrmt/talks/UtahWorkshopNotes.pdf

2.2.1 Introduction

Last time we looked at K/k, a finite Galois extension of algebraic number fields.
Let G = Gal(K/k). Given a prime ideal p ∈ Ok it has prime ideals P1, . . . , Pg ∈
OK above. The Frobenius automorphism σP, and σp is the conjugacy class of
σP. All of this is well defined as long as p is unramified in K. Thus we have an
assignment p 7→ σp, a conjugacy class in G. We call this the Artin symbol at p.

Example 2.4. Let k = Q, K = Q(
√

D), Gal(K/k) ≡ {±1}. Here p 7→ (
D
p

)
is

the Legendre symbol.

Example 2.5. Let k = Q and now take K = Q(ζq), a qth root of unity. We have
Gal(K/k) ≡ (Z/qZ)∗. For (a, q) = 1, τa(ζq) = ζa

q , p 7→ σp = τa (p ≡ a mod q).

As we vary the prime ideals, what does the image of the map look like? Are
there Artin symbols that hit a conjugacy class, and if so how often? That is really
the Chebotarev density theorem.
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2.2.2 Chebatorev Density Theorem

Theorem 2.6 (Chebatorev Density Theorem). Fix a conjugacy class C of G.

#{p : Np ≤ x : σp = C} ∼ |C|
|G| π(x) (55)

as x →∞.

Recall

Theorem 2.7 (Prime Ideal Theorem). We have

#{p : Np ≤ x} ∼ π(x). (56)

Thus the Chebatorev density theorem is generalizing the result of primes in
arithmetic progressions.

There is one particular class of the class containing the identity element, C =
1. Here we have

#{p : Np ≤ x, σp = 1} ∼ π(x)

|G| . (57)

Recall pOK = P1 · · ·Pg. What does it mean for the Artin symbol to be 1?
Take a Galois automorphism, apply upstairs get distinct. This means the prime
ideal when lift is splitting into the largest number of prime ideals that we can
have, ie, p splits completely.

Another way to look at this is through a classical theorem of Dedekind.

Theorem 2.8 (Dedekind). Let K be an algebraic number field, K = Q(θ) with
f(x) the minimal polynomial of θ in Z[x]. Suppose

f(x) = f1(x)e1 · · · fg(x)eg mod p (58)

where the fi(x) are irreducible modulo p. Then if p|r [OK : Z[θ]] we have

P = (p, fi(θ)) and NP = pdeg fi . (59)

Suppose K = Q(θ) is a Galois extension ofQ with f(x) a normal polynomial
(if you adjoin one root you have them all; for example, a cyclotomic polynomial).
To say p splits completely in K is the same as saying that f(x) factors completely
as a product of linear polynomials modulo p.

This looks very special, don’t come across normal polynomials all the time.
What happens if we have any old polynomial with integer coefficients: how often
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does f(x) modulo p have a root? Look at K over Q with fields K1 = K(θ1), K2,
. . . , Kn between Q and K. Let G be the Galois group of K/k. If we go back to
Dedekind’s theorem and ask what it means for the polynomial to have a root, we
see one of these polynomials must be linear, so there is a prime ideal upstairs of
degree 1. Can translate this into group theoretic statements. We find f(x) mod p
has a root if and only if σp ∈ ∪g∈Gg−1Hg = X . This implies

#{p ≤ x : f(x) mod p has a root} ∼ |X|
|G| π(x). (60)

Here H is the Galois group fixing. A good exercise is to show that |X| < |G| if
f(x) is irreducible of degree 2 or more.

Aside: Chebotarev had a difficult life, poor family trying to eke out existence
in Russia. He worked this out without access to journals, wrote in 1926 or so
before Artin had introduced his non-abelian L-series. You can now invoke the
analytic machinery / Tauberian theorems and this pops out. But this is not the way
it happened historically. He discovered this without using any of this by finessing
through abelian sub-extensions. You can translate this theorem into group theory /
extensions. This inspired Artin and led to the reciprocity law. The main tools that
Artin developed for proving reciprocity came by studying Chebotarev’s theorem

Is there an effective version of the Chebotarev? We want a theorem with a
main and an error term.

There are three versions:

• An unconditional version;

• A version assuming GRH;

• A version assuming GRH and Artin’s conjecture.

The first two are covered in a fundamental paper of Lagarias and Odlyzko (Ef-
fective versions of the Chebotarev density theorem. Algebraic number fields: L-
functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975),
pp. 409–464. Academic Press, London, 1977), the second by Murty, Murty and
Saradha (which is online at

http://www.williams.edu/go/math/sjmiller/public html/
ntandrmt/handouts/murty/Murty ModularFormsChebotarevDensity.pdf.
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Theorem 2.9 (Version 1). We have

∣∣∣∣#{p : Np ≤ x : σp = C} − |C|
|G| π(x)

∣∣∣∣ ≤
|C|
|G| lix

β+O

(
|c|x exp

(
−c1

√
log x

[K : Q]

))

(61)
provided that log x ≥ c2[K : Q](log |dK |)2, where β is a possible zero of ζK(s) in
[1− 1/ log |dK |, 1].

Remark 2.10 (For the experts). In the cyclotomic case it is far short of the Siegel-
Walfisz case. In that case [K : Q] is like φ(q), and getting something like log1/3 x.
Gives a sense of how weak the unconditional version is.

Theorem 2.11 (Version 2, assuming GRH for Dedekind Zeta Function). Assume
ζK(s) 6= 0 for <(s) > 1/2. Then
∣∣∣∣#{p : Np ≤ x : σp = C} − |C|

|G| π(x)

∣∣∣∣ ≤ c3|C|x1/2(log M(K/k)+[K : Q] log x),

(62)
where

M(K/k) =
∑

p|dK

log p +
log |dK |
[K : Q]

+ log[K : Q]. (63)

The above is Lagarias-Odlyzko cleaned up by Serre. Serre analyzed the ram-
ification carefully, using a beautiful result of Hensel to get a significant savings.
The main point is that the error term is like x1/2 and that the dependence on the
conjugacy class is as above.

Theorem 2.12 (Version 3, assuming GRH and Artin’s Conjecture). We have
∣∣∣∣#{p : Np ≤ x : σp = C} − |C|

|G| π(x)

∣∣∣∣ ≤ c4|C|1/2x1/2(log M(K/k) + log x).

(64)

All the constants above are effectively computable.
When the conjugacy classes are large, this matters.

2.2.3 Applications of the Chebotarev Density Theorem

• The first application was to Artin’s primitive root conjecture: 2 is a primi-
tive root modulo p infinitely often. (The story is that he was challenged to
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provide a concrete application of class field theory.) We have the following
equivalences: 2(p−1)/q 6≡ 1 mod p q|p − 1. Having p split completely in
the cyclotomic field Q(ζq) and xq ≡ 2 mod p has as solution in Q( q

√
2) is

equivalent to 2(p−1)/q ≡ 1 mod p and q ≡ 1 mod p. Do a sieve, make sure
it doesn’t split completely, take away some primes, as do sieve go through
a tower of fields, need good control of error terms when use Chebotarev.

• Applications to modular forms: Let f be a Hecke eigenform. Deligne
showed that there exists an `-adic representation ρ` : Gal(Q/Q) → GL2(Z`)
with the property that tr(ρ`(σp)) ≡ λf (p) mod `. The residue class is de-
termined by the conjugacy class of the Artin symbol in the extension. It is
now a question of how often is τ(p) divisible by `? Same as saying a Galois
extension whose ramification and degree can control and symbol belongs
to given conjugacy class if and only if zero modulo `. Size of error terms
matter.

2.2.4 Interplay between Artin’s conjecture and GRH

This is building on work of Heilbronn, Stark, K. and R. Murty. WE have a Galois
extension K/k with Galois group G. Let

ζK(s) =
∏
χ

L(s, χ, K/k)χ(1) (65)

where χ is an irreducible character of G and χ(1) is the degree of the character.
Heilbronn introduced what we’ll call the Heilbronn character. Fix an s0 ∈ C.

θG(g) =
∑

n(χ, s0)χ(g); (66)

this character is a linear combination of the characters χ, and

n(χ, s0) = ords=s0L(s, χ,K/k). (67)

This order is well defined, is a virtual character.
The key point is to know some very basic group theory.

