Zeros of Dirichlet series with periodic coefficients

Eric Saias¹ Andreas Weingartner²

¹Laboratoire de Probabilités et Modèles Aléatoires Université Pierre et Marie Curie

> ²Department of Mathematics Southern Utah University

Zeta Functions, L-Functions and their Applications
June 1, 2009

Motivation

General Riemann Hypothesis

Every $L_{\chi}(s)$ function, associated with a Dirichlet character χ , is zero-free in the open half-plane $\Re(s) > 1/2$.

Motivation

General Riemann Hypothesis

Every $L_{\chi}(s)$ function, associated with a Dirichlet character χ , is zero-free in the open half-plane $\Re(s) > 1/2$.

Dirichlet characters are characterized by two properties:

- 1. completely multiplicative
- 2. periodic

Motivation

General Riemann Hypothesis

Every $L_{\chi}(s)$ function, associated with a Dirichlet character χ , is zero-free in the open half-plane $\Re(s) > 1/2$.

Dirichlet characters are characterized by two properties:

- 1. completely multiplicative
- 2. periodic

Question

What can we say about zeros in $\Re(s) > 1/2$ for Dirichlet series with periodic coefficients?

▶ Let \mathcal{P} be the set of Dirichlet polynomials.

- ▶ Let \mathcal{P} be the set of Dirichlet polynomials.
- Let \mathcal{F} be the set of formal Dirichlet series $\sum_{n\geq 1} \frac{a_n}{n^s}$, where $a=(a_n)_{n\geq 1}$ is a periodic sequence of complex numbers.

- ▶ Let \mathcal{P} be the set of Dirichlet polynomials.
- Let \mathcal{F} be the set of formal Dirichlet series $\sum_{n\geq 1} \frac{a_n}{n^s}$, where $a=(a_n)_{n\geq 1}$ is a periodic sequence of complex numbers.
- We have

$$\mathcal{P}\cdot\mathcal{F}\subset\mathcal{F}$$

Thus \mathcal{F} is a \mathcal{P} -module in the set of all Dirichlet series.

- ▶ Let \mathcal{P} be the set of Dirichlet polynomials.
- Let \mathcal{F} be the set of formal Dirichlet series $\sum_{n\geq 1} \frac{a_n}{n^s}$, where $a=(a_n)_{n\geq 1}$ is a periodic sequence of complex numbers.
- We have

$$\mathcal{P} \cdot \mathcal{F} \subset \mathcal{F}$$

Thus \mathcal{F} is a \mathcal{P} -module in the set of all Dirichlet series.

▶ Let \mathcal{D}^{pr} be the set of primitive Dirichlet characters.

- ▶ Let \mathcal{P} be the set of Dirichlet polynomials.
- Let \mathcal{F} be the set of formal Dirichlet series $\sum_{n\geq 1} \frac{a_n}{n^s}$, where $a=(a_n)_{n\geq 1}$ is a periodic sequence of complex numbers.
- We have

$$\mathcal{P} \cdot \mathcal{F} \subset \mathcal{F}$$

Thus \mathcal{F} is a \mathcal{P} -module in the set of all Dirichlet series.

- ▶ Let \mathcal{D}^{pr} be the set of primitive Dirichlet characters.
- ▶ For ψ in \mathcal{D}^{pr} , we write

$$\mathcal{E}_{\psi} = \{ P(s) L_{\psi}(s) \mid P \in \mathcal{P} \}.$$

Theorem 1.

The family $(L_{\psi})_{\psi \in \mathcal{D}^{pr}}$ forms a basis of the \mathcal{P} -module \mathcal{F} .

Theorem 1.

The family $(L_{\psi})_{\psi \in \mathcal{D}^{pr}}$ forms a basis of the \mathcal{P} -module \mathcal{F} .

lacktriangleright Hence we have the vector space decomposition $\mathcal{F}=igoplus_{\psi}\mathcal{E}_{\psi}$

Theorem 1.

The family $(L_{\psi})_{\psi \in \mathcal{D}^{pr}}$ forms a basis of the \mathcal{P} -module \mathcal{F} .

- lacktriangle Hence we have the vector space decomposition $\mathcal{F}=igoplus_{\psi\in\mathcal{D}^{\mathrm{pr}}}\mathcal{E}_{\psi}$
- ► Thus every Dirichelt series $\sum_{n\geq 1} \frac{a_n}{n^s}$, where $(a_n)_{n\geq 1}$ is a periodic sequence, can be written in a unique way as a finite sum

$$\sum_{\psi \in \mathcal{D}^{pr}} P_{\psi}(s) L_{\psi}(s) \tag{1}$$

where the $P_{\psi}(s)$ are Dirichlet polynomials.

Theorem 1.

The family $(L_{\psi})_{\psi \in \mathcal{D}^{pr}}$ forms a basis of the \mathcal{P} -module \mathcal{F} .

- lacktriangle Hence we have the vector space decomposition $\mathcal{F}=igoplus_{\psi\in\mathcal{D}^{\mathrm{pr}}}\mathcal{E}_{\psi}$
- ► Thus every Dirichelt series $\sum_{n\geq 1} \frac{a_n}{n^s}$, where $(a_n)_{n\geq 1}$ is a periodic sequence, can be written in a unique way as a finite sum

$$\sum_{\psi \in \mathcal{D}^{pr}} P_{\psi}(s) L_{\psi}(s) \tag{1}$$

where the $P_{\psi}(s)$ are Dirichlet polynomials.

