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Motivation

General Riemann Hypothesis

Every Lχ(s) function, associated with a Dirichlet character χ, is zero-
free in the open half-plane <(s) > 1/2.

Dirichlet characters are characterized by two properties:

1. completely multiplicative

2. periodic

Question

What can we say about zeros in <(s) > 1/2 for Dirichlet series with
periodic coefficients?
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∑
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A basis for F

Theorem 1.
The family (Lψ)ψ∈Dpr forms a basis of the P-module F .

I Hence we have the vector space decomposition F =
⊕
ψ∈Dpr

Eψ

I Thus every Dirichelt series
∑
n≥1

an

ns , where (an)n≥1 is a periodic

sequence, can be written in a unique way as a finite sum∑
ψ∈Dpr

Pψ(s)Lψ(s) (1)

where the Pψ(s) are Dirichlet polynomials.
I Conversely, every expression of the form (1) is a Dirichlet series

with periodic coefficients.
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Remarks on Theorem 1

I Let’s fix the period q. Codecà, Dvornicich, and Zannier (1998)
showed that{

χ
( ·

d

)
: d|q and χ is a Dirichlet character mod

q
d

}
forms an orthogonal basis for the q-periodic sequences (an)n≥1

with scalar product 〈a, b〉 =
q∑

n=1

anbn.

I Theorem 1 follows from from expressing this result in terms of
primitive characters.
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Definitions

I Let Fa(s) denote the meromorphic continuation of
∑
n≥1

an

ns to the

entire complex plane with at most one simple pole at s = 1.

I We denote by NF(σ1, σ2,T) (respectively N′F(σ1, σ2,T) ) the
number of zeros of the function F(s) in the rectangle
σ1 < <s < σ2, |=s| ≤ T , counted with their multiplicities (resp.
without their multiplicities).
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Zeros

Theorem 2.
Let a = (an)n≥1 be a periodic sequence such that Fa(s) is not of the
form P(s)Lχ(s).

Then there exists a number η = η(a) > 0 such that, for all real
numbers σ1 and σ2 with 1/2 < σ1 < σ2 ≤ 1 + η and all sufficiently
large T, we have

NFa(σ1, σ2,T) � N′Fa
(σ1, σ2,T) � T,

where the implied constants depend on a, σ1, and σ2.

Remark: When we write Fa(s) according to Theorem 1 as

Fa(s) =
∑
ψ∈Dpr

Pψ(s)Lψ(s)

the condition in Theorem 2 is equivalent to asking that Fa(s) does not
belong to one of the submodules generated by a single Lψ.



Zeros

Theorem 2.
Let a = (an)n≥1 be a periodic sequence such that Fa(s) is not of the
form P(s)Lχ(s).

Then there exists a number η = η(a) > 0 such that, for all real
numbers σ1 and σ2 with 1/2 < σ1 < σ2 ≤ 1 + η and all sufficiently
large T, we have

NFa(σ1, σ2,T) � N′Fa
(σ1, σ2,T) � T,

where the implied constants depend on a, σ1, and σ2.

Remark: When we write Fa(s) according to Theorem 1 as

Fa(s) =
∑
ψ∈Dpr

Pψ(s)Lψ(s)

the condition in Theorem 2 is equivalent to asking that Fa(s) does not
belong to one of the submodules generated by a single Lψ.



Zeros

Theorem 2.
Let a = (an)n≥1 be a periodic sequence such that Fa(s) is not of the
form P(s)Lχ(s).

Then there exists a number η = η(a) > 0 such that, for all real
numbers σ1 and σ2 with 1/2 < σ1 < σ2 ≤ 1 + η and all sufficiently
large T, we have

NFa(σ1, σ2,T) � N′Fa
(σ1, σ2,T) � T,

where the implied constants depend on a, σ1, and σ2.

Remark: When we write Fa(s) according to Theorem 1 as

Fa(s) =
∑
ψ∈Dpr

Pψ(s)Lψ(s)

the condition in Theorem 2 is equivalent to asking that Fa(s) does not
belong to one of the submodules generated by a single Lψ.