Theorem 2.13 (Frobenius Reciprocity Theorem). Given a group G, let H be a
subgroup. Suppose we have a character ψ of H , can look at the induced character
on the big group, (IndG

Hψ, χ) = (ψ, X
∣∣∣
H

) (the inner products are taken in two
different spaces).
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Lemma 2.14 (Heilbronn’s Lemma). Take a Galois extension K/k with Galois
group G and let KH be intermediate (with Galois group H from KH to K). Then

θG

∣∣∣
H

= θH . (68)

Proof. Use Frobenius reciprocity.

One should always use Parseval, and thus we should compute

(θG, θG) =
∑

χ

n(χ, s0)
2. (69)

But what does the inner product mean? By definition, it is

(θG, θG) =
1

|G|
∑
g∈G

|θG(g)|2. (70)

We have θG(g) = θ<g>(g), with

θ<g>(g) =
∑

ψ

n(ψ, s0)ψ(g). (71)

We thus find
|θ<g>(g)| ≤

∑
n(ψ, s0). (72)

As have a situation where Artin’s conjecture is known, don’t need absolute values,
things factor, and we find

|θ<g>(g)| ≤
∑

n(ψ, s0) = ords=s0ζK(s). (73)

We thus find ∑
χ

n(χ, s0)
2 ≤ (ords=s0ζK(s))2 . (74)

If the Riemann Hypothesis is true, so Dedekind zeta function has no zero to the
right of 1/2, the stuff on the right is zero, analyticity.... GRH implies that any pole
of an Artin L-series has real part 1/2.

If ζK(s) has a simple zero at s = s0, then either have zero or 1 on right hand
side, only one term can introduce pole, look at factorization

ζK(s) =
∏
χ

L(s, χ, K/k)χ(1), (75)

must come from an abelian thing (already know entire), know any Artin L-series
is analytic at s = s0. This was so cute that R. Foote and K. Murty tried to squeeze
out as much as possible out of this idea.
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Theorem 2.15 (R. Foote and K. Murty). If K/k is Galois of odd degree, ords=s0ζK(s) ≤
3, then any Artin L-series is analytic at s = s0.

2.3 Special values of Artin L-series
http://www.williams.edu/go/math/sjmiller/public html/

ntandrmt/talks/UtahWorkshopNotes.pdf

Recall we have K/k Galois with Galois group G, ρ : G → GL(V ) and
L(s, ρ, K/k). Given an integer m, what can we say about L(m, ρ, K/k)?

The simplest case goes back to Euler. He proved using simple facts about the
cotangent function that

ζ(2m) ∈ π2mQ∗. (76)

This is elementary. Euler’s proof wasn’t the best, as pointed out by Siegel. Siegel
noticed that the method of deriving the formula for ζ(2m) using standard power
series is probably a fluke case, and it is better to observe that if you take the
Eisenstein series of weight 2m,

E2m(z) =
∑

(a,b)6=(0,0)

1

(az + b)2m
(77)

is a modular form of weight 2m, and one finds

E2m(z) = 2ζ(2m) + · · · , (78)

and the constant term is aQ-linear combination of terms up to a certain point. The
rest of this uses contangent expansions. The next term is like

(2π)2m

(2m)!

∑
σ2m−1(q)q

n. (79)

Serre revived this for p-adic interpretations. More or less this idea can be consid-
ered in the context of a number field.

Let K be a totally real field, and construct an Eisenstein series
∑

a,b∈OK

1

N(az + b)2m
, (80)

with [K; k] = d and the norm being (a(1)z1 + b(1))(a(2)z2 + b(2)) · · · , specialize,
invoke constant term a linear combination of others, get ζK(2m) ∈ π2mdQ.
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Theorem 2.16 (Siegel-Klingen Theorem). Take any algebraic number field K, let
ψ be a Hecke character,

L(1−m,ψ) ∈ Q(ψ), (81)

where Q(ψ) is the field generated by the values of ψ.

When is this zero, when is it non-zero? This is controlled by Gamma factors.
Using the functional equation, we can evaluate L(m,ψ) explicitly in some cases.
What does this mean? We have to go back to the functional equation of the Artin
L-series. L(s, ρ,K/k) with χ = tr(ρ). We have

ξ(s, χ) =
(|dK |N fπ−dχ(1)

)s/2
Γ

(s

2

)a

Γ

(
s + 1

2

)b

L(s, χ, K/k) (82)

with d = [K : k], a = (χ(1) + χ(c))/2 and b = (χ(1) − χ(c))/2. We write χ is
totally real if χ(c) = χ(1) and totally complex if χ(c) = χ(1), where c is complex
conjugation. Mixtures can happen; in the two extreme cases (all plus 1 or minus
1 eigenvalues), we can say something non-trivial about L(m,ψ).

We only know ζ(3) is irrational (Apéry); we don’t know if ζ(3)/π3 6∈ Q.

Conjecture 2.17. The numbers π, ζ(3), ζ(5), . . . are algebraically independent.

Rivoal made a major breakthrough a few years ago when showed that infinitely
many of these numbers are irrational. Improved by Ball, Rivoal and Zudlin to
dimQ Span(ζ(3), ζ(5), . . . , ζ(2a + 1)) ≥ c log a.

2.3.1 The classical case

Dirichlet’s formula:
τ(χ) =

∑
A

χ(a)ζa
q . (83)

Send a → an with (n, q) = 1. Then

τ(χ) =
∑

a

χ(an)ζan
q

χ(n)τ(χ) =
∑

a

χ(a)ζan
q

χ(n)τ(χ) =
∑

a

χ(a)ζan
q . (84)
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The last equation is valid for χ primitive for all n. We get

τ(χ)
∑

n

χ(n)

n
=

q∑
a=1

χ(a)
∞∑

n=1

ζan
q

n

=

q∑
a=1

χ(a) log(1− ζa
q ). (85)

For Dirichlet characters χ mod q, L(1, χ) is a Q-linear combination of loga-
rithms of algebraic numbers.

Theorem 2.18 (Baker). If α1, . . . , αn ∈ Q− {0} and β1, . . . , βn ∈ Q then

β1 log α1 + · · ·+ βn log αn (86)

is either zero or transcendental. Thus L(1, χ) is transcendental.

What about L(1, χ, K/k) for a general Artin series?

2.3.2 Stark’s Conjecture

Conjecture 2.19 (Stark’s Conjecture: 1975). Let χ be irreducible and not equal
to 1. Then

L(1, χ, K/k) =
w(χ)2aπb

(|dK |N f)1/2
θ(χ)R(χ), (87)

where θ(χ) ∈ Q, R(χ) is the determinant of an a×a matrixQ-linear combination
of logarithms of algebraic numbers, a = (χ(1)+χ(c))/2 and b = (χ(1)−χ(c))/2.

Stark proved this conjecture if χ is a rational character (ie, it takes on rational
values).

Note there is a transcendental part (coming from the π) and another part. Can
we say anything about the transcendence? Only if a = 1 and b = 0 can we say for
sure about the transcendence of L(1, χ, K/k).

2.3.3 Schanuel’s Conjecture

Conjecture 2.20 (Schanuel’s Conjecture). Let α1, . . . , αn be complex numbers
linearly independent overQ. The transcendence degree ofQ(α1, . . . , αn, e

α1 , . . . , eαn)
≥ n.
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To see how hard this is, take α1 = 1 and α2 = π, then we get that π and e are
algebraically independent! This is unknown, though we do know that at least one
of π + e and πe is transcendental.

A ‘weaker’ conjecture is if log α1, . . . , log αn are linearly independent over Q
then they are algebraically independent. This is also unknown.

The weaker conjecture proves L(1, χ, K/k) is transcendental if χ is rational.
So Stark’s conjecture plus the weaker Schanuel imply that L(1, χ,K/k) is tran-
scendental for any χ.

2.3.4 Other values

We have (at least conjecturally) knowledge when s = 1 (or m = 1). What about
other values of m? Coates and Lichtenbaum showed that Siegel-Klingen implies
L(m,χ, K/k) ∈ πmχ(1)Q provided that m is even and χ is totally real or m is odd
and χ is totally complex.

2.3.5 Zagier’s Conjecture

For general m, what is ζK(m)? Define the polylogarithm function

Lim(z) =
∞∑

ν=1

zν

νm
, (88)

and note that when m = 1 we have Li1(z) = − log(1 − z). We modify it as
follows:

Lm(z) =




<

(∑m
j=0

Bj

j!
2j(log |z|)jLim(z)

)
if m even

Im
(∑m

j=0
Bj

j!
2j(log |z|)jLim(z)

)
if m odd.

(89)

Conjecture 2.21 (Zagier). There exist y1, . . . , ydm ∈ K so that

ζK(m) = π(n−dm)m|dK |−1/2 det (Lm(σj(yi))) , (90)

where it is dm × dm determinant with n = [K : k].