► Conversely, every expression of the form (1) is a Dirichlet series with periodic coefficients.

► Let's fix the period q. Codecà, Dvornicich, and Zannier (1998) showed that

$$\left\{\chi\left(\frac{\cdot}{d}\right) \ : \ d|q \text{ and } \chi \text{ is a Dirichlet character mod } \frac{q}{d}\right\}$$

forms an orthogonal basis for the *q*-periodic sequences $(a_n)_{n\geq 1}$ with scalar product $\langle a,b\rangle=\sum_{n=1}^q a_n\overline{b_n}$.

► Let's fix the period q. Codecà, Dvornicich, and Zannier (1998) showed that

$$\left\{\chi\left(\frac{\cdot}{d}\right) \ : \ d|q \text{ and } \chi \text{ is a Dirichlet character mod } \frac{q}{d}\right\}$$

forms an orthogonal basis for the q-periodic sequences $(a_n)_{n\geq 1}$ with scalar product $\langle a,b\rangle=\sum_{n=1}^q a_n\overline{b_n}$.

► Theorem 1 follows from from expressing this result in terms of primitive characters.

Definitions

Let $F_a(s)$ denote the meromorphic continuation of $\sum_{n\geq 1} \frac{a_n}{n^s}$ to the entire complex plane with at most one simple pole at s=1.

Definitions

- Let $F_a(s)$ denote the meromorphic continuation of $\sum_{n\geq 1} \frac{a_n}{n^s}$ to the entire complex plane with at most one simple pole at s=1.
- ▶ We denote by $N_F(\sigma_1, \sigma_2, T)$ (respectively $N_F'(\sigma_1, \sigma_2, T)$) the number of zeros of the function F(s) in the rectangle $\sigma_1 < \Re s < \sigma_2$, $|\Im s| \le T$, counted with their multiplicities (resp. without their multiplicities).

Zeros

Theorem 2.

Let $a = (a_n)_{n \ge 1}$ be a periodic sequence such that $F_a(s)$ is not of the form $P(s)L_{\chi}(s)$.

Zeros

Theorem 2.

Let $a = (a_n)_{n \ge 1}$ be a periodic sequence such that $F_a(s)$ is not of the form $P(s)L_{\chi}(s)$.

Then there exists a number $\eta = \eta(a) > 0$ such that, for all real numbers σ_1 and σ_2 with $1/2 < \sigma_1 < \sigma_2 \le 1 + \eta$ and all sufficiently large T, we have

$$N_{F_a}(\sigma_1, \sigma_2, T) \asymp N'_{F_a}(\sigma_1, \sigma_2, T) \asymp T$$

where the implied constants depend on a, σ_1 , and σ_2 .

Zeros

Theorem 2.

Let $a = (a_n)_{n \ge 1}$ be a periodic sequence such that $F_a(s)$ is not of the form $P(s)L_{\chi}(s)$.

Then there exists a number $\eta = \eta(a) > 0$ such that, for all real numbers σ_1 and σ_2 with $1/2 < \sigma_1 < \sigma_2 \le 1 + \eta$ and all sufficiently large T, we have

$$N_{F_a}(\sigma_1, \sigma_2, T) \asymp N'_{F_a}(\sigma_1, \sigma_2, T) \asymp T$$

where the implied constants depend on a, σ_1 , and σ_2 .

Remark: When we write $F_a(s)$ according to Theorem 1 as

$$F_a(s) = \sum_{\psi \in \mathcal{D}^{pr}} P_{\psi}(s) L_{\psi}(s)$$

the condition in Theorem 2 is equivalent to asking that $F_a(s)$ does not belong to one of the submodules generated by a single L_{ψ} .

Corollary.

Let F be a Dirichlet series with periodic coefficients. The following are equivalent.

Corollary.

Let F be a Dirichlet series with periodic coefficients. The following are equivalent.

(i) F(s) does not vanish in $\Re s > 1$.

Corollary.

Let F be a Dirichlet series with periodic coefficients. The following are equivalent.

- (i) F(s) does not vanish in $\Re s > 1$.
- (ii) $F(s) = P(s)L_{\psi}(s)$, where ψ is a Dirichlet character and P(s) is a Dirichlet polynomial that does not vanish in $\Re s > 1$.

Corollary.

Let F be a Dirichlet series with periodic coefficients. The following are equivalent.

- (i) F(s) does not vanish in $\Re s > 1$.
- (ii) $F(s) = P(s)L_{\psi}(s)$, where ψ is a Dirichlet character and P(s) is a Dirichlet polynomial that does not vanish in $\Re s > 1$.

Remark:

▶ The conditions $\Re s > 1$ can be replaced by $\Re s \ge 1$.

Corollary.

Let F be a Dirichlet series with periodic coefficients. The following are equivalent.

- (i) F(s) does not vanish in $\Re s > 1$.
- (ii) $F(s) = P(s)L_{\psi}(s)$, where ψ is a Dirichlet character and P(s) is a Dirichlet polynomial that does not vanish in $\Re s > 1$.