Which functions in F do not vanish in <s > 1 ?

Corollary.
Let F be a Dirichlet series with periodic coefficients. The following
are equivalent.

(i) F(s) does not vanish in <s > 1.

(ii) F(s) = P(s)Lψ(s), where ψ is a Dirichlet character and P(s) is a
Dirichlet polynomial that does not vanish in <s > 1.

Remark:
I The conditions <s > 1 can be replaced by <s ≥ 1.
I If <s > 1 is replaced by <s > 1/2, the statement is equivalent to

GRH.
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Remarks on Theorem 2

I The upper bound NFa(σ1, σ2,T) � T can be derived from an
estimate of

∫ T
0 |Fa(σ + it)|2dt due to Kačenas and Laurinčikas.

I Laurinčikas (1986) proved the lower bound N′Fa
(σ1, σ2,T) � T

for linear combinations (constant coefficients) of L-functions in
the case η = 0.

I Kaczorowski and Kulas (2007) established the lower bound � T
of Theorem 2 in the case η = 0.

I Both use the joint universal property for Dirichlet L-functions
inside the critical strip.

I For <(s) > 1 we use Brouwer’s fixed point theorem.
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The Lower Bound

Let C be a finite set of at least two primitive Dirichlet characters, and
let (Pψ)ψ∈C be a family of non-zero Dirichlet polynomials. Define

F(s) :=
∑
ψ∈C

Pψ(s)Lψ(s).

Then there exists a number η = η(F) > 0 such that, for all real
numbers σ1 and σ2 with 1/2 ≤ σ1 < σ2 ≤ 1 + η and all sufficiently
large T , we have

N′F(σ1, σ2,T) �F,σ1,σ2 T.



First Lemma for the Lower Bound in <s > 1

Let Dn(R) := {z = (zj)1≤j≤n ∈ Cn : |zj| ≤ R for all 1 ≤ j ≤ n} .

Lemma 1.
Let q be a positive integer, and y and R be positive real numbers. Let
χ1, . . . , χn be pairwise distinct Dirichlet characters modulo q. Then
there exists a real η > 0 such that for all fixed σ with 1 < σ ≤ 1 + η,
and for all prime numbers p > y, there exists a continuous function
tp : Dn(R) −→ R, such that for all z in Dn(R)

z =

(∑
p>y

χj(p)
pσ+itp(z)

)
1≤j≤n

We can interpret this lemma as a linear system to be solved, where the
unknowns are the infinite family of

(
p−itp

)
p>y that must be chosen in

the unit circle, continuously in the parameter z.
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Second Lemma for the Lower Bound in <s > 1

Lemma 2.
Let q and L be positive integers, and R ≥ 1 be real. Let χ1, . . . , χn be
pairwise distinct Dirichlet characters modulo q. For all 1 ≤ j ≤ n, let
hj be a non-zero rational function in L complex variables.

Then there
exists a real η > 0 such that, for all σ with 1 < σ ≤ 1 + η, we have{

z ∈ Cn :
1
R
≤ |zj| ≤ R

}
⊂

(
hj

(
1

p
σ+itp1
1

, . . . ,
1

p
σ+itpL
L

) ∏
p>pL

(
1−

χj(p)
pσ+itp

)−1
)

1≤j≤n

: tp ∈ R


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Brouwer’s Fixed Point Theorem is used to prove Lemma 2
The first Lemma shows there are continuous functions tp such that

wj =
∑
p>y

χj(p)
pσ+itp(w)

, w ∈ Dn(1 + R′), 1 ≤ j ≤ n,

where R′ = π + log R.

Define the error term E by(∑
p>y

log
(

1−
χj(p)
pσ+itp

))
1≤j≤n

=

(
−
∑
p>y

χj(p)
pσ+itp

)
1≤j≤n

+E ((tp)p>y) .