Similar conjectures for Artin L-functions. Zagier proved for m = 2, Gon-
charov for m = 3.
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2.3.6 A question of Chowla

Chowla (1964) asked whether or not there exists a function f : Z/qZ→ Q so that

∞∑
n=1

f(n)

n
= 0 (91)

(with f non-zero, of course) for q prime?

Theorem 2.22 (Baker, Birch and Wirsing). No such function exists (for any q such
that Q(f(n)) is disjoint from the qth cyclotomic field Q(ζq)).

The proof uses linear forms.
What is the significance of this theorem?

Corollary 2.23. For q prime, L(1, χ) with χ mod q are linearly independent over
Q.

From an earlier lecture, we know we have an analytic continuation:

∑ f(n)

ns
= (??factor??)

q∑
a=1

f(a)ζ(s, a/q). (92)

Chowla and his daugher showed that q prime, s = 2:
∑

f(n)/n2 = 0 is true
if and only if f(1) = · · · = f(q − 1) = f(q)/(1− q2).

Conjecture 2.24 (Chowla-Milnor). Fix m, the ζ(m, a/q) with (a, q) = 1 and
1 ≤ a < q are linearly independent over Q.

To appreciate how hard this conjecture is:

Theorem 2.25. The Chowla-Milnor conjecture for q = 4 is equivalent to ζ(m)/πm

6∈ Q for m odd.

Conjecture 2.26 ([The polylogarithm conjecture). Lim(α1), . . . , Lim(αn) are lin-
early independent over Q then they are linearly independent over Q.

The polylogarithm conjecture implies the Chowla-Milnor conjecture.
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2.4 L-series and transcendental numbers
http://www.williams.edu/go/math/sjmiller/public html/

ntandrmt/talks/UtahWorkshopNotes.pdf

Theorem 2.27 (Baker, Birch and Wirsing). Let f : Z/qZ → Q and suppose
f(a) = 0 for 1 < (a, q) < q. Suppose that the field Q(f(n)) is disjoint from the
qth cyclotomic field Q(ζq) (clear if f is rational valued). Then

∞∑
n=1

f(n)

n
6= 0. (93)

Look at the Dirichlet series we can attach to this f :

L(s, f) =
∞∑

n=1

f(n)

ns

=

q∑
a=1

f(a)
∑

n≡a mod q

1

ns

q−s

q∑
a=1

f(a)ζ(s, a/q). (94)

Recall the Hurwitz zeta function ζ(s, x) is the perturbed Dirichlet series

ζ(s, x) =
∞∑

n=0

1

(n + x)s
. (95)

We have that ζ(s, x) extends to all s ∈ C except for s = 1, and

ζ(s, x) =
1

s− 1
− ψ(x) + O(s− 1), ψ(x) =

Γ′(x)

Γ(x)
. (96)

There will be a polar part, whose residue is
∑

a f(a), so to have no pole requires
this to vanish. In other words,

∑ f(n)

n
< ∞ if and only if

q∑
a=1

f(a) = 0. (97)

We find

L(1, f) = −1

q

q∑
a=1

f(a)ψ(a/q), (98)
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where ψ is the Digamma function.
Whenever you have a function defined on a group, gut instinct is to apply

Fourier analysis:

f(n) =

q∑
a=1

f̂(a)ζan
q

f̂(n) =
1

q

q∑
a=1

f(a)ζ−an
q , (99)

with ζq = e2πi/q. We have

q∑
a=1

f(a) = 0 if and only if f̂(q) = 0. (100)

We have

∞∑
n=1

f(n)

n
=

∞∑
n=1

1

n

q−1∑
a=1

f̂(a)ζan
q

= −
q−1∑
a=1

f̂(a) log(1− ζq
q )

= Q− linear combination of logs of alg nos. (101)

Thus Baker’s result now implies that L(1, f) is transcendental. We find

q∑
a=1

f(a)ψ

(
a

q

)
= −

q−1∑
a=1

f̂(a) log(1− ζa
q ). (102)

The right hand side is transcendental, so immediately we deduce

Corollary 2.28. The Digamma values ψ(a/q) for 1 ≤ a ≤ q with (a, q) = 1 or
a = q are such that there is at most one algebraic number in this list. Observe
that ψ(1) = −γ is Euler’s constant, which could be the exception!

Lehmer: Euler’s constant is:

γ = lim
x→∞

(∑
n≤x

1

n
− log x

)
; (103)
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we can generalize to

γ(a, q) = lim
x→∞




∑
n≤x

n≡a mod q

1

n
− log x

q


 . (104)

Theorem 2.29 (Murty-Saradha). Consider

γ(a, q) =
1

q

(
ψ

(
a

q

)
+ log q

)
(105)

with 1 ≤ a < q and g ≥ 2. Then there is at most one algebraic number in the list.
Note γ(2, 4) ∈ γQ.

What can be said about the number field context? What is the philosophy?
Instead of narrowing attention to a zeta function or a Dirichlet L-function, one
should study linear combinations of these. That seems to be the moral.

Consider an algebraic number field k with a an ideal of Ok. Recall the ana-
logue of coprime residue classes modulo q are the ray classes. Let H(a) be the
q-ideal ray class group. We have Ka/k with group H(a). Let f : H(a) → Q and

L(s, f) =
∑

a

f(a)

Nas
. (106)

The natural question is when is L(1, f) = 0?
Hecke studied

L(s, f) =
∑

C∈H(a)

f(c)
∑
a∈C

1

Nas
=

∑

C∈H(a)

f(c)ζ(s, C). (107)

We have ζ(s, C) extends for all s ∈ C not equal to 1. Thus we get an analytic
continuation of L(s, f). We have

L(1, f) =
∑ f(a)

Na
< 0 if and only if

∑

C∈H(a)

f(C) = 0. (108)

Theorem 2.30. Let k be an imaginary quadratic field, a = 1, let f : H → Q with
f not identically zero. Then L(1, f) 6= 0.

37



In the imaginary quadratic case, more things going on that help us. What are
they? First, L(1, f)/π is a Q-linear form in logarithms of algebraic numbers.

We notice that the Hurwitz zeta function has analytic continuation, constant
term given by Digamma function. What is the analogue here? Comes from the
Kronecker limit formula. Set

∆(z) = q

∞∏
n=1

(1− qn)24 (109)

with q = e2πz. Take an ideal a of OK with a = [β1, β2], Im(β2/β1) > 0,

g(a) = (2π)−12(Na)6|∆(β2/β1)|, (110)

g is really a function on the ideal classes. g(C) with C an ideal class gives

ζ(s, C) =
2π

w
√
|dk|

( 1

s− 1
+ 2γ

− log |dk| − 1

6
log g(C−1)

)
+ O(s− 1), (111)

and
L(1, f) = − π

3w
√
|dk|

∑
C∈H

f(C) log g(C−1). (112)

We have the following result from Class Field Theory:

Theorem 2.31. For any two ideal classes C1, C2 we have g(C1)/g(C2) ∈ KH.

What is the reason behind the ‘at most one algebraic’ theorem: it is measuring
the transcendence degree of the field generated. There is really only one transcen-
dental number being generated by the g’s. With this added information, we can
rewrite

L(1, f) = − π

3w
√
|dk|

∑
C

f(c) log
g(C)

g(C0)
. (113)

We therefore see that either L(1, f) = 0 or L(1, f)/π is transcendental.
How do you get non-vanishing? More class field theory! Again we have

KH/k with group H and σp(g(C)/g(C0)) = g(p−1C)/g(p−1C0). Thus L(1, f) =
0 implies that L(1, fσ) = 0 for all σ ∈ Gal(Q/Q).