Remark:

- ▶ The conditions $\Re s > 1$ can be replaced by $\Re s \ge 1$.
- ▶ If $\Re s > 1$ is replaced by $\Re s > 1/2$, the statement is equivalent to GRH.

▶ The upper bound $N_{F_a}(\sigma_1, \sigma_2, T) \ll T$ can be derived from an estimate of $\int_0^T |F_a(\sigma + it)|^2 dt$ due to Kačenas and Laurinčikas.

- ▶ The upper bound $N_{F_a}(\sigma_1, \sigma_2, T) \ll T$ can be derived from an estimate of $\int_0^T |F_a(\sigma + it)|^2 dt$ due to Kačenas and Laurinčikas.
- Laurinčikas (1986) proved the lower bound $N'_{F_a}(\sigma_1, \sigma_2, T) \gg T$ for linear combinations (constant coefficients) of *L*-functions in the case $\eta = 0$.

- ▶ The upper bound $N_{F_a}(\sigma_1, \sigma_2, T) \ll T$ can be derived from an estimate of $\int_0^T |F_a(\sigma + it)|^2 dt$ due to Kačenas and Laurinčikas.
- Laurinčikas (1986) proved the lower bound $N'_{F_a}(\sigma_1, \sigma_2, T) \gg T$ for linear combinations (constant coefficients) of *L*-functions in the case $\eta = 0$.
- ► Kaczorowski and Kulas (2007) established the lower bound $\gg T$ of Theorem 2 in the case $\eta = 0$.

- ▶ The upper bound $N_{F_a}(\sigma_1, \sigma_2, T) \ll T$ can be derived from an estimate of $\int_0^T |F_a(\sigma + it)|^2 dt$ due to Kačenas and Laurinčikas.
- Laurinčikas (1986) proved the lower bound $N'_{F_a}(\sigma_1, \sigma_2, T) \gg T$ for linear combinations (constant coefficients) of *L*-functions in the case $\eta = 0$.
- ► Kaczorowski and Kulas (2007) established the lower bound $\gg T$ of Theorem 2 in the case $\eta = 0$.
- ▶ Both use the joint universal property for Dirichlet L-functions inside the critical strip.

- ▶ The upper bound $N_{F_a}(\sigma_1, \sigma_2, T) \ll T$ can be derived from an estimate of $\int_0^T |F_a(\sigma + it)|^2 dt$ due to Kačenas and Laurinčikas.
- Laurinčikas (1986) proved the lower bound $N'_{F_a}(\sigma_1, \sigma_2, T) \gg T$ for linear combinations (constant coefficients) of *L*-functions in the case $\eta = 0$.
- ► Kaczorowski and Kulas (2007) established the lower bound $\gg T$ of Theorem 2 in the case $\eta = 0$.
- Both use the joint universal property for Dirichlet L-functions inside the critical strip.
- ▶ For $\Re(s) > 1$ we use Brouwer's fixed point theorem.

The Lower Bound

Let C be a finite set of at least two primitive Dirichlet characters, and let $(P_{\psi})_{\psi \in C}$ be a family of non-zero Dirichlet polynomials. Define

$$F(s) := \sum_{\psi \in \mathcal{C}} P_{\psi}(s) L_{\psi}(s).$$

Then there exists a number $\eta = \eta(F) > 0$ such that, for all real numbers σ_1 and σ_2 with $1/2 \le \sigma_1 < \sigma_2 \le 1 + \eta$ and all sufficiently large T, we have

$$N'_F(\sigma_1, \sigma_2, T) \gg_{F,\sigma_1,\sigma_2} T.$$

Let $D_n(R):=\{z=(z_j)_{1\leq j\leq n}\in\mathbb{C}^n:|z_j|\leq R\ \text{ for all } 1\leq j\leq n\}$.

Let $D_n(R):=\{z=(z_j)_{1\leq j\leq n}\in\mathbb{C}^n:|z_j|\leq R\ \text{ for all }1\leq j\leq n\}$.

Lemma 1.

Let q be a positive integer, and y and R be positive real numbers. Let χ_1, \ldots, χ_n be pairwise distinct Dirichlet characters modulo q.

Let
$$D_n(R):=\{z=(z_j)_{1\leq j\leq n}\in\mathbb{C}^n:|z_j|\leq R\ \text{ for all }\ 1\leq j\leq n\}$$
 .

Lemma 1.

Let q be a positive integer, and y and R be positive real numbers. Let χ_1, \ldots, χ_n be pairwise distinct Dirichlet characters modulo q. Then there exists a real $\eta > 0$ such that for all fixed σ with $1 < \sigma \le 1 + \eta$, and for all prime numbers p > y, there exists a continuous function $t_p: D_n(R) \longrightarrow \mathbb{R}$, such that for all z in $D_n(R)$

$$z = \left(\sum_{p>y} \frac{\chi_j(p)}{p^{\sigma + it_p(z)}}\right)_{1 \le j \le n}$$

Let
$$D_n(R) := \{z = (z_j)_{1 \le j \le n} \in \mathbb{C}^n : |z_j| \le R \text{ for all } 1 \le j \le n \}$$
.

