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Question
What can we say about zeros in $t(s) > 1/2 for Dirichlet series with
periodic coefficients?
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Thus F is a P-module in the set of all Dirichlet series.
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Let DP" be the set of primitive Dirichlet characters.
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For ¢ in DP', we write

Ey = {P(s)Ly(s) | P € P}.
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A basis for F

Theorem 1.
The family (Ly,)pecprr forms a basis of the P-module F.

» Hence we have the vector space decomposition F = @ Ey
YeDIr

.. . a . ..
» Thus every Dirichelt series E —V:, where (a,),>1 is a periodic
n =
n>1
sequence, can be written in a unique way as a finite sum

> Puls)Ly(s) M
PeDPr
where the Py (s) are Dirichlet polynomials.

» Conversely, every expression of the form (1) is a Dirichlet series
with periodic coefficients.
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» Let’s fix the period gq. Codeca, Dvornicich, and Zannier (1998)
showed that

{X (ﬁ) : d|q and x is a Dirichlet character mod g}

forms an orthogonal basis for the g-periodic sequences (a,),>1

with scalar product (a, b) Z anby,.

» Theorem 1 follows from from expressing this result in terms of
primitive characters.
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. S a
» Let F,(s) denote the meromorphic continuation of Z —r: to the
n
n>1
entire complex plane with at most one simple pole at s = 1.

» We denote by Ng (o1, 02, T) (respectively Ni.(o1,02,T) ) the
number of zeros of the function F(s) in the rectangle
o1 < Rs < oz, |Ss| < T, counted with their multiplicities (resp.
without their multiplicities).
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Theorem 2.
Let a = (a,),>1 be a periodic sequence such that F,(s) is not of the
form P(s)Ly(s).

Then there exists a number 1 = n(a) > 0 such that, for all real
numbers oy and oy with 1/2 < o1 < 0y < 1 + n and all sufficiently
large T, we have

Npa(O'l,O'z, T) = N}:a(al,az, T) = T,
where the implied constants depend on a, o1, and o0,.

Remark: When we write F,(s) according to Theorem 1 as

Fa(s) = Y Py(s)Ly(s)

peDPr

the condition in Theorem 2 is equivalent to asking that F,(s) does not
belong to one of the submodules generated by a single Ly,.
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Which functions in F do not vanish in es > 1 ?

Corollary.

Let F be a Dirichlet series with periodic coefficients. The following
are equivalent.

(i) F(s) does not vanish in Rs > 1.
(ii) F(s) = P(s)Ly(s), where 1) is a Dirichlet character and P(s) is a
Dirichlet polynomial that does not vanish in Rs > 1.

Remark:
» The conditions s > 1 can be replaced by Jts > 1.

» If s > 1 is replaced by $os > 1/2, the statement is equivalent to
GRH.
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» The upper bound N, (01,02, T) < T can be derived from an
estimate of fOT |F,(o + it)|*dt due to Kagenas and Lauringikas.

> LaurinCikas (1986) proved the lower bound Ny (01,02, T) > T
for linear combinations (constant coefficients) of L-functions in
the case n = 0.

» Kaczorowski and Kulas (2007) established the lower bound > T
of Theorem 2 in the case n = 0.

» Both use the joint universal property for Dirichlet L-functions
inside the critical strip.

» For R(s) > 1 we use Brouwer’s fixed point theorem.



The Lower Bound

Let C be a finite set of at least two primitive Dirichlet characters, and
let (Py)yec be a family of non-zero Dirichlet polynomials. Define

F(s) := Y Py(s)Ly(s).

el

Then there exists a number 77 = n(F) > 0 such that, for all real
numbers o and o, with 1/2 < o7 < 0, < 1 4 1 and all sufficiently
large T, we have

N,’;(o*l, o2, T) >F,01,00 T.
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Let D, (R) := {z = (zj)1<j<n € C" : |zj] <R forall 1 <j<n}.

Lemma 1.

Let q be a positive integer, and y and R be positive real numbers. Let
X1, - - - Xn be pairwise distinct Dirichlet characters modulo q. Then
there exists a real n > 0 such that for all fixed o with 1 < 0 < 1+,
and for all prime numbers p >y, there exists a continuous function
tp : Dy(R) — R, such that for all z in D,(R)

_ X;(P)
L= p o+ity(2)
P>y 1<j<n

We can interpret this lemma as a linear system to be solved, where the
unknowns are the infinite family of (p‘”ﬂ)p>y that must be chosen in
the unit circle, continuously in the parameter z.
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hj be a non-zero rational function in L complex variables.
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Lemma 2.