LEt k be an imaginary quadratic field, H with ψ a Hecke character. L(1, ψ)
are linearly independent over Q:

∑
cψL(1, ψ) = 0 with cψ ∈ Q, f =

∑
cψψ,

L(1, f) = 0 implies f ≡ 0 implies cψ = 0 for all ψ.
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Kronecker discovered the following. H, ψ as above, ψ2 = 1 genus characters,
D discriminant of k and factor as D = D1D2 where Di are discriminants, and
define

χD1D2(p) =

{
χD1(Np) if (p, D1) = 1

χD2(Np) if (p, D2) = 1,
(114)

with χD(p) =
(

D
p

)
, the classical Legendre symbol (±1). An immediate question

that comes to mind: is this well-defined? Exercise: yes (Kronecker did this, have
to check and make sure if satisfy both conditions then equal). The point is that

We have
L(s, χD1D2) = L(sχD1)L(s, χD2), (115)

where the L-function on the left is the Hecke L-series and the two on the right are
classical Dirichlet L-series. Think of this as a generalization of

ζk(s) = ζ(s)L(s, χD). (116)

As

ζk(s) =
∑

C

ζ(s, C) = ζ(s)(s, χD). (117)

Compare the constant terms of Laurent expansion of both sides. We find

γL(1, χD) + L′(1, χD) =
2π

w
√
|dk|

∑
C

(2γ − log |dk| − 1

6
log g(C−1) (118)

which implies
L(1, χD)

L(1, χD)
= γ − log |dk| − 1

6

∑
C

log g(C). (119)

We have

L(s, χD) = D−s

D∑
a=1

χD(a)ζ(s, a/D) (120)

with the left hand side the classical L(s, χ). We have

ζ(0, x) =
1

2
− x

ζ ′(0, x) = log (Γ(x)/2π)) (Lerch′s formula)

L(0, χD) =
∑

a

χ(a)

(
1

2
− a

D

)

L′(0, χD) = −(log D)L(0, χD) +
∑

a

χ(a) log Γ
( a

D

)
. (121)

39



This gives a formula for L′(1, χD)/L(1, χD) in terms of log Γ(a/D).

Theorem 2.32 (Chowla-Selberg formula). We have

∏
C

g(C)6 =

(
1

4π|dk|
)|H| D∏

a=1

Γ
( a

D

)wχD(a)/2

. (122)

The first product is transcendental and independent of π; this comes from facts
about elliptic curves.

Theorem 2.33. We have π and exp
(

L′(1,χD)
L(1,χD)

− γ
)

are algebraically independent.

Question 2.34. Can we have L′(1, χD) = 0 for some D?

This is unknown, but

Theorem 2.35 (K. Murty, Y. Ihara and M. Shimura). This happens rarely. The
number of χ mod q such that L′(1, χ) = 0 is bounded by ¿ qε.

Recent results with Multiple Zeta Functions:

ζ(s1, . . . , s`) =
∑

n1>n2>···>≥1

1

ns1
1 · · ·ns`

`

(123)

with s1 > 1 and s2, . . . , s` ≥ 1. We say s1 + · · · s` is the weight of ζ and ` is the
length. We have

ζ(s1)ζ(s2) =
∑
n1,n2

1

ns1
1 ns2

2

=
∑

n1>n2

+
∑

n2>n1

+
∑

n1=n2

= ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2) (124)

with
ζ(s) =

∑
s1+···+s`=s

ζ(s1, . . . , s`). (125)

Conjecture 2.36 (Zagier’s MZV conjecture). Let Vk be theQ-span of ζ(s1, . . . , s`)
with s1 + · · · + s` = k. Let dk be the dimension of Vk. Define δ0 = 1, δ1 = 0,
δ2 = 1, δk = δk−2 + δk−3 and δk ∼ eck. The conjecture is dk = δk.

Terasoma and Goncharov, using a lot of algebraic geometry, showed that dk ≤
δk. Gun-Murty-Rath showed that the Chowla-Milnor conjecture implies dk ≥ 2.
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3 Gonek

3.1 The First 150 Years of the Riemann Zeta-Function
http://www.williams.edu/go/math/sjmiller/public html/

ntandrmt/talks/Slides Utah 09 Gonek1.pdf

We’ll go through the paper and say what is in it, discuss the early history of the
zeta function (mostly solving the problems Riemann left in his paper), and then
talk about some of the major branches of the subject).

3.1.1 Riemann’s paper

What does Riemann prove? He starts with Euler’s formula
∑

n n−s =
∏

p(1 −
p−s)−1. Riemann’s first big step is to treat as a function of a complex variable
s = σ + it. He gives two proofs of the analytic continuation of ζ(s), showing
there is a simple pole at s = 1 and trivial zeros at the negative even integers. He
proves the functional equation and then makes a number of claims:

• There are infinitely many non-trivial zeros of ζ(s) in the critical strip 0 ≤
<(s) ≤ 1. There are clearly no zeros (from the Euler product) for <(s) > 1.

• If N(t) is the number of non-trivial zeros ρ = β + iγ with γ ∈ [0, T ] then
as T →∞ we have N(T ) = T

2π
log T

2π
− T

2π
+ O(log T ).

• The functional equation ξ(s) = 1
2
s(s− 1)π−s/2Γ(s/2)ζ(s) is entire and has

the product formula ξ(s) = ξ(0)
∏

ρ (1− s/ρ) (grouping ρ and ρ together).

• He claims an explicit formula relating primes to the zeta function:

ψ(x) =
∑
n≤x

Λ(n) = x−
∑

ρ

xρ

ρ
+

∞∑
n=1

x−2n

2n
− ζ ′(0)

ζ(0)
. (126)

Riemann states this for π(x) =
∑

p≤x 1 instead. From this we can see why
the Prime Number Theorem might be true, namely ψ(x) ∼ x.

Riemann knew all of this but couldn’t prove it; the machinery had not caught
up to his intuition. The last is

Conjecture 3.1 (The Riemann Hypothesis). All the non-trivial zeros have real
part equal to 1/2.
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It took awhile to substantiate these claims. Hadamard in 1893 worked on the
theory of entire funtions (Hadamard product formula) and proved

ξ(s) =
1

2
s(s− 1)π−s/2Γ(s/2)ζ(s) (127)

has the product

ξ(s) = ξ(0)
∏

=(ρ)>0

(
1− s + s2

ρ(1− ρ)

)
. (128)

To do this he proved the estimate N(t) ¿ T log T ; this is weaker than what
Riemann claimed, but was sufficient for convergence.

In 1895 von Mangoldt proved Riemann’s explicit formula for π(x) and ψ(x).
The Prime Number Theorem still wasn’t proven, but these assertions were.

In 1896 Hadamard and de la Vallée Poussin independently proved the Prime
Number Theorem, namely that ψ(x) ∼ x. The key ingredient was that ζ(1+ it) 6=
0 (ie, no zero on the line <(s) = 1). This is an asymptotic formula. A few years
later de la Vallée Poussin proved the Prime Number Theorem with an error term,
ψ(x) = x + O(xe−

√
c1 log x). This required a zero-free region when σ < 1 − c0

log t

(ie, no zeros to the right of this).
In 1905 von Mangoldt proved Riemann’s formula for N(T ). In the same

year von Koch proved the Riemann Hypothesis means the error term in the prime
number theorem is basically

√
x.

3.1.2 The order of ζ(s) in the critical strip

The critical strip is the most important region for ζ(s). How large can it be as we
go up? Why do we want to know this? From the explicit formula we see the zeros
are important in understanding the primes, and we can get some information about
these from knowing the size of the function. It is a fact that the zeros of an analytic
function and the growth of that function are related. Other arithmetic questions
turn out to depend on this as well.

For example, we have Jensen’s Formula. Let f(z) be analytic for |z| < R and
f(0) 6= 0. If zi are the zeros inside |z| ≤ R then

log

(
Rn

|z1 · · · zn|
)

=
1

2π

∫ 2π

0

log |f(Reiθ)|dθ − log |f(0)|. (129)

Another application involves sums of dk(n), where these sums are an explicit term
plus an integral of ζk(s).
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Let’s focus on estimates at the edge of the strip. Upper bounds for ζ(s) near
σ = 1 allow us to widen the zero-free region. This leads to improvements in
the remainder term for the Prime Number Theorem. Littlewood improved these
estimates in 1922, and widens the zero free region and gives a better error term:
O(xe−c

√
log x log log x). The idea is to approximate

ζ(σ + it) ≈
N∑

n=1

1

nσ+it
(130)

and try to exploit cancellation. If one could use the cancellation of the nit then
one should be able to improve the bounds. Littlewood did this by using the theory
of exponential sums developed by Weyl.

Many years later (1958) Vinogradov and Korobov independently got ζ(σ +
it) ¿ log2/3 t and no zeros in σ ≥ 1 − c

log2/3 t
, which gives a better error term

again. Instead of using Weyl’s method to estimate exponential sums, they use
Vinogradov’s method.

To summarize: bounds on the σ = 1 line lead to improvements in the error
term. The result of Vinogradov-Korobov really hasn’t been improved.

What should the truth be? One can show

(1 + o(1))eγ log log t ≤i.o. |ζ(1 + it)| ≤RH 2(1 + o(1))eγ log log t; (131)

there isn’t much wiggle room between what is known and the RH.
What about inside the critical strip? In 1908 Lindelöf investigated this: For

a fixed σ let µ(σ) denote the lower bound of numbers µ such that ζ(σ + it) ¿
(1 + |t|)µ.