Lemma 1.

Let q be a positive integer, and y and R be positive real numbers. Let χ_1, \ldots, χ_n be pairwise distinct Dirichlet characters modulo q. Then there exists a real $\eta > 0$ such that for all fixed σ with $1 < \sigma \le 1 + \eta$, and for all prime numbers p > y, there exists a continuous function $t_p: D_n(R) \longrightarrow \mathbb{R}$, such that for all z in $D_n(R)$

$$z = \left(\sum_{p>y} \frac{\chi_j(p)}{p^{\sigma + it_p(z)}}\right)_{1 \le j \le n}$$

We can interpret this lemma as a linear system to be solved, where the unknowns are the infinite family of $(p^{-it_p})_{p>y}$ that must be chosen in the unit circle, continuously in the parameter z.

Second Lemma for the Lower Bound in $\Re s > 1$

Lemma 2.

Let q and L be positive integers, and $R \ge 1$ be real. Let χ_1, \ldots, χ_n be pairwise distinct Dirichlet characters modulo q. For all $1 \le j \le n$, let h_j be a non-zero rational function in L complex variables.

Second Lemma for the Lower Bound in $\Re s > 1$

Lemma 2.

Let q and L be positive integers, and $R \ge 1$ be real. Let χ_1, \ldots, χ_n be pairwise distinct Dirichlet characters modulo q. For all $1 \le j \le n$, let h_j be a non-zero rational function in L complex variables. Then there exists a real $\eta > 0$ such that, for all σ with $1 < \sigma \le 1 + \eta$, we have

$$\left\{ z \in \mathbb{C}^n : \frac{1}{R} \le |z_j| \le R \right\} \subset$$

$$\left\{ \left(h_j \left(\frac{1}{p_1^{\sigma + it_{p_1}}}, \dots, \frac{1}{p_L^{\sigma + it_{p_L}}} \right) \prod_{p > p_L} \left(1 - \frac{\chi_j(p)}{p^{\sigma + it_p}} \right)^{-1} \right)_{1 \le j \le n} : t_p \in \mathbb{R} \right\}$$

The first Lemma shows there are continuous functions t_p such that

$$w_j = \sum_{p>y} \frac{\chi_j(p)}{p^{\sigma + it_p(w)}}, \qquad w \in D_n(1 + R'), \ 1 \le j \le n,$$

where $R' = \pi + \log R$.

The first Lemma shows there are continuous functions t_p such that

$$w_j = \sum_{p>y} \frac{\chi_j(p)}{p^{\sigma + it_p(w)}}, \qquad w \in D_n(1 + R'), \ 1 \le j \le n,$$

where $R' = \pi + \log R$. Define the error term *E* by

$$\left(\sum_{p>y} \log \left(1 - \frac{\chi_j(p)}{p^{\sigma + it_p}}\right)\right)_{1 \le j \le n} = \left(-\sum_{p>y} \frac{\chi_j(p)}{p^{\sigma + it_p}}\right)_{1 \le j \le n} + E\left((t_p)_{p>y}\right).$$

The first Lemma shows there are continuous functions t_p such that

$$w_j = \sum_{p>y} \frac{\chi_j(p)}{p^{\sigma + it_p(w)}}, \qquad w \in D_n(1+R'), \ 1 \le j \le n,$$

where $R' = \pi + \log R$. Define the error term *E* by

$$\left(\sum_{p>y} \log \left(1 - \frac{\chi_j(p)}{p^{\sigma + it_p}}\right)\right)_{1 \le j \le n} = \left(-\sum_{p>y} \frac{\chi_j(p)}{p^{\sigma + it_p}}\right)_{1 \le j \le n} + E\left((t_p)_{p>y}\right).$$

Now $|E_j((t_p)_{p>y})| \le \sum_p \frac{1}{p^2} < 1$.

The first Lemma shows there are continuous functions t_p such that

$$w_j = \sum_{p>y} \frac{\chi_j(p)}{p^{\sigma + it_p(w)}}, \qquad w \in D_n(1 + R'), \ 1 \le j \le n,$$

where $R' = \pi + \log R$. Define the error term *E* by

$$\left(\sum_{p>y} \log \left(1 - \frac{\chi_j(p)}{p^{\sigma + it_p}}\right)\right)_{1 \le j \le n} = \left(-\sum_{p>y} \frac{\chi_j(p)}{p^{\sigma + it_p}}\right)_{1 \le j \le n} + E\left((t_p)_{p>y}\right).$$

Now $|E_j((t_p)_{p>y})| \le \sum_p \frac{1}{p^2} < 1$. Let $z \in D_n(R')$ be fixed. Thus

$$F: D_n(1+R') \longrightarrow D_n(1+R'), \quad w \longmapsto z + E\left((t_p(w))_{p>y}\right)$$

The first Lemma shows there are continuous functions t_p such that

$$w_j = \sum_{p>y} \frac{\chi_j(p)}{p^{\sigma + it_p(w)}}, \qquad w \in D_n(1 + R'), \ 1 \le j \le n,$$

where $R' = \pi + \log R$. Define the error term *E* by

$$\left(\sum_{p>y} \log \left(1 - \frac{\chi_j(p)}{p^{\sigma + it_p}}\right)\right)_{1 \le j \le n} = \left(-\sum_{p>y} \frac{\chi_j(p)}{p^{\sigma + it_p}}\right)_{1 \le j \le n} + E\left((t_p)_{p>y}\right).$$