Let g and L be positive integers, and R > 1 be real. Let x1,. .., Xn be
pairwise distinct Dirichlet characters modulo q. For all 1 < j < n, let
hj be a non-zero rational function in L complex variables. Then there
exists a real n > 0 such that, for all o with 1 < o < 1 4+ 1, we have

1
{ZEC":R§’2j|§R}C

1 1 Xi(p) >1
hj — L, = || | A i, €R
< ' <P(1T+ltp1 P(LIJFUPL) 17>17L< P 1 ’




Brouwer’s Fixed Point Theorem is used to prove Lemma 2
The first Lemma shows there are continuous functions #, such that
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Brouwer’s Fixed Point Theorem is used to prove Lemma 2
The first Lemma shows there are continuous functions #, such that

X;(p)

IW’ WGDn(1+R,),1§]§n,

wj =
P>y

where R = 7 + log R. Define the error term E by

X (p) ) _ ( X(p) )
log e =\|- otit +E ((1p)p>y) -
<PZ>; ( +p> 1<j<n p>yp o 1<<n

Now |E; ((t)p>y)] < Z > < 1. Letz € D,(R’) be fixed. Thus

F: Dy(1+R') — Dn(l +R), w2+ E((t(W))p>y)

The Brouwer fixed point theorem shows 3w € D, (1 + R’) with

[(See(i ) -
P>y <j<n



Proof of Lemma 1: Change of Variables

Assume n = ¢(q). We have

P>y 1<a<q p>y

(a,9)=1 p=a(q)

xXi(p) _ 1
p U+itp - Z X](a) Z p U+itp

2
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Proof of Lemma 1: Change of Variables

Assume n = ¢(q). We have

xi(p) 1
o+it, Z Xj(a) Z o+tity )
P>y p 1<a<q p>y p
(a,9)=1 p=a(q)

To change variables we write z = Cw, where

C = (xj(@))1<a<q, (ag)=1» Op = —(logp)(z, 0 C).
15j<0(q)

To prove the lemma, it is sufficient to solve the system

it
Y —=w, 1<a<gq (a,9) =1, 3)
> P

p=a(q)

in (6,),>y, continuously in w € D) (||C™1|ooR).
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Proof of Lemma 1: Choosing angles continuously
1
LetS, := Z — > 10||C_1||OOR. Choose pj 4 and p; 4, such that

p>y
p=a(q)

1 1 1 1 1 1

— &N i= — —, =R == —

3 07 s, Z 3 s, Z o
Y<P<Pia P1,a<P<p2a
p=a(q) p=a(q)

and write Ay := 1 — Ao + A;. We choose
0 if y<p<pia

Op=| m+ur if pra <p<pra
m—uy I pra<p

It is sufficient to solve, in the real unknowns u; and uy, continuously
in w, for |w,| < ||C7!||ooR, the equation
Wa

Ae™ + e " = N\ — 5 4)
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The image under the diffeomorphism F

2 . .
F: ]0’ g[ — C,  (ur,u2) — A" + Age™ "2

)



The image under the diffeomorphism F

2 . .
F: }0’ g[ — C,  (ur,uz) — e + Mg,

o

Figure: The image of F, depicted by the region with the blue boundary,
contains the disk with center )\ and radius ]—10.
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Proof of Lower Bound: Preparation

If oy < 1then Ni(0y,02,T) >F .0, T by aresult of Kaczorowski
and Kulas. We may thus assume o1 > 1.