Now |Ej ((tp)p>y)| ≤
∑

p
1
p2 < 1. Let z ∈ Dn(R′) be fixed. Thus

F : Dn(1 + R′) −→ Dn(1 + R′), w 7−→ z + E ((tp(w))p>y)

The Brouwer fixed point theorem shows ∃w ∈ Dn(1 + R′) with(
−
∑
p>y

log
(

1−
χj(p)

pσ+itp(w)

))
1≤j≤n

= z.
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Proof of Lemma 1: Change of Variables

Assume n = ϕ(q). We have∑
p>y

χj(p)
pσ+itp

=
∑

1≤a≤q
(a,q)=1

χj(a)
∑
p>y

p≡a (q)

1
pσ+itp

(2)

To change variables we write z = Cw, where

C := (χj(a))1≤a≤q, (a,q)=1
1≤j≤ϕ(q)

, θp = −(log p)(tp ◦ C).

To prove the lemma, it is sufficient to solve the system

∑
p>y

p≡a (q)

eiθp

pσ
= wa, 1 ≤ a ≤ q, (a, q) = 1, (3)

in (θp)p>y, continuously in w ∈ Dϕ(q)(‖C−1‖∞R).
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Proof of Lemma 1: Choosing angles continuously
Let Sa :=

∑
p>y

p≡a (q)

1
pσ

≥ 10‖C−1‖∞R.

Choose p1,a and p2,a, such that

1
3
≈ λ0 :=

1
Sa

∑
y<p≤p1,a
p≡a (q)

1
pσ
,

1
3
≈ λ1 :=

1
Sa

∑
p1,a<p≤p2,a

p≡a (q)

1
pσ

and write λ2 := 1− λ0 + λ1. We choose

θp =

∣∣∣∣∣∣
0 if y < p ≤ p1,a
π + u1 if p1,a < p ≤ p2,a
π − u2 if p2,a < p

It is sufficient to solve, in the real unknowns u1 and u2, continuously
in wa for |wa| ≤ ‖C−1‖∞R, the equation

λ1eiu1 + λ2e−iu2 = λ0 −
wa

Sa
(4)
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The image under the diffeomorphism F

F :
]
0,
π

2

[2
−→ C, (u1, u2) 7−→ λ1eiu1 + λ2e−iu2 .
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�
�
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��*
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Figure: The image of F, depicted by the region with the blue boundary,
contains the disk with center λ0 and radius 1
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Proof of Lower Bound: Preparation

If σ1 < 1 then N′F(σ1, σ2,T) �F,σ1,σ2 T by a result of Kaczorowski
and Kulas. We may thus assume σ1 ≥ 1.

We choose q to be the least common multiple of the conductors of the
ψ ∈ C = {ψ1, . . . , ψn} with 2 ≤ n ≤ ϕ(q). We use the notation

Fj(s) = Pψj(s)Lψj(s), Pψj(s) =
∑
k≥1

cj,k

ks

We choose y = pL such that if p divides a k for which there is a j such
that cj,k 6= 0, then p ≤ y. Denoting by χj the Dirichlet character
modulo q that is induced by ψj we can thus write

Fj(s) = hj

(
1
ps

1
, . . . ,

1
ps

L

) ∏
p>pL

(
1−

χj(p)
p s

)−1

where hj is a rational function, not identically equal to zero, with no
poles in {(z1, . . . , zL) ∈ CL : |zl| < 1}.
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The Lower Bound: Applying Lemma 2

Choosing R = 1 we get by Lemma 2 a real η > 0, which will be the
one we use for Theorem 2.

Let σ1 and σ2 be real numbers such that
1 ≤ σ1 < σ2 ≤ 1 + η, and choose σ = σ1+σ2

2 . By Lemma 2, there is
a sequence (tp)p of real numbers such that for all j, 1 ≤ j ≤ n,

hj

(
1

p
σ+itp1
1

, . . . ,
1

p
σ+itpL
L

) ∏
p>pL

(
1−

χj(p)
pσ+itp

)−1

= e2iπj/n

We write

Gj(s) := hj

(
1

p
s+itp1
1

, . . . ,
1

p
s+itpL
L

) ∏
p>pL

(
1−

χj(p)
p s+itp

)−1

.