Now $|E_j((t_p)_{p>y})| \le \sum_p \frac{1}{p^2} < 1$. Let $z \in D_n(R')$ be fixed. Thus

$$F: D_n(1+R') \longrightarrow D_n(1+R'), \quad w \longmapsto z + E((t_p(w))_{p>y})$$

The Brouwer fixed point theorem shows $\exists w \in D_n(1 + R')$ with

$$\left(-\sum_{p>y}\log\left(1-\frac{\chi_j(p)}{p^{\sigma+it_p(w)}}\right)\right)_{1\leq j\leq n}=z.$$

Proof of Lemma 1: Change of Variables

Assume $n = \varphi(q)$. We have

$$\sum_{p>y} \frac{\chi_j(p)}{p^{\sigma+it_p}} = \sum_{\substack{1 \le a \le q \\ (a,q)=1}} \chi_j(a) \sum_{\substack{p>y \\ p \equiv a \ (q)}} \frac{1}{p^{\sigma+it_p}}$$
(2)

Proof of Lemma 1: Change of Variables

Assume $n = \varphi(q)$. We have

$$\sum_{p>y} \frac{\chi_j(p)}{p^{\sigma+it_p}} = \sum_{\substack{1 \le a \le q \\ (a,q)=1}} \chi_j(a) \sum_{\substack{p>y \\ p \equiv a \ (q)}} \frac{1}{p^{\sigma+it_p}}$$
(2)

To change variables we write z = Cw, where

$$C := (\chi_j(a))_{\substack{1 \le a \le q, \ (a,q)=1\\1 \le j \le \varphi(q)}}, \quad \theta_p = -(\log p)(t_p \circ C).$$

Proof of Lemma 1: Change of Variables

Assume $n = \varphi(q)$. We have

$$\sum_{p>y} \frac{\chi_j(p)}{p^{\sigma+it_p}} = \sum_{\substack{1 \le a \le q \\ (a,q)=1}} \chi_j(a) \sum_{\substack{p>y \\ p \equiv a \ (q)}} \frac{1}{p^{\sigma+it_p}}$$
(2)

To change variables we write z = Cw, where

$$C := (\chi_j(a))_{\substack{1 \le a \le q, (a,q)=1\\1 \le j \le \varphi(q)}}, \quad \theta_p = -(\log p)(t_p \circ C).$$

To prove the lemma, it is sufficient to solve the system

$$\sum_{\substack{p>y\\p\equiv a\,(q)}} \frac{e^{i\theta_p}}{p^{\sigma}} = w_a, \qquad 1 \le a \le q, \ (a,q) = 1, \tag{3}$$

in $(\theta_p)_{p>y}$, continuously in $w \in D_{\varphi(q)}(\|C^{-1}\|_{\infty}R)$.

Let
$$S_a := \sum_{\substack{p>y\\p\equiv a\ (a)}} \frac{1}{p^{\sigma}} \ge 10 \|C^{-1}\|_{\infty} R.$$

Let
$$S_a := \sum_{\substack{p>y \\ p \equiv a \ (q)}} \frac{1}{p^{\sigma}} \ge 10 \|C^{-1}\|_{\infty} R$$
. Choose $p_{1,a}$ and $p_{2,a}$, such that

$$\frac{1}{3} \approx \lambda_0 := \frac{1}{S_a} \sum_{\substack{y$$

and write $\lambda_2 := 1 - \lambda_0 + \lambda_1$.

Let
$$S_a := \sum_{\substack{p>y \\ p \equiv a \ (q)}} \frac{1}{p^{\sigma}} \ge 10 \|C^{-1}\|_{\infty} R$$
. Choose $p_{1,a}$ and $p_{2,a}$, such that

$$\frac{1}{3} \approx \lambda_0 := \frac{1}{S_a} \sum_{\substack{y$$

and write $\lambda_2 := 1 - \lambda_0 + \lambda_1$. We choose

$$\theta_p = \begin{vmatrix} 0 & \text{if } y$$

Let
$$S_a := \sum_{\substack{p>y\\p\equiv a\ (q)}} \frac{1}{p^{\sigma}} \ge 10 \|C^{-1}\|_{\infty} R$$
. Choose $p_{1,a}$ and $p_{2,a}$, such that

$$\frac{1}{3} \approx \lambda_0 := \frac{1}{S_a} \sum_{\substack{y$$

and write $\lambda_2 := 1 - \lambda_0 + \lambda_1$. We choose

$$\theta_{p} = \begin{vmatrix} 0 & \text{if } y$$

It is sufficient to solve, in the real unknowns u_1 and u_2 , continuously in w_a for $|w_a| \le ||C^{-1}||_{\infty} R$, the equation

$$\lambda_1 e^{iu_1} + \lambda_2 e^{-iu_2} = \lambda_0 - \frac{w_a}{S_a} \tag{4}$$