• ζ(s) is bounded for σ > 1 so µ(σ) = 0 for σ > 1.

• |ζ(s)| ∼ (|t|/2π)1/2−σ|ζ(1−s)|which implikes µ(σ) = 1/2−σ+µ(1−σ).

• In particular, µ(σ) = 1/2− σ for σ < 0.

Lindelöf proved that µ(σ) is continuous, convex and non-increasing. It fol-
lows that µ(1/2) ≤ 1/4; this is called the convexity bound, breaking this is quite
important. Hardy-Littlewood showed that ζ(1/2 + it) ¿ |t|1/6+ε. A long history
of trying to improve this. The best results since have come from exponential sum
methods. Huxley and Watt show that µ(1/2) < 9/56 (for example).

Conjecture 3.2 (Lindelöf Conjecture (LH)). We should have µ(σ) = 0 for σ ≥
1/2; which then fills in the picture.

The LH says that for large |t|, log |ζ(1/2 + it)| ≤ ε log |t|.
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Figure 1: Plot of σ(µ)

3.1.3 Mean value theorems

Averages such as ∫ T

0

|ζ(σ + it)|2kdt (132)

have been a focus for many years because

• Averages as well as pointwise upper bounds tell us about zeros and other
applications;

• mean values are easier to prove than pointwise bounds;

•

In 1908 Landau proved the second moment:
∫ T

0

|ζ(σ + it)|2dt = ζ(2σ)T (133)

for σ > 1/2 fixed; in 1918 Hardy-Littlewood handled σ = 1/2 and found T log T .
To do this, they developed the approximate functional equation. In the same paper
they prove a fourth moment, for σ > 1/2 fixed: ζ4(2σ)T/ζ(4σ). In 1926 Ingham
gets the fourth moment on the half line, getting (T/2π2) log4 T , by using an ap-
proximate functional equation for ζ(s)2. No one has proved a result for fourth or
higher moments on the half-line. We have lower bounds (such as Ramachandra’s)
on the half-line: T logk2

T . This is believed to be the correct upper bound as well.

44



What constant should we put in front so that it is asymptotically correct? This
suggests trying to find constants Ck such that

∫ T

0

|ζ(1/2 + it)|2kdt ∼ CkT logk2

T. (134)

Conrey-Ghosh suggested that Ck = akgk/Γ(k2 + 1) with gk an integer. We know
g1 and g2; Conrey-Ghosh conjectured that g3 = 42 and Conrey-Ghosh-Gonek
conjectured g4 = 24024. Using random matrix theory, Keating and Snaith con-
jectured gk for each k, and it agrees with the four previous values (the two known
and the two conjectured). This was a huge development.

Recently Soundararajan has shown that under RH, we are close to the right
order.

3.1.4 Zero density estimates

If you can’t prove RH, can you at least show there aren’t too many. There are lots
of applications (such as gaps between prime numbers). Let N(σ, T ) denote the
number of zeros in the critical strip with real part at least σ. Bohr and Landau
showed in 1912 that N(σ, T ) ¿ T . Since N(T ) ∼ (T/2π) log T , this says the
proportion of zeros to the right of σ > 1/2 tends to 0 as T →∞. Equivalently, the
zeros cluster near the half-line. If they are not all on the half-line, a huge amount
are very near it. Bohr and Landau used Jensen’s formula. Today we have much
better zero-density estimates of the form N(σ, T ) ¿ T θ(σ) with θ(σ) < 1.

Conjecture 3.3 (Density Hypothesis). N(σ, T ) ¿ T 2(1−σ) log T .

Notice that when σ = 1/2 we do get T log T . The LH implies N(σ, T ) ¿
T 2(1−σ)+ε (note RH implies LH).

3.1.5 The distribution of a-values of ζ(s)

So far we’ve distributed when ζ(s) = 0. What about when it equals a fixed
number a? Bohr developed a lovely theory. First, the curve f(t) = ζ(σ + it) for
some fixed σ ∈ (1/2, 1]. This curve is dense in C, getting arbitrarily close to any
complex number. The idea is to show that ζ(σ + it) ≈ ∏

p≤N(1 − p−σ−it)−1 for
most t, then use Kronecker’s theorem to find a t so that the numbers p−it point in
such a way that

∏
p≤N(1 − p−σ−it)−1 ≈ a. We have to hope that these t’s are in

the set where ζ can be approximated this way.
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As a second result, let Na(σ1, σ2, T ) be the number of solutions to ζ(s) = a
for σ1 ≤ σ ≤ σ2 and 0 ≤ t ≤ T . Using the same sort of ideas one gets this is
asympototic to c(σ1, σ2)T . This is quite different from the case a = 0 (we are
getting something of size T , not a power less).

3.1.6 Zeros on the critical line

Let N0(T ) is the number of zeros up to T on the line. Hardy in 1914 showed there
are infinitely many. Hardy-Littlewood in 1921 showed there are at least cT . This
was improved by Selberg to a positive percent in 1942; Levinson got 1/3 in 1974
and Conrey 2/5 in 1989. All of these use mean value estimates.

3.1.7 Calculating zeros on the line

In 1903 Gram showed that the first 15 zeros are on the line and are simple. Back-
lund improved this to the zeros up to 200 in 1912, long sequence of people im-
proving this. Most recent is at least the first ten trillion. Also (Odlyzko) clumps
of zeros around 1024 all on the line.

3.1.8 More recent developments

In the last 35 years there has been a lot of work trying to understand the zeros
assuming RH, wanting to know how they are distributed. First big achievement
due to Montgomery, where in 1974 he showed that under RH the zeros behave
like eigenvalues of random Hermitian matrices. From 1980 onward Odlyzko has
done extensive computations to support this conjecture.

There are also new mean value theorems (Gonek and Conrey, Gosh and Gonek).
Assuming RH and sometimes GLH and GRH, Conrey, Ghosh and Gonek prove
that there are large and small gaps between consecutive zeros, and simplicity.

Another new result is a hybrid formula. The random matrix formulas have no
arithmetic in them; the gk come from random matrix theory but the ak come from
arithmetic and must be inserted. Gonek, Hughes and Keating found an uncondi-
tional hybrid formula for ζ(s), writing it as a truncated product of primes times a
truncated product of zeros (ie, an Euler-Hadamard combination). This gives the
ak and gk both appearing naturally.
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3.2 Mean Value Theorems and the Zeros of the Zeta Function
http://www.williams.edu/go/math/sjmiller/public html/

ntandrmt/talks/UtahWorkshopNotes.pdf

Themes from last time: Study of a-values, zeros, zeros on the line, simple
zeros.... Mean value theorems play an important role in the field. Today we’ll
go more in depth on mean value theorems and give three applications to very
important theorems. This will give an idea of how the tool of mean values is used
in several different areas.

Outline:

• What is a mean value theorem?

• Mean values and zeros?

• A sample of important estimates.

• Application: A simple zero-density estimate.

• Application: Levinson’s method.

• Application: number of simple zeros.

3.2.1 What is a mean value theorem?

If you have an analytic function f and integrate over a circle, that’s an example
from classical analysis. For our context, typically dealing with functions given by
Dirichlet series, instead of integrating over a circle we integrate over vertical line
segments:

∫ T

0
|F (σ + it)|2dt. Often want to do this integral on a line that is not

in the half-plane of absolute convergence. While it is customary to divide by the
length of the interval, frequently one doesn’t.

Another time of mean value theorem is a discrete case:
∑R

r=1 |F (σr + itr)|2.
For example, we could take F (s) = ζ(s)k. Another example is F (s) = (ζ ′(s))k

and study
∑

ρ∈S |ζ ′(ρ)|2k.
For another example, consider F (s) = FN(s) =

∑N
n=1 ann−s a Dirichlet

‘polynomial’ of ‘length’ N . One can show its mean square (up to T ) is (T +
O(N log N))

∑N
n=1 |an|2/n2σ; this is the classical result, and has been improved

since by Montgomery and Vaughn.
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3.2.2 Mean Value and zeros

We use Jensen’s Formula. If an analytic function is small on a circle then you
can’t have too many zeros close to the center. This makes quantitative the intuitive
notion that the density of zeros and the size of a function are connected.