As n ≥ 2, we have
∑n

j=1 Gj(σ) = 0.
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The Lower Bound: Truncating the Products

We now choose a circle C = C(σ, r) centered at σ = σ1+σ2
2 and with a

radius r with 0 < r < σ2−σ1
2 , such that

∑n
j=1 Gj(s) does not vanish on

C. We write

γ := min
s∈C

∣∣∣∣∣∣
n∑

j=1

Gj(s)

∣∣∣∣∣∣ > 0.

We can choose a prime number pM ≥ pL such that for all j, 1 ≤ j ≤ n,∣∣∣∣∣∣Fj(z)− hj

(
1
pz

1
, . . . ,

1
pz

L

) ∏
pL<p≤pM

(
1−

χj(p)
p z

)−1
∣∣∣∣∣∣ < γ

3n
, <z ≥ σ−r,

∣∣∣∣∣∣Gj(s)− hj

(
1

p
s+itp1
1

, . . . ,
1

p
s+itpL
L

) ∏
pL<p≤pM

(
1−

χj(p)
p s+itp

)−1
∣∣∣∣∣∣ < γ

3n
, <s ≥ σ−r.
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The Lower Bound: Weyl’s Criterion and Rouche’s Theorem

By Weyl’s criterion, we know that the set {pit
1 , . . . , p

it
M} is uniformly

distributed in {z : |z| = 1}M.

It follows that the set of t ∈ R, such that
for all s with |s− σ| ≤ r and all j, 1 ≤ j ≤ n,

∣∣∣∣∣hj

(
1

ps+it
1

,..., 1
ps+it

L

)∏
pL<p≤pM

(
1−

χj(p)

p s+it

)−1

−hj

(
1

p
s+itp1
1

,..., 1

p
s+itpL
L

)∏
pL<p≤pM

(
1−

χj(p)

p s+itp

)−1
∣∣∣∣∣< γ

3n ,

has positive lower density. For these real t, we have thus

max
s∈C

∣∣∣∣∣∣
n∑

j=1

Fj(s + it)− Gj(s)

∣∣∣∣∣∣ < γ = min
s∈C

∣∣∣∣∣∣
n∑

j=1

Gj(s)

∣∣∣∣∣∣
As
∑n

j=1 Gj(σ) = 0, it follows by Rouche’s theorem that
F(s + it) =

∑n
j=1 Fj(s + it) has at least one zero in |s− σ| < r.
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The Upper Bound

Let a = (an)n≥1 be a non-zero periodic sequence. Then

NFa

(
1
2

+ u,+∞,T
)
�a T

log(1/u)
u

for 0 < u ≤ 1/2 and T ≥ 1.



Derivation of the upper bound

Use Littlewood’s lemma together with the following estimate from
Kačenas and Laurinčikas: For 1/2 < σ < 1,∫ T

0
|Fa(σ + it)|2dt =

T
q2σ

q∑
j=1

|aj|2ζ(2σ, j/q) + O

(
q2−2σT2−2σ∑q

j=1 |aj|2

(2σ − 1)(1− σ)

)

= Oa

(
T

(2σ − 1)(1− σ)

)
,

where ζ(s, r) is the Hurwitz zeta function.

By Jensen’s inequality,∫ T

0
log |Fa(σ+it)|dt ≤ T

2
log
(

1
T

∫ T

0
|Fa(σ + it)|2dt

)
= Oa(T log(1/u)),

for σ = (1 + u)/2.
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Summary

I Every Dirichlet series Fa(s) with periodic coefficients can be
written uniquely in the form

Fa(s) =
∑
ψ∈Dpr

Pψ(s)Lψ(s)

where the Pψ(s) are Dirichlet polynomials.

I If the above sum has more than one non-zero term, then there
exists a number η = η(a) > 0 such that, for all real numbers σ1
and σ2 with 1/2 < σ1 < σ2 ≤ 1 + η and all sufficiently large T ,
we have

NFa(σ1, σ2,T) �a,σ1,σ2 N′Fa
(σ1, σ2,T) �a,σ1,σ2 T.
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