$$F: \left[0, \frac{\pi}{2}\right[^2 \longrightarrow \mathbb{C}, \quad (u_1, u_2) \longmapsto \lambda_1 e^{iu_1} + \lambda_2 e^{-iu_2}.$$

$$F:\ \left]0,rac{\pi}{2}
ight[^2\longrightarrow\mathbb{C},\quad (u_1,u_2)\longmapsto\lambda_1e^{iu_1}+\lambda_2e^{-iu_2}.$$

$$F:\ \left]0,rac{\pi}{2}\right[^2\longrightarrow\mathbb{C},\quad (u_1,u_2)\longmapsto\lambda_1e^{iu_1}+\lambda_2e^{-iu_2}.$$

$$F: \ \left]0, \frac{\pi}{2}\right[^2 \longrightarrow \mathbb{C}, \quad (u_1, u_2) \longmapsto \lambda_1 e^{iu_1} + \lambda_2 e^{-iu_2}.$$

Figure: The image of F, depicted by the region with the blue boundary, contains the disk with center λ_0 and radius $\frac{1}{10}$.

If $\sigma_1 < 1$ then $N_F'(\sigma_1, \sigma_2, T) \gg_{F, \sigma_1, \sigma_2} T$ by a result of Kaczorowski and Kulas. We may thus assume $\sigma_1 \ge 1$.

If $\sigma_1 < 1$ then $N_F'(\sigma_1, \sigma_2, T) \gg_{F, \sigma_1, \sigma_2} T$ by a result of Kaczorowski and Kulas. We may thus assume $\sigma_1 \ge 1$.

We choose q to be the least common multiple of the conductors of the $\psi \in \mathcal{C} = \{\psi_1, \dots, \psi_n\}$ with $2 \le n \le \varphi(q)$. We use the notation

$$F_j(s) = P_{\psi_j}(s)L_{\psi_j}(s), \quad P_{\psi_j}(s) = \sum_{k>1} \frac{c_{j,k}}{k^s}$$

If $\sigma_1 < 1$ then $N_F'(\sigma_1, \sigma_2, T) \gg_{F, \sigma_1, \sigma_2} T$ by a result of Kaczorowski and Kulas. We may thus assume $\sigma_1 \ge 1$.

We choose q to be the least common multiple of the conductors of the $\psi \in \mathcal{C} = \{\psi_1, \dots, \psi_n\}$ with $2 \le n \le \varphi(q)$. We use the notation

$$F_j(s) = P_{\psi_j}(s)L_{\psi_j}(s), \quad P_{\psi_j}(s) = \sum_{k>1} \frac{c_{j,k}}{k^s}$$

We choose $y = p_L$ such that if p divides a k for which there is a j such that $c_{j,k} \neq 0$, then $p \leq y$.

If $\sigma_1 < 1$ then $N_F'(\sigma_1, \sigma_2, T) \gg_{F, \sigma_1, \sigma_2} T$ by a result of Kaczorowski and Kulas. We may thus assume $\sigma_1 \ge 1$.

We choose q to be the least common multiple of the conductors of the $\psi \in \mathcal{C} = \{\psi_1, \dots, \psi_n\}$ with $2 \le n \le \varphi(q)$. We use the notation

$$F_j(s) = P_{\psi_j}(s)L_{\psi_j}(s), \quad P_{\psi_j}(s) = \sum_{k>1} \frac{c_{j,k}}{k^s}$$

We choose $y = p_L$ such that if p divides a k for which there is a j such that $c_{j,k} \neq 0$, then $p \leq y$. Denoting by χ_j the Dirichlet character modulo q that is induced by ψ_j we can thus write

$$F_j(s) = h_j \left(\frac{1}{p_1^s}, \dots, \frac{1}{p_L^s} \right) \prod_{p > p_L} \left(1 - \frac{\chi_j(p)}{p^s} \right)^{-1}$$

where h_j is a rational function, not identically equal to zero, with no poles in $\{(z_1, \ldots, z_L) \in \mathbb{C}^L : |z_l| < 1\}$.

Choosing R = 1 we get by Lemma 2 a real $\eta > 0$, which will be the one we use for Theorem 2.

Choosing R=1 we get by Lemma 2 a real $\eta>0$, which will be the one we use for Theorem 2. Let σ_1 and σ_2 be real numbers such that $1\leq \sigma_1<\sigma_2\leq 1+\eta$, and choose $\sigma=\frac{\sigma_1+\sigma_2}{2}$.

Choosing R=1 we get by Lemma 2 a real $\eta>0$, which will be the one we use for Theorem 2. Let σ_1 and σ_2 be real numbers such that $1 \le \sigma_1 < \sigma_2 \le 1 + \eta$, and choose $\sigma = \frac{\sigma_1 + \sigma_2}{2}$. By Lemma 2, there is a sequence $(t_p)_p$ of real numbers such that for all j, $1 \le j \le n$,

$$h_j\left(\frac{1}{p_1^{\sigma+it_{p_1}}},\ldots,\frac{1}{p_L^{\sigma+it_{p_L}}}\right)\prod_{p>p_L}\left(1-\frac{\chi_j(p)}{p^{\sigma+it_p}}\right)^{-1}=e^{2i\pi j/n}$$