Often not interested in mean on a circle but rather on a vertical line, we are
not interested in Jensen’s Formula on a circle but rather on a line. We have Little-
wood’s Lemma for an analytic function f(s) which is non-zero on a rectangle C.
Littlewood’s lemma expresses 2π

∑
ρ∈C dist(ρ) in terms of four integrals, two in-

volving the logarithm of |f | and two involving the argument of f ; here the distance
refers to the distance from the left edge of the rectangle C. The main contribution
will be

∫ T

0
log |f(σ0 + it)|dt; the other three terms are error terms.

This gives an expression involving the zeros in terms of one integral, which
sadly is frequently hard to compute. We often use a trick to compute it. The
trick is to put a one-half outside and square inside the logarithm; this doesn’t
change anything and is now talking about the average of the logarithm of the
modulus squared; we use a convexity estimate to replace it with the logarithm of
the integral:

1

T

∫ T

0

|f(σ0 + it)|dt =
1

2T

∫ T

0

log |f(σ0 + it)|dt

≤ 1

2
log

(
1

T

∫ T

0

|f(σ0 + it)|2dt

)
. (135)

3.2.3 A sample of important estimates

Recall that

Ik(σ, T ) =

∫ T

0

|ζ(σ + it)|2kdt. (136)

We have I1(σ, T ) ∼ c1(σ)T as T → ∞; if σ = 1/2 get T log T , which implies
ζ(s) is erratic on σ = 1/2.

Conrey and Ghosh conjectured formulas for these moments, which agree with
the random matrix theory conjectures.

Another important mean is
∫ T

0

|ζ(j)(σ + it)MN(σ + it)|2dt, (137)
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where

MN(s) =
∑
n≤N

µ(n)

ns

(
1− log n

log N

)
(138)

is a mollifer. Here MN(s) approximates 1/ζ(s) when σ > 1 This continues for
σ ≤ 1 in some sense. Hence ζ(s)MN(s) should be tamer than ζ(s) on σ = 1/2
(can prove if RH is true if close to the half-line). General estimates for means like
the above were proved by Conrey, Ghosh and Gonek with N = T θ and θ < 1/2.
Later, Conrey used Kloosterman sums techniques to show these formulas also
hold for θ < 4/7.

One more example: Assuming the Riemann Hypothesis and the Generalized
Lindelöf Hypothesis, Conrey, Ghosh and Gonek also proved the discrete version
of this, including estimates for sums like

∑
γ<T

|ζ ′(ρ)MN(ρ)|2. (139)

Here γ runs over the ordinates of the zeros of ζ(s) and N = T θ with θ < 1/2.

3.2.4 Application: A simple zero-density estimate

We fix a σ > 1/2 and want to know N(σ, T ), the number of zeros with <(ρ) > σ
and =(ρ) < T ; we want an upper bound. We apply Littlewood’s lemma for a
rectangle C that is a little bit larger, with left boundary at <(s) = σ0. We have

∑
ρ∈C

dist(ρ) ≥
∑
ρ∈C
σ≤β

dist(ρ) ≥ (σ − σ0)N(σ, T ). (140)

On the other hand, we can use Littlewood’s lemma to replace the left hand side
with an integral of the logarithm of the modulus of ζ , and then use our trick
to replace that with ≤ T

4π
log

(∫ T

0
|ζ(σ0 + it)|2dt

)
. The integral is I1(σ0, T ) ∼

c1(σ0)T . Therefore

(σ − σ0)N(σ, T ) ≤ T

4π
log c1(σ0) (141)

and thus N(σ, T ) ¿ T . Since N(T ) ∼ T
2π

log T , we see

N(σ, T )/N(T ) = O(1/ log T ) (142)

49



for any σ > 1/2, which implies an infinitesimal percentage of the zeros are off
the line in the limit (in this sense).

We lose in the inequality in estimating the integral when we replace the in-
tegral of the logarithm with the logarithm of the integral; this replacement gets
better the smoother the function is. If one puts in the right kind of mollifier, one
can hope to do better.

3.2.5 Application: Levinson’s method

Levinson proved that at least a third of the zeros are on the critical line. We let
N0(T ) denote the number of zeros on the critical line up to T . Hardy showed
there were infinitely many, and then eventually Selberg showed that a positive
percentage. The current record is do to Conrey, who showed that 40% of the zeros
are on the line.

Levinson’s method begins with a result of Speiser:

Theorem 3.4 (Speiser). RH is equivalent to ζ ′(s) 6= 0 for 0 < σ < 1/2.

In the 1970s a quantitative version was proved:

Theorem 3.5 (Levinson-Montgomery). ζ(s) and ζ ′(s) have the same number of
zeros inside C up to O(log T ), where C is a rectangle from slightly to the left of
1/2 to -1.

Proof. The change in the argument of ζ ′(s)/ζ(s) on the rectangle is O(log T ),
and the change in argument is 2π times the number of zeros of ζ ′(s) in C minus
the number of zeros of ζ(s) in C. If the argument is bounded by log(T ), then the
number of zeros must be close.

Sketch of the proof of Levinson’s Theorem. We have ζ ′(s) and ζ(s) essentially have
the same number of zeros. The ζ(s) zeros are symmetric about the half line, so
the ζ function has the same number of zeros on the other side. If we count the
zeros in the box, it is N(T ) = N0(T ) + 2N ′(T ) + O(log T ) where N ′(T ) is the
number of zeros of ζ ′(s) in the left box. Solving for N0(T ) gives

N0(T ) = N(T )− 2N ′(T ) + O(log T ), (143)

so an upper bound for N ′(T ) gives a lower bound for N0(T ).
By the functional equation for ζ(s), ζ ′(s) has the same zeros in 1/2 < σ < 2,

0 < t < T as

G(s) = ζ(s) +
ζ ′(s)
L(s)

, where L(s) ∼ 1

2π
log s. (144)
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So we need an upper bound for the number of zeros of G(s) in the rectangle in
the right. We have a rectangle and an analytic function, use Littlewood’s lemma:

1

2π

∫ T

0

log |G(a + it)|dtM(a + it) + E =
∑

zeros of G∈Ca

dist(ρ∗)

≥
∑

zeros of G∈Ca
β∗≥1/2

dist(ρ∗)

≥ (1/2− a)N ′(T ); (145)

here a = 1
2
− c

log T
and c > 0 and MN(a + it) is our mollifier. The mollifier is

M(s) =
∑

n≤T θ

an

ns
, an = µ(n)na−1/2

(
1− log n

log T θ

)
, (146)

which approximates 1/ζ(s). Thus we need an estimate for the integral of G and
M . Levinson showed one can take θ = 1/2 − ε, Conrey showed one may take
θ = 4/7 − ε. Farmer conjectured that this remains true for θ arbitrarily large,
which would give N0(T ) ∼ N(T ), or 100% of the zeros are on the line.

3.2.6 Application: number of simple zeros

We discuss how to show many zeros are simple. Let Ns(T ) be the number of zeros
with imaginary part at most T and simple. We believe that N(T ) = N0(T ) =
Ns(T ). Montgomery (in his 1974 pair correlation paper) showed under RH that at
least 2/3 of the zeros are simple. Using other methods, Conrey, Ghosh and Gonek
proved that under RH and GLH that at least 19/27 of the zeros are simple.

Sketch of the method: We use a Cauchy-Schwartz inequality applied to

∣∣∣∣∣
∑
γ<T

ζ ′(1/2 + iγ)

∣∣∣∣∣

2

≤




∑
γ<T

1/2+iγ simple

1




(∑
γ<T

|ζ ′(1/2 + iγ)|2
)

. (147)

Asymptotic estimates for the means provide a lower bound of NS(T ) ≥ cT .
We lose when using the Cauchy-Schwarz inequality, which suggests we should
smooth ζ ′ and expect to lose less in the inequality. We use a mollifer involving
µ(n), get a similar inequality but the means are more complicated to compute but
doable. An elaboration of the method shows that under the same hypotheses 95%
of the zeros are either simple or double.
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3.3 Pair correlation of the zeros of the zeta function
http://www.williams.edu/go/math/sjmiller/public html/

ntandrmt/talks/UtahWorkshopNotes.pdf

Much of the subject began with Montgomery’s pivotal paper on the pair cor-
relation of the zeros of the zeta function. In Conrey’s first talk he showed a lot of
random matrix theory stuff to derive distributions for random matrix ensembles;
won’t recognize anything like that, doing everything on the number theory side.

3.3.1 Starts with an explicit formula

Take the logarithmic derivative of the zeta function: ζ ′(s)/ζ(s) = −∑
Λ(n)/ns.