We choose g to be the least common multiple of the conductors of the
Y eC={Y1,..., P} with2 < n < ¢(q). We use the notation

Fi() = Py(5)Luy(s). Puyls) = D 9%
k>1

We choose y = py, such that if p divides a k for which there is a j such
that ¢;x # 0, then p < y. Denoting by x; the Dirichlet character
modulo g that is induced by 1); we can thus write

Fi(s) = h; <pl§plsL>ng (1_>sz§))>_

where £; is a rational function, not identically equal to zero, with no
poles in {(z1,...,z1) € CF: |z| < 1}.
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The Lower Bound: Applying Lemma 2

Choosing R = 1 we get by Lemma 2 a real > 0, which will be the
one we use for Theorem 2. Let o) and o be real numbers such that
1 <01 <oy <1+ n, and choose o = % By Lemma 2, there is
a sequence (tp)p of real numbers such that for all j, 1 <j <n,

—1
hj( iit s +1it ) H <1— Xj(p.)> = Hmiln
O +ip, O Tipy, poti
P 193 p>pL

We write

1 1

1 L

(-2

pP>pL

Asn > 2, wehave I, Gj(o) = 0.
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We now choose a circle C = C(o, r) centered at 0 = 27?2 and with a
radius r with 0 < r < 257 such that 3 77| Gj(s) does not vanish on
C. We write

n
7 += min Z;GJ(S) >
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The Lower Bound: Truncating the Products

We now choose a circle C = C(o, r) centered at 0 = 27?2 and with a

radius r with 0 < r < 22591 such that > 7, Gi(s) does not vanish on
2 j=1 "]
C. We write

seC

v := min Z Gi(s)| > 0.
j=1

We can choose a prime number py; > pr such that forall j, 1 <j <n,

1 1 )\ !
Fj(z)_hj<1ﬁ"“’pi) H (1—X](p)> <l, Rz > o—r,

z 3n
pPL<p<pm p

1 1 xi@)\ 7'~
Gj(s) - h]( STty " s+if1:L> H (1 B < E’ s > o—r.
pl p P

p s—+ity
L L<p<pm
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SV (N U S 12X
7 S+ltp1 7"'7px+lr,,L PL<P<pMm ps«Htp
L

Py

<X
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The Lower Bound: Weyl’s Criterion and Rouche’s Theorem

By Weyl’s criterion, we know that the set {p"l’ N pf{,[ is uniformly
distributed in {z : |z| = 1}™. It follows that the set of ¢ € R, such that
for all s with |s — o| < randallj, 1 <j<n,

—1
x;j(p)
h/( s+t A+1t> H])L<P§PM <lips+it>
) 1 1 xi0)
hj< sFitp) 2 sTtpy ) HpL<pSpM (lfpsjutp
Py 123

has positive lower density. For these real ¢, we have thus

As > | Gj(o) = 0, it follows by Rouche’s theorem that
F F;(s + it) has at least one zero in |s — o] < r.



The Upper Bound

Let a = (a,),>1 be a non-zero periodic sequence. Then

Hlog(1/u)

1
Np, < + u, 00, T> <y »

2

forO<u<1/2andT > 1.



Derivation of the upper bound

Use Littlewood’s lemma together with the following estimate from
Kacenas and Laurincikas: For 1/2 < o < 1,

2—20'T2—20' 4q

/T’F( + 't)\zdt— li| .]2((2 i/q) + O 4 j=1 |aj|2
0 al0 +1 = qQUJZI a; 0,]/9 (20— 1)(1 —0)
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where ((s, r) is the Hurwitz zeta function.




Derivation of the upper bound

Use Littlewood’s lemma together with the following estimate from
Kacenas and Laurincikas: For 1/2 < o < 1,

2-20 220 N4

/T’F( + 't)\zdt— li[ .yzg(z i/q) + O 4 j=1 |aj|2
0 al0 +1 = qQUJZI a; 0,]/9 2o —1)(1 — o)
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where ((s, r) is the Hurwitz zeta function. By Jensen’s inequality,

T T
T 1
/ log |Fo(o+it)|dt < Elog <T/ |Fo(o + it)|2dt> = 0,(Tlog(1/u)),
0 0

foro = (1+u)/2.



Summary

» Every Dirichlet series F,(s) with periodic coefficients can be
written uniquely in the form

ZPw (s)Ly(s)

peDr

where the Py (s) are Dirichlet polynomials.



Summary

» Every Dirichlet series F,(s) with periodic coefficients can be
written uniquely in the form

Z Py (s)Ly(s)
peDw

where the Py (s) are Dirichlet polynomials.

» If the above sum has more than one non-zero term, then there
exists a number 77 = n(a) > 0 such that, for all real numbers o
and 0y with 1/2 < 01 < 0p < 1 4 1 and all sufficiently large 7,
we have

NFa (017 02, T) XLl,O‘l,O'z N;‘a(ala g2, T) Xa,al,az T.
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