Choosing R=1 we get by Lemma 2 a real $\eta>0$, which will be the one we use for Theorem 2. Let σ_1 and σ_2 be real numbers such that $1 \le \sigma_1 < \sigma_2 \le 1 + \eta$, and choose $\sigma = \frac{\sigma_1 + \sigma_2}{2}$. By Lemma 2, there is a sequence $(t_p)_p$ of real numbers such that for all j, $1 \le j \le n$,

$$h_j\left(\frac{1}{p_1^{\sigma+it_{p_1}}},\ldots,\frac{1}{p_L^{\sigma+it_{p_L}}}\right)\prod_{p>p_L}\left(1-\frac{\chi_j(p)}{p^{\sigma+it_p}}\right)^{-1}=e^{2i\pi j/n}$$

We write

$$G_j(s) := h_j \left(\frac{1}{p_1^{s+it_{p_1}}}, \dots, \frac{1}{p_L^{s+it_{p_L}}} \right) \prod_{p > p_L} \left(1 - \frac{\chi_j(p)}{p^{s+it_p}} \right)^{-1}.$$

Choosing R=1 we get by Lemma 2 a real $\eta>0$, which will be the one we use for Theorem 2. Let σ_1 and σ_2 be real numbers such that $1 \le \sigma_1 < \sigma_2 \le 1 + \eta$, and choose $\sigma = \frac{\sigma_1 + \sigma_2}{2}$. By Lemma 2, there is a sequence $(t_p)_p$ of real numbers such that for all j, $1 \le j \le n$,

$$h_j\left(\frac{1}{p_1^{\sigma+it_{p_1}}},\ldots,\frac{1}{p_L^{\sigma+it_{p_L}}}\right)\prod_{p>p_L}\left(1-\frac{\chi_j(p)}{p^{\sigma+it_p}}\right)^{-1}=e^{2i\pi j/n}$$

We write

$$G_j(s) := h_j \left(\frac{1}{p_1^{s+it_{p_1}}}, \dots, \frac{1}{p_L^{s+it_{p_L}}} \right) \prod_{p > p_L} \left(1 - \frac{\chi_j(p)}{p^{s+it_p}} \right)^{-1}.$$

As $n \ge 2$, we have $\sum_{j=1}^{n} G_j(\sigma) = 0$.

The Lower Bound: Truncating the Products

We now choose a circle $C = C(\sigma, r)$ centered at $\sigma = \frac{\sigma_1 + \sigma_2}{2}$ and with a radius r with $0 < r < \frac{\sigma_2 - \sigma_1}{2}$, such that $\sum_{j=1}^n G_j(s)$ does not vanish on C. We write

$$\gamma := \min_{s \in C} \left| \sum_{j=1}^n G_j(s) \right| > 0.$$

The Lower Bound: Truncating the Products

We now choose a circle $C = C(\sigma, r)$ centered at $\sigma = \frac{\sigma_1 + \sigma_2}{2}$ and with a radius r with $0 < r < \frac{\sigma_2 - \sigma_1}{2}$, such that $\sum_{j=1}^n G_j(s)$ does not vanish on C. We write

$$\gamma := \min_{s \in C} \left| \sum_{j=1}^n G_j(s) \right| > 0.$$

We can choose a prime number $p_M \ge p_L$ such that for all j, $1 \le j \le n$,

$$\left| F_j(z) - h_j\left(\frac{1}{p_1^z}, \dots, \frac{1}{p_L^z}\right) \prod_{p_L$$

$$\left|G_j(s) - h_j\left(\frac{1}{p_1^{s+it_{p_1}}}, \dots, \frac{1}{p_I^{s+it_{p_L}}}\right) \prod_{p_1 \leq p \leq p_M} \left(1 - \frac{\chi_j(p)}{p^{s+it_p}}\right)^{-1}\right| < \frac{\gamma}{3n}, \Re s \geq \sigma - r.$$

By Weyl's criterion, we know that the set $\{p_1^{it}, \dots, p_M^{it}\}$ is uniformly distributed in $\{z : |z| = 1\}^M$.

By Weyl's criterion, we know that the set $\{p_1^{it}, \ldots, p_M^{it}\}$ is uniformly distributed in $\{z : |z| = 1\}^M$. It follows that the set of $t \in \mathbb{R}$, such that for all s with $|s - \sigma| \le r$ and all j, $1 \le j \le n$,

$$\begin{split} \left| h_j \bigg(\frac{1}{p_1^{s+it}}, \dots, \frac{1}{p_L^{s+it}} \bigg) \prod_{p_L$$

has positive lower density.