Key identity is the integral of 1
2πi

∫ c+i∞
c−i∞ ywdw/w, which is 1 if y > 1, 1/2 if y = 1

and 0 if y < 1 (note c > 0). We use this as a basic building block, and find

1

2πi

∫ c+i∞

c−i∞

ζ ′(s + w)

ζ(s + w)

xw

w
dw = −

∑
n≤x

Λ(n)

ns
. (148)

Can interchange integral and sum as everything is absolutely convergent. Should
really do for a finite length integral and have error terms; called Perron’s formula,
take the limit as the truncation tends to infinity. We pull the contour to −∞ and
find the LHS equals

∑
ρ

xρ−s

ρ− s
+

x1−s

s− 1
−

∞∑
n=1

x−2n−s

2n + s
+

ζ ′(s)
ζ(s)

. (149)

We now equate these and get an explicit formula for
∑

Λ(n)/ns. If we take s = 0
we recover the standard explicit formula from the prime number theorem.

Assume RH and evaluate when s = 3/2 + it. Then take s = −1/2 + it and
evaluate, and we can replace the ζ ′/ζ term with − log(|t| + 2) + O(1). We have
expressions like ±x1/2

∑
γ xiγ/(1∓ i(t− γ)). We do some algebra and subtract,

and find−2x1/2
∑

γ xiγ/(1+(t−γ)2). The right hand side is a continuous function
in x as is the left hand side, so we don’t have to worry about x being a prime power.
We equate the simplifications of the left and right hand sides, trivially estimating
some of the sums, and we find under RH that

−2x1/2
∑

γ

xiγ

1 + (t− γ)2)
(150)
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is equal to some simple terms and a Dirichlet series. We right this as L(x, t) =
R(x, t). Montgomery’s pair correlation is proved by calculating both sides of∫ T

0
|L(x, t)|2dt and

∫ T

0
|R(x, t)|2dt.

Let’s look at the left hand side term first. He truncates the sum and then
extends the integral to−∞ to∞, introducing a small error. Square things out and
do the integral via residue theory. The integral becomes w(γ, γ′) = 4/(4 + (γ −
γ′)2). Call the resulting expression 2πxF (x, T )+O(x log3 T ), easily see F (x, T )
is non-negative. If we replace x with 1/x we get a complex conjugate and find
F (1/x, T ) = F (x, T ) for x > 0. Thus

∫ T

0

|L(x, t)|2dt = 2πxF (x, T ) + O(x log3 T ). (151)

We now have to compute the right hand side. We use the Montgomery-
Vaughan mean value theorem to compute the mean value for the Dirichlet series
piece, applying the prime number theorem. The other terms on the right hand side
are handled in a straightforward manner. We write the RHS as a sum of Ai(x, t)
for i = 1 to 4. For a given x we let

Mi =

∫ T

0

|Ai(x, t)|2dt. (152)

Order them so that M1 ≥ · · · ≥ M4. By the Cauchy-Schwarz inequaltiy,
∫ R

0

|R(x, t)|2dt = M1 + O((M1M2)1/2). (153)

In different ranges, different ones of the Ai’s are largest. We find the mean square
of the right hand side is T

2π
(log x+ o(log T ))+O(x log x)+ T

2πx2 log2 T (1+ o(1).
We set x = T α and F (α) = F (α, T ) =

(
T
2π

log T
)−1

F (T α, T ).

Theorem 3.6 (Montgomery). Assuming RH,

F (α) =

(
T

2π
log T

)−1 ∑

0<γ,γ′≤T

w(γ − γ′)T iα(γ−γ′) (154)

equals
(1 + o(1))T−2α log T + α + o(1) (155)

uniformly for |α| ≤ 1− ε as T →∞.
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3.3.2 Application

We integrate F (α) against a test function f̂(α). Knowing F (α), we can then get
information about pairs of zeros:

(
T

2π
log T

) ∫ ∞

−∞
F (α)r̂(α)dα =

∑

0<γ,γ′<T

w(γ − γ′)r
(

(γ − γ′)
T

2π

)
. (156)

Note we can only use this formula when r̂ is supported in (−1, 1).
One application is to counting simple zeros, taking r(u) = (sin(πλu)/πλu)2,

so r̂(α) = λ−1 max(1−|α|/λ, 0) for λ > 0. Thus we need to take λ < 1. Observe
that if ρ = 1/2 + iγ is a zero of multiplicity m(ρ), then we end up with

∑
0<γ<T

m(ρ) ≤
(

4

3
+ o(1)

)
T

2π
log T. (157)

We have ∑
0<γ<T

zero simple

1 ≥
∑

0<γ<T

(2−m(ρ)). (158)

This leads to, under RH, that 2/3rds of the zeros are simple.

3.3.3 Montgomery’s Conjecture

We proved his theorem for F (α) with |α| < 1 by computing the mean square of
both sides. The hang-up is that we used the Montgomery-Vaughan theorem to
compute the mean of the Dirichlet series. We can only do these computations for
certain lengths of these Dirichlet series. What happens for larger α? The only
required estimates for ‘diagonal’ terms involving

∑
n≤x Λ(n)2 is satisfactory for

x = o(T ). If α ≥ 1 then x ≥ T and ‘off-diagonal terms contribute to the mean
square. These require estimates of sums of Λ(n)Λ(n + h) uniformly in h (this is
equivalent to twin prime conjectures and so on).

Conjecture 3.7 (Montgomery). F (α, T ) = 1+o(1) uniformly for 1 ≤ α ≤ A for
any fixed A as T →∞.

This allows us to use more general r̂, and led him to
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Conjecture 3.8 (Montgomery’s Pair Correlation Conjecture). For any fixed β > 0
we have

∑
0<γ,γ′<T

0<γ′−γ<2πβ/ log T

1 ∼
(∫ β

0

[
1−

(
sin πx

πx

)2
]

dx

)
T

2π
log T (159)

at T →∞.

One quick deduction is lim inf(γn+1 − γn)(log γn)/2π = 0. Another applica-
tion is that almost all zeros are simple.

3.3.4 Recent developments

In the 1980s Goldston and Montgomery showed the Pair Correlation Conjecture
is equivalent to a certaine stimate of teh variance of the number of primes in short
intervals. Later Goldston, Gonek and Montgomery showed it is also equivalent to
a mean value estimate for the second moment of ζ ′(σ + it)/ζ(σ + it) for σ near
1/2.

We do know (Goldston, Gonek, Özlük and Snyder) that F (α, T ) ≥ 3/2−α+
o(1) on (1, 3/2) under GRH.

3.4 Finite Euler Products and the Riemann Hypothesis
http://www.williams.edu/go/math/sjmiller/public html/

ntandrmt/talks/UtahWorkshopNotes.pdf

Why are all the zeros on the line? Why are they simple? What produces
this? If you work in this subject, after a short while you realize that to prove the
Riemann Hypothesis you’ll have to use both the functional equation and the Euler
product? Why? We have examples of functions that satisfy one but not the other
(both ways) where the Riemann Hypothesis fails. So both are necessary, but this
isn’t an explanation.

• Approximations of ζ(s).

• A function related to ζ(s)n and its zeros.

• The relation between ζ(s) and ζX(s).
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3.4.1 Approximations of ζ(s)

Let s be away from 1, write as σ + it, in the half-plane σ > 1 we have

ζ(s) =
X∑

n=1

1

ns
+ O

(
X1−σ

σ − 1

)
, (160)

which is small if we are away from the pole at 1. The moral of this is that ζ(s) is
approximately this partial sum when we are in the right half plane, and it doesn’t
really matter how small X is. Things improve as X grows, but can get away with
a small X .

What happens when we get into the critical strip? Suffices to study the right
half of the critical strip. A crude form extends:

ζ(s) =
X∑

n=1

1

ns
+ O

(
X1−σ

σ − 1

)
+ O(X−σ), (161)

but we need X À t. If we take X = t we get

ζ(s) =
∑
n≤t

1

ns
+ O(t−σ). (162)

Moral: inside the critical strip you can’t do better than this as far as unconditional
estimates go. If you want to approximate the zeta function by a truncation in a
critical strip, the length of the approximation must be of size t.

If you assume LH, namely ζ(1/2 + it) ¿ (|t|+ 2)ε, then you get

ζ(s) =
∑
n≤X

1

ns
+ O(X1/2−σ|t|ε), (163)

which is fine for 1/2 ≤ σ ¿ and X ≤ t2.
What about to the left of 1/2? We can’t use short sums when σ < 1/2.