By Weyl's criterion, we know that the set $\{p_1^{it}, \ldots, p_M^{it}\}$ is uniformly distributed in $\{z : |z| = 1\}^M$. It follows that the set of $t \in \mathbb{R}$, such that for all s with $|s - \sigma| \le r$ and all j, $1 \le j \le n$,

$$\begin{split} \left| h_j \left(\frac{1}{p_1^{s+it}}, \dots, \frac{1}{p_L^{s+it}} \right) \prod_{p_L$$

has positive lower density. For these real t, we have thus

$$\max_{s \in C} \left| \sum_{j=1}^{n} F_j(s+it) - G_j(s) \right| < \gamma = \min_{s \in C} \left| \sum_{j=1}^{n} G_j(s) \right|$$

By Weyl's criterion, we know that the set $\{p_1^{it}, \ldots, p_M^{it}\}$ is uniformly distributed in $\{z : |z| = 1\}^M$. It follows that the set of $t \in \mathbb{R}$, such that for all s with $|s - \sigma| \le r$ and all j, $1 \le j \le n$,

$$\begin{split} \left| h_j \left(\frac{1}{p_1^{s+it}}, \dots, \frac{1}{p_L^{s+it}} \right) \prod_{p_L$$

has positive lower density. For these real t, we have thus

$$\max_{s \in C} \left| \sum_{j=1}^{n} F_j(s+it) - G_j(s) \right| < \gamma = \min_{s \in C} \left| \sum_{j=1}^{n} G_j(s) \right|$$

As $\sum_{j=1}^{n} G_j(\sigma) = 0$, it follows by Rouche's theorem that $F(s+it) = \sum_{j=1}^{n} F_j(s+it)$ has at least one zero in $|s-\sigma| < r$.

The Upper Bound

Let $a = (a_n)_{n \ge 1}$ be a non-zero periodic sequence. Then

$$N_{F_a}\left(\frac{1}{2}+u,+\infty,T\right)\ll_a T\frac{\log(1/u)}{u}$$

for $0 < u \le 1/2$ and $T \ge 1$.

Derivation of the upper bound

Use Littlewood's lemma together with the following estimate from Kačenas and Laurinčikas: For $1/2 < \sigma < 1$,

$$\int_{0}^{T} |F_{a}(\sigma + it)|^{2} dt = \frac{T}{q^{2\sigma}} \sum_{j=1}^{q} |a_{j}|^{2} \zeta(2\sigma, j/q) + O\left(\frac{q^{2-2\sigma} T^{2-2\sigma} \sum_{j=1}^{q} |a_{j}|^{2}}{(2\sigma - 1)(1 - \sigma)}\right)$$
$$= O_{a}\left(\frac{T}{(2\sigma - 1)(1 - \sigma)}\right),$$

where $\zeta(s, r)$ is the Hurwitz zeta function.

Derivation of the upper bound

Use Littlewood's lemma together with the following estimate from Kačenas and Laurinčikas: For $1/2 < \sigma < 1$,

$$\int_{0}^{T} |F_{a}(\sigma + it)|^{2} dt = \frac{T}{q^{2\sigma}} \sum_{j=1}^{q} |a_{j}|^{2} \zeta(2\sigma, j/q) + O\left(\frac{q^{2-2\sigma} T^{2-2\sigma} \sum_{j=1}^{q} |a_{j}|^{2}}{(2\sigma - 1)(1 - \sigma)}\right)$$
$$= O_{a}\left(\frac{T}{(2\sigma - 1)(1 - \sigma)}\right),$$

where $\zeta(s, r)$ is the Hurwitz zeta function. By Jensen's inequality,

$$\int_0^T \log |F_a(\sigma+it)| dt \le \frac{T}{2} \log \left(\frac{1}{T} \int_0^T |F_a(\sigma+it)|^2 dt\right) = O_a(T \log(1/u)),$$

for
$$\sigma = (1 + u)/2$$
.

Summary

▶ Every Dirichlet series $F_a(s)$ with periodic coefficients can be written uniquely in the form

$$F_a(s) = \sum_{\psi \in \mathcal{D}^{\mathrm{pr}}} P_{\psi}(s) L_{\psi}(s)$$

where the $P_{\psi}(s)$ are Dirichlet polynomials.

Summary

▶ Every Dirichlet series $F_a(s)$ with periodic coefficients can be written uniquely in the form

$$F_a(s) = \sum_{\psi \in \mathcal{D}^{pr}} P_{\psi}(s) L_{\psi}(s)$$

where the $P_{\psi}(s)$ are Dirichlet polynomials.

▶ If the above sum has more than one non-zero term, then there exists a number $\eta = \eta(a) > 0$ such that, for all real numbers σ_1 and σ_2 with $1/2 < \sigma_1 < \sigma_2 \le 1 + \eta$ and all sufficiently large T, we have

$$N_{F_a}(\sigma_1, \sigma_2, T) \asymp_{a,\sigma_1,\sigma_2} N'_{F_a}(\sigma_1, \sigma_2, T) \asymp_{a,\sigma_1,\sigma_2} T.$$

References

- P. Codecà, R. Dvornicich, U. Zannier, Two problems related to the non-vanishing of $L(1,\chi)$, J. de Theorie des Nombres de Bordeaux **10** (1998), 49-64.
- J. Kaczorowski, M. Kulas, On the non-trivial zeros off the critical line for L-functions from the extended Selberg class, Monatsh. Math. **150** (2007), 217-232.
- A. Laurinčikas, On zeros of linear combinations of Dirichlet series, Lith. Math. J. 26 (1986), 244-251.
- J. Steuding, On Dirichlet series with periodic coefficients, Ramanujan J. 6 (2002), 295-306.
- ➡ J. Steuding, Value Distribution of L-Functions, Lecture Notes in Mathematics 1877, Springer, 2007.