Suppose ζ was a short sum of length X . Use Montgomery-Vaughan to get the
mean square (integrating from T to 2T ) is of size T ·X1−2σ, but the mean square
of the zeta function integral is T · T 1−2σ, which thus won’t work with X short.

What if we try to examine approximations of the Euler product? Truncate
the product: trivially estimate the tail of the product (no zeros when σ > 1), use
logarithms, then exponentiate at the end. We find

ζ(s) =
∏

p leX

(
1− 1

ps

)−1 (
1 + O

(
X1−σ

(1− σ) log X

))
. (164)
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What about approximations in the strip? We work with a weighted Euler prod-
uct.

∏

p≤X2

(
1− 1

ps

)−1

= exp


 ∑

p≤X2

∞∑

k=1

1

kpks


 . (165)

We set

PX(s) = exp


 ∑

n≤X2

ΛX(n)

ns log n


 . (166)

Also have to introduce a function QX(s) which arises from zeros of ζ(s). There
are three exponential sum pieces, one summing F2(z) over non-trivial zeros, one
over the trivial zeros, and one over the pole. If z large then F2(z) small, and for z
near zero we have F2(z) ∼ log(cz). The main contribution is from zeros close to
s. It follows that

Q(s) ≈
∏

|ρ−s|≤1/ log X

(c(s− ρ) log X) . (167)

Have PX a finite Euler product of length X2, QX a finite Hadamard product,
then

Theorem 3.9 (Gonek-Hughes-Keating). For σ ≥ 0 and X ≥ 2,

ζ(s) = PX(s) ·QX(s). (168)

The more primes you take, the fewer zeros you need, and vice versa. Call this
a hybrid formula. Writing this out with the approximations you see it’s primes up
to X2 and zeros at most 1/ log X from s. If RH is true, the product is empty in the
critical strip away from s = 1 and get the finite Euler product. In fact, if σ > 1/2
we have ζ(s) ≈ PX(s) (and can quantify this).

To the right of 1, we can approximate ζ(s) well with short sums, to the right
of 1/2 it is if we assume LH, .... Does this continue to the left of 1/2? The answer
is no again, no matter how long we take X . Instead of computing mean squares of
ζ we’ll do mean squares of log |ζ(σ + it)|, and again see the powers don’t match.
One consequence of this estimate is that if σ < 1/2 then infinitely often in t we
have PX(s) À exp

(
X1−2σ/

√
log X

)
, so PX is big to the left of 1/2.
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On LH (and so on RH) we have ζ is a short sum for 1/2 < σ ≤ 1 fixed, even
if X is small. But on σ = 1/2 we need more terms:

ζ(s) =
∑
n≤X

1

ns
+

∑
X<n≤t

1

ns
+ o(1). (169)

If you compare this to the approximate functional equation, we find
∑

X<n≤t

1

ns
∼ χ(s)

∑

n≤t/2πX

1

n1−s
. (170)

If take X =
√

t/2π, the approximate functional equation has the same length in
each term. On the critical line zeta can be approximated by something shorter if
add another piece of similar complexity.

How much is the Euler product approximation off by as σ approaches 1/2? A
tempting guess is that for some range of X we have

ζ(s) ≈ PX(s) + χ(s)PX(1− s). (171)

But this is far too large if X is a power of t when σ > 1/2.

3.4.2 A function related to ζ(s)n and its zeros

What if look at
ζX(s) = PX(s) + χ(s)PX(s). (172)

Notice these are identical on the critical line and

ζ(s), ζX(s) = PX(s)(1 + o(1)) (173)

when σ > 1/2 is fixed. So both ζ and ζX are approximately PX when σ > 1/2.

Lemma 3.10. If 0 ≤ σ ≤ 1, |t| ≥ 10, |χ(s)| = 1 if and only if σ = 1/2. Further,
we have a very good estimate for χ(s) (ie, its phase).

Theorem 3.11. All the zeros of ζX(s) with |t| ≥ 10 lie on σ = 1/2.

Proof. WE have
ζX(s) = PX(s) + χ(s)PX(s). (174)

We factor out PX(s), which never vanishes. Thus we need χ(s)PX(s)/PX(s) =
−1, so the modulus is 1. Note PX is never 0, and by the lemma we need χ to be
evaluated on the critical line to be of modulus 1.
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We have a function which is a skeleton of ζ(s), but easier to work with and
satisfies the Riemann Hypothesis. Let’s study it. What can we say about the
number of zeros up to height T ? For the regular zeta function the number of
zeros can be written as the standard (T/2π) log(T/2π)− (T/2π)+7/8+S(T )+
O(1/T ), as well as being written as a sum of two arguments plus 1. We can
now look at ζX(1/2 + it), pull out a PX(1/2 + it) and write the remaining piece
involving arguments. It vanishes only when the exponential is -1, which requires
the difference of the arguments to be 1/2 modulo 1. Call this function FX(t)
(minus the above). Then on the half-line the zeros of ζX(1/2+it) are the solutions
to FX(t) ≡ 1/2 mod 1.

We can find a lower bound for the number of zeros. The function FX(t) is
congruent to 1/2 modulo 1 happens at least FX(T ) (as it is continuous). If you
know a little about the zeta function, if we had equality in slide 23 is interesting
as the sum is like an approximation for S(T ). How could we have more zeros? If
FX(T ) wiggles and is not monotonically increasing, we could have more zeros. It
comes down to trying to figure out how large the sum can be. Call the size of that
sum Φ(t), which infinitely often is big. In fact,

Φ(tx) = Ω
(√

log t/ log log t
)

. (175)

Farmer-Gonek-Hughes conjecture on what the right size is. Under RH, the sum
we have is also bounded by Φ(t) + O(log t/ log X).

How big does X have to be? Need X ≥ exp(c log t/Φ(t)).
Extra solutions: if FX(t) is not monotonically increasing, there could be extra

solutions. Look at its derivative, and under RH the sum that arises is bounded by
¿ Φ(t) log X . So for X not too large the derivative will be positive and thus there
is a constant C such that if X < exp(C log t/Φ(t)) then FX(t) is monotone and
NX(t) is equal to (and not just ≤); this result assumes RH.

What about simple zeros? What can we say about simple zeros of ζX(s)?
Taking the derivative leads to F ′

X(t) must vanish. But we know that if X isn’t too
large that F ′

X(t) is positive. Thus

Theorem 3.12. Under RH, there is a C such that for X < exp(C log t/Φ(t) all
the zeros with imaginary part greater than 10 are simple.

Unconditionally we can get 100% of the zeros are simple.
I find this very intriguing. We have a family of functions that has a Riemann

hypothesis, can see what RH is true, can see why the zeros are simple.
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What about large X? We really want to take X a power of t, but can only
do X < exp(C log t/Φ(t)). But even when X is large, the odds that F ′

X(γ) = 0
are quite small. The likelihood of this happening without some hidden structure
(there is some structure), the likelihood that where it crosses the line is where we
have the derivative zero as well is improbable. Expect even for large X that most
of the zeros will be simple.

3.4.3 Relation between ζ(s) and ζX(s)

The plots show that even when we don’t take too many primes, there is remarkable
agreement between values of |ζ(s)| and |ζX(s)|. Here is a heuristic reason. We
saw that PX(s) approximates ζ to the right of σ > 1/2. Since χ(s) is small in this
region, ζX(s) = PX(s) + χ(s)PX(s), so this approximates ζ(s) + χ(s)ζ(s). On
σ = 1/2, using the functional equation get 2ζ(1/2 + it). This is why |ζX | is close
to twice |ζ| on the half-line.

Why are the zeros close? Look at the expansion for FX(t). We get N(t) − 1
minus a sum over the imaginary part of F2 evaluated at a function of the zeros.
We only care about the values modulo 1, so can ignore the N(t) − 1. The sum
is essentially bounded by log−2 X

∑
γ(t − γ)−2 → 0 as X → ∞. Thus for large

X , this sum is close to zero, so no way we can get a zero. Thus the zeros need to
cluster near the zeros of the zeta function.

Theorem 3.13. Under RH, if I is a closed interval between two consecutive zeros
of ζ(s) and t ∈ I then

• ζX(1/2 + it) → 2ζ(1/2 + it) as X →∞;

• ζX(1/2 + it) has no zeros in I for X sufficiently large.

What is the moral of the story? Here is something that is almost transparent (at
least if X isn’t big). It’s been part of the zeta function theory to find approxima-
tions. Polya came up with an approximation through an integral, and that seemed
to be pretty amazing as the thing had the right number of zeros but uniformly
distributed (like a picket fence), not capturing the complexity. This thing is....
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